高速铁路建设中的无砟轨道施工技术研究
- 格式:docx
- 大小:28.49 KB
- 文档页数:3
Engineering Technology120《华东科技》高速铁路无砟轨道隔离层及弹性垫层施工技术研究刘敬银(中国铁建投资集团有限公司,广东 珠海 519000)摘要:本文对CRTSⅢ型板式无砟轨道进行简要介绍,并分别针对隔离层与弹性垫层的施工准备、技术应用与要点进行分析,最后提出此类轨道铺设、精调工艺以及质量控制措施。
力求通过本文研究,使隔离与垫层的施工质量和效率得到极大提升,促进高铁工程的顺利完成。
关键词:高速铁路;无砟轨道;隔离层;垫层施工在城市化建设背景下,铁路工程数量不断增加,对施工质量与安全提出更高要求。
无砟轨道CRTSⅢ型板结构较为安全,具有舒适性强、经久耐用的特点,使以往板式轨道的限位方式与轨道弹性得以改善,板下充填材料增加,轨道板结构得到优化,在铁路工程领域得到广泛应用。
1 CRTSⅢ型板式无砟轨道简介 CRTSⅢ型板式无砟轨道结构是我国通过原始创新、集成创新和引进消化吸收再创新,并结合现有无砟轨道技术,提出的具有完全自主知识产权的最新无砟轨道体系,具有稳定性强、刚度均匀等特点,由钢轨、弹性长阻力扣件构成,内部设置钢筋网片。
其作为客运专线中的新结构形式,在大量模拟试验中积累经验,现已经探索出完整的施工工艺,有代表性的应用线路:成灌线、成绵乐客专、哈大线。
主要工序为:先做好施工准备工作,对底座板、隔离层、弹性垫层进行施工,然后安装钢筋网片,对轨道板进行粗铺和细调,最后灌注混凝土后进行质量检验,主要流程如下图1所示。
图1 无砟轨道施工流程图2 隔离层与弹性垫层工艺应用 2.1 施工准备施工前组织技术人员认真学习施工组织设计,阅读、审核施工图图纸,充分了解设计意图,澄清有关技术问题,熟悉技术规范和技术标准,制定安全保证措施和应急预案。
对底座板、限位凹槽、平整度、高程中线位置等指标进行检验,使其与设计要求相符,在此情况下方可铺设垫层与土工布。
当底座混凝土的设计强度超过75%后,可利用角磨机对混凝土外表的毛刺进行打磨,利用高压风机对凹槽底面、底座表面的杂物与灰尘进行清理,确保底座与外面处于干净状态,以利于粘贴凹槽弹性垫板及隔离层摊铺平整。
高速铁路无砟轨道施工技术研究作者:宋宝吉来源:《城市建设理论研究》2014年第04期摘要:本文通过分析我国高速铁路无砟轨道施工技术的难点,以及无砟轨道施工工艺,对我国高速铁路无砟轨道施工关键技术控制提出一些建议。
为我国高速铁路无砟轨道施工技术快速发展提供借鉴。
关键词:高速铁路;无砟轨道;施工技术中图分类号:TU74文献标识码: A一、分析我国高速铁路无砟轨道施工技术的难点与普通铁路有碎轨道相比,高速铁路无砟轨道系统的施工工艺更为复杂,技术含量更高,其难点主要体现在以下几个方面:(一)无轨道基础地基沉降变形规律难以控制无砟轨道整体形态是通过扣件系统进行维持,因此,必须采取技术经济合理的处理措施保证轨道地基的稳定性。
(二)精密测量技术传统的测量技术已经无法满足高速铁路无砟轨道系统的施工建设需求,需要采用高精度的现代工程测量方法来保证无砟轨道线路平顺性。
(三)轨道平顺度控制高速铁路与普通铁路的最显著区别是需要一次性建成可靠、稳固的轨道基础工程和高平顺性的轨道结构。
轨道的高平顺性是实现列车高速运行的最基本条件。
心无砟道岔施工。
道岔区无砟轨道施工应严格按相关规程进行,在保证无砟轨道的道岔问无缝的同时还要注意与不同区间、不同标段间无缝线路施工相互协调。
二、我国高速铁路无砟轨道施工工艺(一)无砟轨道测量线下基础工程完工并经铺轨条件评估合格后,按照规范要求对线路中线进行复测,保证施工结构尺寸、位置、高程满足设计要求并在限差范围内。
在无砟轨道施工前,首先建立无砟轨道基桩控制网,在建立之前对原交桩的控制网进行复核测量,检查其桩位是否移动、破坏,以确保无砟轨道施工控制网与线下施工控制网的坐标系统一致。
(二)无柞轨道基桩控制网的建立在线路两侧的结构物上沿线路方向每 60m预埋设一对强制对中标志,路基在接触网基础或接触杆上;桥梁在两侧防撞墙上,隧道则在两侧边墙上,埋设时确保棱镜处于水平状态,测量时平面和高程分别进行,平面控制网采用测角精度1",测距精度2士2ppm,全自动伺服型(带马达驱动的)全站仪测量,采用自由组合法测量两个测同,并与CPI .CPII控制点连测。
无砟轨道铺设施工技术分析摘要:无砟轨道是一种先进的轨道技术,目前主要用于在高速铁路项目中。
文章针对无砟轨道铺设施工进行研究,从工程概况、无砟轨道铺设施工重难点、施工工艺流程、施工技术要点等方面进行分析。
实践证实:把握施工重难点,严格执行施工工艺流程,并加强技术控制工作,能保证无砟轨道的铺设质量。
关键词:无砟轨道;施工重难点;工艺流程;技术要点无砟轨道使用混凝土、沥青混合料等整体基础,取代传统的散粒碎石道床,能避免道砟飞溅,不仅平顺性和稳定性好,而且使用寿命长、维修工作少,能满足高速列车安全稳定的行驶要求[1]。
我国武广高铁、京沪高铁、广深港高铁、哈大高铁等多个项目均采用无砟轨道技术。
以下结合笔者实践,探讨了无砟轨道铺设施工技术。
1.工程概况某铁路客运专线,线路总长132 km,包括路基段约115 km、桥梁段约17 km,设计时速250 km/h,采用CRTS Ⅱ型板无砟道床。
路基段无砟轨道结构:176 mm钢轨+40 mm扣件+20 mm承轨台+200 mm轨道板+50 mm砂浆+305 mm底座,总高度共计791 mm;桥梁段无砟轨道结构:176 mm钢轨+40 mm扣件+20 mm承轨台+200 mm轨道板+50 mm砂浆+205 mm底座,总高度共计691 mm,见图1。
轨道板砼强度等级为C60,挡台及底座板采用C40钢筋砼结构,伸缩缝宽20 mm,采用聚乙烯泡沫塑料板填缝。
图1:桥上CRTS Ⅱ型板式无砟轨道示意图2.无砟轨道铺设施工重难点2.1 地基沉降不易控制无砟轨道施工中,地基沉降不易控制是一个重难点,再加上扣件性能的影响,带来了运行风险。
从现有研究来看,地基沉降受到多种因素影响,包括荷载作用点、砂浆弹性模量、扣件刚度等[2]。
这些因素的存在和相互作用,影响地基力学分析结果,继而为现场施工带来困难,难以把握地基沉降规律。
本工程中,选择合适的扣件系统,并对施工人员进行专项技术培训,更好地控制地基沉降。
工程技术高速铁路轨道有砟无砟过渡段施工探讨赵 瑞(中铁十二局集团第三工程有限公司,山西 太原 030024)摘要:近年来我国高速铁路发展迅速,高铁已经成为我国的一张世界名片。
铺架作为高速铁路的控制性工程,其施工质量及进度非常重要。
其中轨道有砟无砟过渡段作为铺架施工的关键工序及薄弱地段,研究其施工方法及注意事项势在必行。
本文结合太焦铁路单枕连续法铺轨的有砟无砟过渡段施工,介绍其施工方法,可为同类施工提供参考。
关键词:高速铁路;过渡段;单枕连续法铺轨1 工程概况 新建太原至焦作铁路工程TJZQ-4标段铺轨工程(山西段),铺轨起点K103+517,终点里程K422+066,线路全长 318.549km,正线铺轨长度 631.56km、站线铺轨长度29.83km。
无砟轨道与有砟轨道结构间设置过渡段,过渡段设置在隧道内,长度为40m。
过渡段范围内,在两股基本轨之间设置两根 60kg/m、25m 长辅助轨,其中5m 设置在无砟轨道,剩余20m 设置在有砟轨道。
过渡段轨枕的外型尺寸、截面尺寸及结构配筋参考图纸为《研线 0714》。
过渡段基本轨采用与双块式无砟轨道相同的弹性扣件,辅助轨采用扣板式扣件参考图纸为《图号:研线 0607》。
有砟无砟过渡段无过渡枕范围道床厚度为 37.4cm,道床边坡 1:1.75,砟肩堆高 15cm。
道床顶面宽度为 3.6m。
2 有砟无砟过渡段施工 2.1 人工散枕 为配合单枕连续法铺轨中的CPG 铺轨机与长轨牵引车转换。
过渡段采用人工散枕过渡的方法施工。
轨道有砟无砟过渡段设置40m,其中设置20m 过渡枕,20mⅢc 型轨枕,轨枕间距60cm。
并且施工过程中需根据CPG500有砟铺轨施工达到里程,确保Ⅲc 轨枕数量。
2.1.1 按照《无缝线路布置图》编制《长轨配轨表》 编制时使长轨单元焊接头(或锁定焊接头)配置在Ⅲc 型轨枕上,以方便工装转换。
配轨时需注意“工地焊接接头不应设置在不同轨道结构过渡段以及不同线下基础过渡段范围内,并距离桥台边墙和桥墩不应小于2m”的要求。
高铁无砟轨道施工技术研究随着中国高铁的迅猛发展,高铁无砟轨道施工技术也得到了越来越多的关注和研究。
无砟轨道是指高速铁路轨道上的道床不采用传统的石子碎石垫层,而是直接将轨道直接铺设在特定的基础上。
这种施工技术不仅能够提高铁路的稳定性和安全性,同时也能够降低施工成本和维护成本。
本文将对高铁无砟轨道施工技术进行深入探讨,为相关研究和实践提供参考。
一、高铁无砟轨道施工技术的发展历程无砟轨道的概念最早可以追溯到20世纪60年代,当时的法国TGV高速列车就采用了无砟轨道技术。
随着高铁技术的不断发展,无砟轨道在国际上得到了越来越多的应用和推广。
中国作为世界上高铁建设最为迅猛的国家之一,也开始加大对无砟轨道施工技术的研究和推广。
在中国高铁无砟轨道施工技术的发展过程中,先后涌现出了一系列关键技术和创新成果。
最具代表性的成果之一就是高铁无砟轨道的动态压实技术。
该技术采用了先进的动态压实设备和压实方法,能够在短时间内完成对轨道基础的良好压实,从而大大提高了轨道的稳定性和承载能力。
无砟轨道还应用了先进的轨道板接触网技术、长期应力监测技术等,为高铁的安全运行提供了更为可靠的保障。
采用无砟轨道施工技术具有多种优势,这也是其得到广泛应用和推广的重要原因之一。
无砟轨道能够大大降低铺轨用碎石数量,减少了施工成本,并且极大程度上减少了列车行驶时的噪音和振动,提升了乘车的舒适性。
无砟轨道厚度较薄,能够减小路基填挖量,降低了对环境的影响,有助于生态环保。
无砟轨道能够提高路基稳定性和承载能力,减少了路基变形和维护频次,降低了对维护人力物力的需求。
在新一代高铁建设和运营中,高铁无砟轨道施工技术也表现出了更为显著的优势。
在技术创新方面,无砟轨道结构设计更加精细,采用了更为先进的建材和施工工艺,能够更好地适应高速列车的运行需求。
在运维管理方面,无砟轨道更容易进行巡检和维护,能够更快速地发现问题并进行处理,提高了铁路的安全性和稳定性。
高铁无砟轨道施工技术的应用不仅有利于提高高铁的运行效率和安全性,还有利于减少对环境的影响,为高铁的可持续发展提供了更为坚实的基础。
高铁无砟轨道智能化施工技术研究与应用摘要:今天,随着高速铁路的迅速发展,铁路布局技术也取得了显著的发展,特别是在高速铁路方面。
压载轨道是高速铁路特别是高速客运专线的主要形式,结构光滑,稳定性和耐久性强,施工过程中结构单一,因此非常方便。
目前已成为高速铁路的主力军,并成功应用于多个铁路工程项目,将如下重点分析其安装施工工艺。
关键词:铁路工程;无砟轨道;施工要点;质量控制引言现阶段人们的生活水平不断提高,对生活质量的要求越来越高,近年来人们出行越来越频繁,高速铁路已经成为人们出行的主要方式之一。
我国高速铁路产业取得了快速发展,高速铁路产业的发展不仅促进了我国交通运输的发展,也提高了高速铁路产业的质量。
无砟轨道施工技术在我国起步较晚,出现后受到广泛关注。
根据相关资料,无碴轨道施工工艺与传统高速铁路施工工艺相比,可以提高高速铁路的施工质量,简化施工过程。
以高速铁路工程为例,开始无砟轨道施工供水研究,首先简单介绍全长约270公里的高速铁路工程,现阶段无砟轨道施工类型越来越丰富,性能有所改善。
两种无砟轨道的模块化施工,主要由施工单位选择,分别为CTSE I型板和CTSE II型板。
本工程的施工。
1无砟轨道施工质量控制要点在铁路压载轨道工程中,施工单位要严格按照施工规范进行施工机械、施工材料等。
铁路无砟轨道施工前,要做好控制网的复试、劳动层高程处理、凿井、富水段排水措施、轨道等级校正、运输、施工计划等准备工作,加强主要材料的质量管理,认真进行工艺试验,编制使用说明书等等。
2无砟轨道施工技术特点及难点分析2.1施工技术特点道碴轨道用壳轨取代原有铁路工程中的碎石,并采用现浇混凝土基础结构作为轨道基础。
此外,轨道板上使用的预制钢筋混凝土构件将提高整体性能。
中性无碴轨道与以前的无碴轨道相比,耐久性高,维护成本低,对环境影响小。
压载舱轨道施工精度要求高,所有实测参数均以毫米为单位进行监测,以确保列车安全运行。
因此,施工人员应充分掌握施工技术特点和难点。
214YAN JIUJIAN SHE关于无砟轨道施工技术难点的研究Guan yu wu zha gui daoshi gong ji shu nan dian de yan jiu李金堂本文分析了无砟轨道施工技术及其技术难点,并提出了施工过程质量控制的具体措施。
在当前我国高速铁路建设中,无砟轨道的施工是重要的组成部分,对提升高速铁路的建设质量具有直接的影响,其耐久性、建设精度和车辆的运行安全之间存在密切的联系。
施工单位应当对无砟轨道施工中存在的难题进行全面、细致的分析,掌握施工要点,并采取有效的质量控制措施。
当前,在我国经济社会发展中,高速铁路已经得到了迅速的发展,促进了我国交通运输业的繁荣。
在铁路建设的过程中,无砟轨道施工是重要的组成部分,然而此项施工存在不少难点,特别是在沉降控制、刚度控制方面。
因而,为了保证无砟轨道的施工可以顺利完成,我们应当对施工中的技术难点加以研究,采取有效的防范和控制措施,以提升轨道建设的质量。
本文探讨了无砟轨道施工技术及其难点,并提出了质量控制的具体措施。
一、工程概况本标段为新建鲁南高速铁路日照至临沂段RLTJ-4标,项目部所承建的无砟轨道起止里程为:DK71+501.917~D1K84+997.839,正线长13.496km,全部为桥梁段。
轨道工程为CRTSIII 型板式无砟道床,轨道的结构形式采用了CRTS Ⅲ型板式无砟轨道,在线路上所有轨道板都能够与设计里程实现对应,从而实现了设计、制造、施工的一体化,提升了建设精度。
二、无砟轨道施工技术1.底座表面清理基面凿毛使用凿毛机进行,Z 形剪力筋的安装则使用施工单位自行改装的快速扳手弯制。
在开始安装钢筋以前,操作人员应当首先清理下部结构的表面,去除存在的杂物。
若存在油污,就要及时应用清洗剂加以清洗,以防止底座表面被泥浆覆盖。
在浇筑底座以前,先要浇水对其进行湿润,时间应控制在2h 以上。
2.道床板施工轨枕按照组装平台上的定位线均匀铺设,而且还要借助模具合理控制间距。
高速铁路无砟轨道智能化技术研究摘要:本研究旨在探讨高速铁路无砟轨道智能化技术的研究和应用。
通过对该技术的介绍和分析,提出一系列管理措施和技术创新方向。
研究结果表明,高速铁路无砟轨道智能化技术的应用可以提高施工效率和质量,降低维护成本,推动相关领域的技术进步和创新。
因此,需进一步加强高速铁路无砟轨道智能化技术的研发和应用,为我国高速铁路事业实现可持续发展奠定坚实基础。
关键词:高速铁路;无砟轨道;智能化技术1前言随着全球经济的快速发展和城市化进程的加速,高速铁路作为一种高效、安全、环保的交通方式,在全球范围内得到了广泛的应用和推广。
作为高速铁路建设的关键技术,无砟轨道智能化技术的研究和应用对于提高高速铁路的运营效率、保障行车安全、降低维护成本等方面具有重要意义。
通过研究,希望能够为我国高速铁路事业的发展提供一定保障。
2高速铁路无砟轨道的基本概述高速铁路无砟轨道是一种新型的轨道结构,相较于传统有砟轨道具有更高的稳定性和使用寿命。
主要特点是采用混凝土或沥青混凝土等无机材料取代传统的道砟,从而提高轨道的整体性和稳定性,减少维护修复成本。
高速铁路无砟轨道还具平顺性与舒适性,能够保证列车在高速行驶时的稳定性和安全性,以便适应各种复杂的环境和气候条件,不易受到自然灾害等外部因素的影响。
在施工过程中,高速铁路无砟轨道采用先进测量和控制技术,能够确保轨道的几何尺寸和位置精度达到毫米级别。
此外,无砟轨道的结构设计也充分考虑了列车的动力学性能和轨道的耐久性,以确保其长期稳定地运行。
3高速铁路无砟轨道智能化技术的运用3.1案例概况山东潍坊至烟台铁路站前工程WYTLSG-2标段CRTSⅢ型板式无砟道床施工是一个重要的工程项目。
该工程旨在建设一条高效、安全、舒适的高速铁路,以满足日益增长的交通需求。
山东潍坊至烟台铁路线路全长237.3km、设计时速为350km/h。
于2020年10月开工建设,预计2024年投入运营,起自山东潍坊昌邑市,自昌邑站与潍荣高铁潍莱段接轨,经青岛平度市,烟台莱州市、招远市、龙口市、蓬莱区、经济技术开发区、福山区和芝罘区,至烟台市莱山区,通过青烟直通线引入既有芝罘站和烟台南站。
高速铁路无砟轨道施工技术难点分析摘要:我国高速铁路工程建设规模随着科技的发展和人们生活水平的提升而不断扩大。
使我国交通运输业得到快速发展,加快了商品流通速度,促使人们的生活更加便捷,带动了我国经济的发展。
在实际的工程项目建设过程中,高速铁路采用无砟轨道施工,无砟轨道结构往往采用的是特定的钢筋混凝土材料所制作成的道床板。
无砟轨道构造难度较低,铺设速度较快,并且稳定性更高,文章主要对无砟轨道施工技术难点进行分析。
通过采取对应措施对该问题进行处理,提高技术应用效果,延长工程使用寿命。
关键词:高速铁路;无砟轨道;施工技术;施工难点引言相较于其他的轨道施工技术,无砟轨道施工技术具备许多的应用优势,如环境污染小、施工速度快等。
不过从实际施工情况来看,该技术在施工过程中,还面临着一些施工难点,如路基沉降、铺设位置偏移等,这些问题也将影响到轨道最终的成型质量,通过采取措施对其进行优化处理,对于降低施工问题发生概率,提高轨道施工质量有着积极的作用。
1无砟轨道施工技术特点在高速铁路施工过程中,无砟轨道施工技术具有良好的应用优势:首先,无砟轨道的结构连续性以及平顺性比较优良。
因为无砟轨道的底座以及道床板都是现场工业化浇筑完成的,而双块式轨枕、轨道板以及微孔橡胶垫层、扣件以及钢轨等可以直接在工厂进行预制件生产,能够在极大限度提高高速铁路轨道的施工效率以及施工质量,可以在极大限度上提高高速列车在运行过程中的平稳性以及舒适性。
其次,无砟轨道的结构恒定性以及稳定性相对优良。
在无砟轨道结构中,整体式轨下基础能够为无缝线路提供更加恒定的轨道纵向阻力以及横向阻力,其耐久性以及使用寿命更长。
最后,无砟轨道的结构耐久性较强,并且其具有较强的少维修性能,这也是其在高速铁路施工过程中广泛应用的重要特点。
无砟轨道的维修工作量比较少,是一种省维修的轨道,能够在很大限度上延长线路的维修周期,从而确保客运专线列车的准点正常运行。
无砟轨道在列车荷载的作用下并不会产生变形积累情况,可以将无砟轨道的几何尺寸变化情况控制在轨下胶垫、构件以及钢轨的松动和磨损等因素中,能够有效降低轨道几何状态变化的速度,减少轨道养护维修的工作量,从而延长轨道的线路的维修周期。
高速铁路无砟轨道施工技术探究摘要无砟轨道是我国铁路建设发展过程中出现的一项新技术。
与传统轨道相比,无砟轨道具有可靠性高、稳定性好等优点。
突破了传统轨道对列车速度的限制是我国高速铁路安全运营的重要保障,由于我国无砟轨道技术起步较晚,仍处于发展和经验积累过程中。
因此,当前加强无砟轨道的研究,是保证我国铁路事业健康发展的重要环节。
关键词:高速铁路;无砟轨道;施工技术;探究引言就目前中国交通运输业的发展而言,随着社会经济的快速发展,交通运输业的发展也取得了很大的进步。
近年来,高速铁路以其高速、高舒适的优点在人们的日常生活中得到了广泛的应用。
现在它已经成为人们出行的主要选择方案之一。
由于高铁的建设质量直接关系到高铁的运营性能,因此加强高铁轨道的建设尤为重要。
但由于我国高速铁路无砟轨道施工技术起步较晚,施工技术应用积累的经验不够丰富,因此,在修建无碴轨道的过程中存在许多问题,这影响了高速铁路无砟轨道的施工质量,因此,我们必须尽快采取有效措施,充分了解无砟轨道施工技术的应用及相关知识,确保无砟轨道施工技术在施工过程中的合理应用,有效的提高施工质量。
所以,如何优化高铁有砟轨道施工技术的应用方法,加强无砟轨道施工技术的应用,已成为目前我国高铁建设领域相关人员的重点研究课题之一一、高速铁路无砟轨道施工技术概述无砟轨道是用水泥全覆盖的形式取代原来的碎石铺垫工作原理。
在许多情况下,轨道的路基是用砾石建造的。
无砟轨道的结构中,轨道的施工现场包括水和水泥材料。
无砟轨道本身的基本特点,要求施工规格精度高其误差单位精确到毫米,这是保证车辆稳定性的必要条件。
此外,使用无砟轨道可以有效地节约铁路的维护成本,减少环境污染,具有良好的耐久性,可以满足时速高达250km/h的列车的需要。
目前,在我国高速铁路建设中,路基中几乎没有石块和碎片,而是使用了定制板钢筋混凝土轨道。
为了实现轨道施工速度快、施工效率高的目的,保证列车投入使用时的稳定性,该轨道已成为高速铁路结构的必然选择。
铁路工程中无砟轨道施工技术研究摘要:CRTSⅢ型板式无砟轨道具有整体稳定性好、结构耐久性强、施工造价低等特点,是高速铁路首选轨道形式之一。
进入21世纪以来,我国自主创新成果CRTSⅢ型板式无砟轨道的应用,促进了中国高铁走在世界前列。
CRTSⅢ型板式无砟轨道分为3个部分:上部由钢轨、弹性扣件、轨道板组成;中部由平面和限位槽四周的隔离垫层、自密实混凝土组成;下部由底座组成。
关键词:铁路工程;无砟轨道;施工技术引言在CRTSⅢ型板式无砟轨道施工过程中,确保轨道几何状态和道床实体质量是施工控制的重点和难点,特别是在高寒干旱地区尤为突出。
在无砟轨道施工过程中,通过多次的工艺性试验,对施工方法和工艺进行分析总结,最终确定轨道排架铺设及精调、混凝土浇筑、保温保湿养护关键技术措施的作业标准和控制要点。
在施工过程中严格按照施工方法和工艺流程执行,有效指导现场施工,提高了工作效率,保证了施工质量。
在线路交验和联调联试时均取得了良好效果,确保了线路开通运营安全性和舒适性,对今后类似工程具有一定的借鉴意义。
1.铁路工程中无砟轨道施工技术的发展现状目前国内外尚无大跨度悬索桥铺设无砟轨道的先例,为探索大跨度悬索桥铺设CRTSⅢ型板式无砟轨道的可行性,通过分析已建成的有砟轨道的梁体线形受荷载和自然环境影响的变化规律及梁体线形对轨道的影响,借鉴典型无砟轨道斜拉桥应用经验,从无砟轨道对梁体空间大变形的适应性、测量控制技术、成桥线形控制技术3个方面开展了可行性研究。
在空间大变形适应性研究方面,利用仿生学原理,提出对大跨度悬索桥铺设CRTSⅢ型板式无砟轨道进行“轨道-桥梁”一体化设计,以减小单元轨道板长度,强化单元轨道结构;提出增设辅助墩、边墩和辅助墩均增设纵向位移单向竖向支座,以控制梁端转角;选择下承式梁端钢轨伸缩装置,用以满足梁端部位钢轨伸缩变形。
在测量控制技术方面,提出了梁体在厂内“3+1”预拼装时,建立相对平面控制网,成桥后利用开口“连通器”原理快速建立相对高程控制网的思路,以促进制造精度提升、降低自然环境影响、提高大跨度悬索桥铺设CRTSⅢ型板式无砟轨道施工质量和精度。
无砟轨道的施工技术论文1水硬性混凝土支承层铺设我们按照设计方案的配比进行水硬性混凝土的搅拌后混合均匀,之后倾倒入运输车内。
对混凝土摊铺时,要沿着定位桩拉线,这样就可以对摊铺机方向实现控制。
我们将摊铺机调整到合适的收集物料和投放物料的速度以及碾压力,拉线检查支承层的顶面高程。
支承层水硬性混凝土摊铺完毕后,占用半天时间对支承层表面用锯切出伸缩缝隙,其中深度可达0.1m,间距可达5m。
与此同时对支承层边缘轮廓尺寸进行修整。
最后将保湿棉垫覆盖在支撑层上,从而使在不受风吹和阳光直射3天的前提下,混凝土的表面充分润湿。
2轨道安装定位对于轨道安装定位,最开始要安装工具轨、铺设轨枕;对轨道进行定位和调整,检查轨道电路的参数来判断性能,最后准确定位出轨道位置。
而且100m是一个施工单元。
一般使用散枕机协助安装工具轨轨枕和铺设轨枕施工。
散枕机是一种特殊的挖掘机,就是安装专用的液压轨枕夹钳,使得轨枕的吊装和轨枕的摆放到位。
然后利用专用的支撑架和双向调整轴架完成轨道调整定位施工。
双向调整轴架基座应该安装在钢轨底面,每间距3根轨对称设置,中间间隔2.5m在轨道面高程测量方面,一般水准仪是必要的工具,加之借助竖直调整装置,就可以将标高控制在合理范围之内。
将双向调整轴架的竖直螺栓强行固定,使得端头和垫板顶死。
使用扳手旋转传力杆将传力杆逐步调整到中线位置,差值大致为5mm,同时采用全站仪进行复核。
复核合格之后,对预埋位置进行钻孔和安装定位支座。
最后,在道床板混凝土浇筑前的一个半小时和二个小时之前进行固定规定精确调整,根据轨检小车输出的检测数据确定检测断面处轨道精确调整的量值。
根据细调定位支座位置对检测断面划分,利用全站仪和轨检小车逐步检测每一个断面路线的轨向、高低和水平等中线位置和几何位形。
使用扳手对竖直螺栓丝杆进行微调,同时对几何位形调整,达到设计的标准。
在细调定位支座上安装螺旋调整器,对调整手柄进行旋转,将调整刻度调到调整量值。
高铁无砟轨道施工技术研究1. 引言1.1 背景介绍高铁无砟轨道施工技术是指在高铁线路建设中,采用无砟轨道技术进行铺设的施工方法。
传统的铁路施工中,常常需要在轨道下面铺设一层砟石,以保证轨道的稳定性和承载能力。
而无砟轨道施工技术则是通过直接在路基上铺设轨道,省去了砟石铺设的步骤,大大提高了施工效率和节约了施工成本。
随着高铁建设的不断发展,尤其是高速铁路网的不断完善,对施工技术和工艺的要求也越来越高。
高铁无砟轨道施工技术的研究和应用,对于提高铁路建设工程的质量、效率和环境友好性具有重要意义。
深入研究高铁无砟轨道施工技术,总结经验,提出改进建议,具有重要的意义和价值。
本文将从高铁无砟轨道施工技术的概述、施工工艺及方法、施工设备及材料、施工质量控制、技术创新及发展趋势等方面进行探讨,旨在全面了解和总结高铁无砟轨道施工技术的相关知识,为今后的高铁建设提供技术支持和参考依据。
1.2 研究意义高铁无砟轨道施工技术的研究意义主要体现在以下几个方面:高铁无砟轨道施工技术的研究可以提高高铁线路的建设效率和质量。
无砟轨道相比传统的石子轨道具有施工周期短、维护成本低等优势,通过研究不断完善施工工艺和方法,可以提高施工效率,减少施工成本,同时也提升高铁线路的稳定性和安全性。
高铁无砟轨道施工技术的研究对于提高铁路运输的效率和舒适度具有重要意义。
无砟轨道具有减震降噪、减小动车运行阻力的特点,能够提高列车的运行速度和舒适度,减少对环境的影响,促进铁路运输的可持续发展。
高铁无砟轨道施工技术的研究还可以促进我国铁路工程领域的技术创新和发展。
随着高铁建设的不断推进,铁路施工技术也需要不断创新,通过研究无砟轨道施工技术,可以为我国铁路工程领域的发展提供新的思路和方法,推动铁路工程技术水平的不断提高。
1.3 研究目的高铁无砟轨道施工技术的研究目的主要包括以下几个方面:1. 提高施工效率:通过研究高铁无砟轨道施工技术,可以探讨如何提高施工效率和减少施工周期,从而更快地建成高铁项目,满足社会对高铁交通的需求。
高速铁路无砟轨道施工技术探究叶伟摘要:无砟轨道因为它的轨道结构用沥青混合料、混凝土等材料取代了以散碎石粒为主要成分的飞溅道砟的轨道模式,是世界上最为领先的轨道技术之一。
它与有砟轨道最大的区别是无砟轨道的轨枕是现场浇筑水泥而形成的。
由于无砟轨道材质好,设计结构有足够的抗冻安全性,产生偏差小,在铺轨完成后的后续沉降变形要求高,所以它的平稳性、耐久性更好,列车运行时速能够达到350公里以上,同时,它的建造工艺使维修较少,使用寿命更长,降低了铁路维修的费用,还对空气污染小。
但是,由于中国高铁无砟轨道的建造工艺还不十分成熟,在建造工艺中对一些操作难点不能够准确控制,所以在技术方面还需要进行深度的完善和研究。
本文对高速铁路无砟轨道施工技术进行了分析。
关键词:高速铁路无砟轨道施工技术引言无砟轨道是高铁轨道构建过程中的重要组分,它的平顺性、可靠性、稳定性及非常优良的综合品质,在列车的高速行驶中都有着至关重要的作用。
与此同时,从文章中的分析结果能够清晰地得出,无砟轨道是未来轨道交通领域中的关键发展趋势。
所以,为了能够高效推动轨道交通的不断发展,施工建设企业和有关工作人员需要加强对于无砟轨道建设模式的分析与探索,切实了解无砟轨道在建设当中的重要部分,从而切实保障其施工品质。
1高速铁路无砟轨道施工技术概况无砟轨道,也就是用具有整体结构的水泥基来代替原有的碎石轨道。
很多状况下,轨道的路基均是利用碎石来进行筑造的。
而在无砟型的轨道结构中,其轨枕是现场建筑的水泥材料。
无砟型轨道自身最基本的特性就是较高的精密度,其所具有的误差是以毫米级的,这是确保车辆行驶稳定的必要条件。
此外,运用无砟轨道,可以有效节约铁路的维护成本、缓解环境污染、具有较好的持久性,能够满足速度高达250km/h的列车行驶需要。
目前,国内的高速铁路在施工过程中,路基上几乎不存在任何石子和碎片,而是使用定制的钢筋混凝土轨道板。
进而实现轨道施工速度快、建设效率高的目的,同时保障投入使用后列车行驶时的稳定性,所以这种轨道便成了高速铁路结构的必选项。
高速铁路CRTSⅢ型板式无砟轨道施工技术研究王立东【摘要】高速铁路能够安全运行,高速列车能够既快又稳,关键核心技术之一就是轨道设计。
线下工程的作用都是为了满足轨道结构的要求,并最终反映到轨道结构上。
因此轨道结构是所有基础工程中的关键部分。
由于轨道结构直接跟车轮接触,所以其直接关系到高速列车的安全和平稳运行。
因此轨道结构对各项工作要求很高,任何微小的差错都可能是致命的。
CRTSIII型板式无砟轨道是我国自主研发并具有完全自主知识产权的无砟轨道结构形式。
GRTSⅢ型板式无砟轨道作为一种新型的无砟轨道结构,在郑徐铁路上已经成功铺设,本文主要研究GRTSⅢ型板式无砟轨道从布板、自密实混凝土充填层施工到精调及施工中常见的质量问题进行研究。
%One of the key core technologies, which makes the high speed railway run safely and high-speed trains be fast and stable, is the design of the track. The role of the under line project is to meet the requirements of the track structure, and ultimately reflected in the track structure. So the track structure is the key part of all foundation engineering. Because of the direct contact with the wheel, the track structure is directly related to the safety and stability of high-speed train operation. Therefore, the track structure has a very high requirement for all the works, and any small error can be fatal. CRTSIII ballastless track structure is developed in China and has completely independent intellectual property rights. CRTSIII ballastless track as a new ballastless track structure, has been applied successfully in Zhengxu railway. In this paper, it mainly studies CRTSIII ballastless trackfrom layout and self-compacting concrete concrete filled construction to fine adjustment as well as common quality problems.【期刊名称】《价值工程》【年(卷),期】2016(035)019【总页数】4页(P155-157,158)【关键词】CRTSⅢ型;高速铁路;质量;研究【作者】王立东【作者单位】中铁十七局集团第三工程有限公司,石家庄050000【正文语种】中文【中图分类】U213.2+44高速铁路的安全运行中,轨道设计是核心技术。
运营高速铁路无砟轨道插入道岔关键技术研究与应用在高速铁路的世界里,有一个被大家忽略却又至关重要的部分——道岔。
你可能会觉得,这不就是那些铁路分岔的地方吗?嗯,没错,但你可能没意识到,正是这些“岔路口”,在决定列车是不是能够顺利运行,甚至能不能按时到达目的地时,起到了关键作用。
咱们今天就聊聊这玩意儿,别看它平时好像没啥大动作,但一旦出了问题,可不得了。
得说说这“无砟轨道”。
顾名思义,就是没有砟石的轨道,像我们以前看到的那种铁道,下面铺满了好多乱七八糟的石头,实际上是为了稳固轨道的。
而无砟轨道就不一样了,它直接用混凝土或者其他材料把轨道固定得死死的,简直就像是给列车穿上了超强护甲,保证了车速可以更快、更稳。
想象一下,列车飞驰而过,下面就是一个“平滑”的轨道,简直像是高速公路上的“飞车道”!但是,问题来了,无砟轨道虽然稳,但道岔这个东西,它就有点麻烦。
因为无砟轨道的结构特别坚固,插入道岔就成了一个难题。
你要知道,道岔是一个复杂的结构,里面涉及到很多机械装置和轨道的精确配合,怎么让这些东西在没有砟石“衬托”的情况下,依然能保持高效的切换和安全,光是想一想就让人头疼。
你要是想要列车顺畅地通过道岔,轨道必须精确到位,任何一丝一毫的偏差都可能引发故障。
现代高速铁路列车动不动就超过三百公里的时速,这个时候,轨道系统的任何一点问题都可能带来灾难性的后果。
那么问题来了,怎么解决呢?要知道,这可不是个小问题,不是随便找个小修小补就能搞定的。
要做到道岔和无砟轨道的无缝对接,首先得从设计上入手,尤其是道岔插入到无砟轨道时的承载问题。
试想,列车经过时,要确保道岔的每一个转弯、每一条轨道的连接都像一块拼图一样完美无缺,不然就像是车子在转弯时没有刹车——非常危险。
而这背后的关键技术,正是保证了铁路系统的安全与顺畅。
这些技术的核心,其实就在于对轨道和道岔的精密设计和施工工艺。
为了让道岔能够平稳地与无砟轨道结合,铁路工人们需要精准测量每一寸轨道的细节,并利用先进的技术手段将道岔的转向装置和无砟轨道进行完美衔接。
无砟轨道施工技术无砟轨道施工技术是一种现代化的铁路轨道施工方法,主要应用于高速铁路及城市轨道交通建设中。
相比传统的有砟轨道,无砟轨道更具优势,能够提供更高的运行速度、更强的车辆稳定性和更低的噪音污染。
本文将介绍无砟轨道施工技术的原理、优点以及施工流程。
一、无砟轨道施工技术原理无砟轨道施工技术是在轨道基床上直接铺设轨道板,而无需使用传统的木质或混凝土轨枕。
这种施工方法主要依靠轨道板的几何形状和轨道板与基床之间的填料层来承载车辆荷载和分散压力。
无砟轨道施工技术的原理包括以下几个方面:1. 轨道板:无砟轨道施工中使用的轨道板通常由钢材制成,其截面形状可以是I型、箱型或其他形式。
轨道板的主要功能是承载轨道和分担车辆荷载。
2. 填料层:填料层是无砟轨道中起到关键作用的一层材料,可以是特殊的高强度、弹性较大的材料。
填料层能够均匀地分散压力,减少噪音和振动,保证轨道的稳定性和舒适度。
3. 基床:基床是无砟轨道的基础,通常是一层经过加固处理的土质或石料层。
基床的作用是提供良好的支撑和排水条件,防止轨道板下沉或移动。
二、无砟轨道施工技术的优点相比传统的有砟轨道,无砟轨道施工技术具有以下优点:1. 减少噪音污染:无砟轨道施工技术采用弹性填料层,能够有效减少车辆经过时产生的噪音和振动,提高居民的居住环境。
2. 提高运行速度:无砟轨道施工技术的轨道板具有更好的几何形状和更高的强度,能够提高列车运行的稳定性和安全性,从而实现更高的运行速度。
3. 降低维护成本:无砟轨道施工技术中没有传统轨枕的使用,减少了维护和更换轨枕的费用,在长期运营中能够显著降低运营成本。
4. 延长使用寿命:无砟轨道施工技术中使用的钢质轨道板具有较长的使用寿命,能够更好地抵抗疲劳和变形,提高轨道的耐久性。
三、无砟轨道施工的流程无砟轨道施工的主要步骤包括:1. 基床处理:根据设计要求,对基床进行平整和加固处理,确保轨道施工的稳定性和可靠性。
2. 铺设填料层:在基床上铺设一层特殊的填料材料,如高分子弹性材料或聚氨酯喷涂材料,填料层的厚度根据设计要求进行控制。
高速铁路建设中的无砟轨道施工技术研究
摘要:在高速铁路工程中,无砟轨道的可行性较佳,它能够大幅增强稳定性,
轨道的刚度分布情况更为均匀,在后续运营中维护更为便捷,经过隧道区域时可
以大幅缩减净空开挖量。
在这样大背景下,有必要对无砟轨道施工技术展开针对
性分析。
关键词:高速铁路;无砟轨道;施工技术
一、高速铁路无砟轨道建造工艺
无砟轨道指的是将散碎型的碎石道床基础用水泥整体型基础结构来代替。
一
般情况下,常规铁路路基结构的轨枕在进行铺垫时基本使用的是碎石料,即选取
木枕部件或预制型水泥轨枕。
但无砟轨道中的轻轨选用的是水泥材料,并且在施
工现场进行浇筑形成。
现阶段,我国高铁在建设时基本采用特制的钢筋混凝土材质的道床板,已很少在
路基上使用煤炭碎片和石子。
因这种特制的道床板具有铺设效率高、运行平稳以
及路轨构造快等特点,从而使其成为高速铁路建设的不二之选。
二、高速铁路无砟轨道施工技术特点
无砟轨道具有的特点之一就是精准,即产生的偏差基本以毫米精度来核算,
从而使高速铁路行驶中的平顺性以及稳定性得到满足。
还有无砟轨道这种建造工
艺可使维修成本降低的同时也能降低粉尘污染,从而满足列车时速在250km以上
的运行需求。
而无砟轨道施工的技术特点具体有这几点:①良好的结构平顺性和连续性。
无砟轨道在施工现场进行工业化浇注的部件有底座、下部基础以及道床板,同时无砟
轨道的标准产品或工厂预制件有轨道板、扣件、微孔橡胶垫层以及双块式轨枕等,从而确保这些部件有着相同的性能。
而这样的组成结构使其轨道的弹性均匀性与
结构连续性更优于有砟轨道,同时也使轨道的平顺性得到提升,为乘车质量的改
善提供了良好条件;②良好的结构稳定性和恒定性。
在无砟轨道的所有结构中,作为无缝线路的轨道纵向阻力以及横向阻力对状态和材质多变的有碴道床不在依赖,因其具有的整体式轨下基础为无缝线路提供更恒定和更高的轨道横向阻力和
轨道纵向阻力,使无砟轨道具有更长的使用寿命以及更好的耐久性;③良好的结构少维修性和耐久性。
无砟轨道的维系量和有碴道床相比,维修量会有明显的下降,因此有“省维修”轨道之称,从而为客运专线列车的准点和高密度运行以及线
路维修时间的延长提供保障。
也就是说无砟轨道在列车的多次荷载下不会出现严
重变形,若轨道出现变形,基本也会控制在钢轨的磨损和松动、轨下胶垫以及扣
件等零部件之内,使轨道几个状态变化的速率明显现将的同时也能使维修以及养
护的工作量大大减少,进而使轨道的施工寿命以及维修周期得到延长。
三、无砟轨道施工难点技术控制的有效措施分析
1、控制无砟轨道基础沉降的有效技术措施
与传统有砟轨道相比,无砟轨道结构的强度比较高,且其刚度分布比较均衡,整体结构的稳定性比较好,是高速铁路工程中的主要结构组成。
在无炸轨道的施
工中要严格按照施工要求以及设计标准来确定技术参数,并准确控制其变形趋势。
施工过程中要积极采用先进的路基施工的技术工艺,合理选择无砟轨道的路基结
构形式,然后加强对填料以及浇注施工操作的质量控制,提高路基施工的规范性
和标准。
通过对轨道基础施工经验的总结以及对沉降控制的研究,为了突破无砟
轨道施工中的路基沉降控制这一技术难点,应在施工前加强对路基施工区域的的
勘测,充分了解可能对路基沉降或者形变产生影响的相关要素,并准确分析其沉
降成因。
在施工过程中应在基础结构达到可靠稳固状态后,按照施工的各项技术
标准进行严格的检测,检验合格后再开展后续的轨道铺设施工。
而如果需要进行
高速铁路涵洞或者桥梁施工时,也应首先确保其基础结构的稳定性,从而确保无
昨轨道施工质量能够达到高速铁路工程的施工要求。
2、控制无砟轨道定位精度的有效技术措施
在无昨轨道施工中,需要分别进行铺设测量工作、线下测量和竣工测量工作,并将其定位精度控制在毫米级,才能保证施工质量符合设计标准。
为了突破这一
施工技术难点,施工单位应积极采用先进的测量设备和技术方法来提高测量的精度,以保证轨道铺设定位以及线形定位的准确性。
对无砟轨道进行铺设测量时,
施工单位应严格遵守测量操作规范,并对测量高程网CPI、II以及III级控制网加
强检测。
施测时要注意测量长度不得超过2km范围,而点间距则应控制在约
150m,同时与线路中线应保持约4m的间距。
在完成测量规划后,应用混凝土对
控制点进行包桩施工,避免其精度受到环境硬塑的影响,并起闭其二等水准点。
当进行高程测量时,应通过水准仪以及纵向调配机构等来提高测量的精度,其水
准导线长度不得超过2km。
浇注无砟轨道单元板施工时,施工人员应首先将基准
仪安装到位,以便对轨道板形态以及单元板的铺设定位进行及时准确的调整,从
而确保无砟轨道的水平位置、高程以及方向的精确性。
在进行竣工测量时,则应
通过全站仪等先进的测量仪器来对轨道几何尺寸以及桩基的准确性进行复测,以
确保施工的精度。
3、控制无砟轨道线性尺寸的有效技术措施
在无昨轨道的施工过程中,为了突破其几何尺寸控制和线性控制这一技术难点,施工单位应严格按照设计标准来控制所有轨道结构件、扣件以及接头等的型号、尺寸以及数量。
在安装钢轨接头施工时,应采取相对安装的技术工艺,并将
其绝缘段与轨枕之间的间距控制在70mm以上。
同时应根据无砟轨道浇注施工中
的应力释放要求等来控制单元轨道长度,一般应将其长度控制在600m到1800m
之间,并根据设计要求来准确控制外轨超过以及轨道尺寸。
无砟轨道应在安装施
工先进行打磨,并将其平直度误差控制在0.3mm以内,同时轨道横截面的误差值应控制在0.2mm左右。
在无砟轨道的安装施工过程中,应在包桩轨道平直度的基础上,将轨面高程误差值控制在4mm到6mm之间,而线间误差值应控制在
8mm以内。
特别要注意的是轨道中心线的误差值应严格控制在2mm以内。
为了
提高无砟轨道几何尺寸以及线性控制的精度,可以通过预设偏高轨道等方式来并
避免螺杆扭矩或支持度等因素影响高程检测精度,从而准确控制轨道外围结构的
几何尺寸规格。
而在控制轨道内围结构的尺寸时,则应注意校正调节的精密性,
才能保证高速铁路运行的安全顺畅。
此外,在焊接轨道接头时也要严格控制连接缝,以提高轨道几何规格以及线性精度。
4、控制无砟轨道刚度的有效技术措施
当高速铁路工程中存在路桥连接段时,必须要注意保持无昨轨道刚度的一致性。
为了解决保持无昨轨道持刚度均衡的这一技术难点问题,施工单位时应制定
科学的施工工序以及相应的技术标准,特别是要合理控制路桥连接部分的结构类
型以及长度等要素。
同时要注意严格控制水泥砂架等施工材料的质量性能,并提
高其配比的合理性。
在材料制备时,搅拌要充分均匀,才能保证其性能指标的一
致性。
结束语
在当前铁路运输工作中,高速铁路的建设已经成为了一种必然趋势,与此同
时也随之衍生出无砟轨道这一新型技术,它能够显著推动铁路运输事业的发展。
但受种种原因限制,依然需要对无砟轨道施工技术提出一些可行的技术指导,提
升无砟轨道的应用水平。
参考文献
[1]杨立.高速铁路CRTS-Ⅰ型双块式无砟轨道施工技术[J].工程建设与设计,2019(9):97-98,101.
[2]刘海涛,刘伟斌,王继军.高速铁路减振无砟轨道关键技术研究[J].铁道建筑,2019(1):71-75.
[3]李翔.高速铁路无砟轨道施工技术难点分析[J].工程技术研究,2019(1):67-68.。