七年级数学(沪科版)下学期单元试卷
- 格式:doc
- 大小:610.50 KB
- 文档页数:5
沪科版七年级数学下册第6章 实数章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列等式正确的是( ).A 8±B .8=C .8=±D 4=±2 )A B CD .33、在 1.414-,π12,2,3.212212221…(相邻两个1之间的2的个数逐次加1),3.14这些数中,无理数的个数为( )个.A .5B .2C .3D .44、在实数3.1415,227,2.8181181118…(相邻两个8之间1的个数逐次加1)中,无理数有( )A .1个B .2个C .3个D .4个52的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间6、在12-,227,2022这四个数中,无理数是( )A .12- B .227 C D .20227、下列各数中,无理数是( )A .227B .πC D8、下列数中,15,3.7,π-7之间的3的个数逐次加1),是无理数的有( )个.A .5B .4C .3D .29a a 的值不可能为( )A .2B .3C .4D .510、下列说法中正确的有( )①±2都是8的立方根=x32.A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、立方等于-27的数是__________.2、对于实数a ,b ,定义运算“*”如下:a *b =(a +b )2﹣(a ﹣b )2.若(m +2)*(m ﹣3)=24,则m 的值为______.3、下列各数:-1、2π227,0.1010010001…(相邻两个1之间0的个数增加1),其中无理数的个数是______.4、比较大小:213-_____. 5、规定了一种新运算:11*11a b a b a b⨯=+,计算:(3*4)*5=___. 三、解答题(5小题,每小题10分,共计50分)1x ≠0,y ≠0,求x y的值. 2.3、如图是一个无理数筛选器的工作流程图.(1)当x 为16时,y 值为______;(2)是否存在输入有意义的x 值后,却始终输不出y 值?如果存在,写出所有满足要求的x 值;如果不存在,请说明理由;(3)如果输入x 值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x 值可能是什么情况?(4)当输出的y x值是否唯一?如果不唯一,请写出其中的三个.4、已知a,b互为相反数,c,d互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.5、已知a,b,c,d是有理数,对于任意a bc d,我们规定:a bbc adc d=-.例如:1223142 34=⨯-⨯=.根据上述规定解决下列问题:(1)2332=--_________;(2)若321711xx-=+,求x的值;(3)已知1153xk-=,其中k是小于10的正整数,若x是整数,求k的值.-参考答案-一、单选题1、C【分析】分别利用平方根和算术平方根以及立方根得出各选项是否正确即可.【详解】解:A8,故此选项错误;B、8±,故此选项错误;C、由B得此选项正确;D4,故此选项错误.故选:C.【点睛】此题主要考查了立方根、平方根、算术平方根等知识,正确把握各定义是解题关键.2、A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】故选:A.【点睛】此题主要考查相反数,解题的关键是熟知实数的性质.3、D【分析】有理数是整数与分数的统称,无理数就是无限不循环小数,据此逐一判断即可得答案.【详解】-是有限小数,是有理数,1.414π是无理数,1是分数,是有理数,22是无理数,3.212212221…(相邻两个1之间的2的个数逐次加1),是无限不循环小数,是无理数,3.14是有限小数,是有理数,∴无理数有π2和3.212212221…(相邻两个1之间的2的个数逐次加1),共4个,故选:D.【点睛】本题主要考查了无理数的定义,无理数就是无限不循环小数,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.熟练掌握定义是解题关键.4、B【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】2.818118111811118⋯(相邻两个8之间1的个数逐次增加1)是无理数,故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008⋯(每两个8之间依次多1个0)等形式.5、A【分析】先估算45=,然后再减去2即可求出范围.【详解】解:∵45=,4到5之间,2在2到3之间,故选:A.【点睛】本题考查了无理数的估值计算,属于基础题,熟练常见正整数的平方根是解题的关键.6、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、12-是分数,属于有理数,不符合题意;B、227是分数,属于有理数,不符合题意;CD、2022是整数,属于有理数,不符合题意;故选C.【点睛】本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.7、B【详解】解:A、是有理数,故本选项不符合题意;B、是无理数,故本选项符合题意;C2是有理数,故本选项不符合题意;D2是有理数,故本选项不符合题意;故选:B【点睛】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键.8、C【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】,无理数有:-7之间的3的个数逐次加1),共3个.故选:C.【点睛】本题考查了无理数,解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.9、D【分析】a可能的值,判断求解即可.【详解】,a,∴整数a可能的值为:2,3,4,∴整数a的值不可能为5,故选:D.【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.10、B【分析】根据平方根和立方根的定义进行判断即可.【详解】解:①2是8的立方根,-2不是8的立方根,原说法错误;=x,正确;=,9的平方根是±3,原说法错误;9,正确;综上,正确的有②④共2个,故选:B.【点睛】本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键.二、填空题1、-3【分析】根据立方根的定义解答即可.【详解】解:∵(-3)3=-27,∴立方等于-27的数是-3.故答案为-3.【点睛】本题考查了有理数的乘方,熟悉乘方和立方根的定义是解题的关键.2、3-或4【分析】先根据新运算的定义可得一个关于m 的方程,再利用平方根解方程即可得.【详解】解:由题意得:22(23)(23)24m m m m ++--+-+=,即2(21)2524m --=,2(21)49m -=,217m -=或217m -=-,解得4m =或3m =-,故答案为:3-或4.【点睛】本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.3、3【分析】无理数就是无限不循环小数;有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,由此即可判定.【详解】在-1、2π227,0.1010010001…(相邻两个1之间0的个数增加1)中,无理数有2π1之间0的个数增加1)共3个. 故答案为:3.【点睛】本题考查了实数的分类,理解有理数与无理数的概念是解题的关键.4、>【分析】先求解两个实数的绝对值,再利用近似值比较它们绝对值的大小,利用两个负数绝对值大的反而小可得答案.【详解】 解:2211 1.67,33 1.73,33 而1.67 1.73, 21 3.3故答案为:>【点睛】本题考查的是实数的大小比较,掌握“两个负实数的大小比较的方法”是解本题的关键. 5、736【分析】根据新定义的运算法则先将3*4转化为常规运算,再计算(3*4)*5即可.【详解】解:(3*4)*5=11111751734755=5===11111736+7+134557⨯⎛⎫⨯ ⎪⎛⎫=** ⎪ ⎪⎝⎭ ⎪+⎝⎭. 故答案为736. 【点睛】本题考查新运算的理解,有理数乘除混合运算,倒数和与积,掌握新定义运算法则是解题关键.三、解答题1、32【分析】根据互为相反数的和为零,可得方程,再根据等式的性质变形.【详解】0,即31120y x -+-=,∴32y x =, ∴32x y =. 【点睛】本题考查了相反数的概念以及立方根,利用互为相反数的和为零得出方程是解题关键.2、2【分析】根据算术平方根与立方根的定义即可完成.【详解】=+-233=2.【点睛】本题是实数的运算,考查了算术平方根的定义、立方根的定义,关键是掌握两个定义,要注意的是负数没有平方根,而任何实数都有立方根.3、(1(2)0,1(3)x<0(4)x=3或x=9或x=81.【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据二次根式有意义的条件,被开方数是非负数即可求解;(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.(1)解:当x=162,则y;.(2)解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)解:当x <0时,导致开平方运算无法进行;(4)解: x 的值不唯一.x =3或x =9或x =81.【点睛】本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.4、-1【分析】由题意可知0a b +=,1cd =,38x =-,2x =-,将值代入即可.【详解】解:由题意得:0a b +=,1cd =;38x =-解得2x =-∴()330121a b cd x +++=⨯++-=-.【点睛】本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.5、(1)-5(2)11x =-(3)k =1,4,7.【分析】(1)根据规定代入数据求解即可;(2)根据规定代入整式,利用方程的思想求解即可;(3)根据规定代入整式,利用方程的思想,用含k 的式子表示x ,利用k 是小于10的正整数,x 是整数,就可求出k 的值.(1)解:233322532=⨯--⨯-=---; (2)解:()3212131711x x x x -=--+=+ 即:()21317x x --+=21337x x ---=11x -=11x =-(3)解:()113153x x k k-=--=, 即:()315x k --=335x k --=38x k =+83k x += 因为k 是小于10的正整数且x 是整数,所以k =1时,x =3;k =4时,x =4;k =7时,x =5.所以k =1,4,7.【点睛】本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法.。
七年级数学下册第7章一元一次不等式与不等式组综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若|m﹣1|+m=1,则m一定()A.大于1 B.小于1 C.不小于1 D.不大于12、﹣(﹣a)和﹣b在数轴上表示的点如图所示,则下列判断正确的是()A.﹣a<1 B.b﹣a>0 C.a+1>0 D.﹣a﹣b<03、若x+2022>y+2022,则( )A.x+2<y+2 B.x-2<y-2 C.-2x<-2y D.2x<2y4、下列四个说法:①若a=﹣b,则a2=b2;②若|m|+m=0,则m<0;③若﹣1<m<0,则m2<﹣m;④两个四次多项式的和一定是四次多项式.其中正确说法的个数是()A.4 B.3 C.2 D.15、若x<y,则下列不等式中不成立的是()A.x-5<y-5 B.16x<16y C.x-y<0 D.-5x<-5y6、如果点P (m ,1﹣2m )在第一象限,那么m 的取值范围是 ( )A .102m << B .102m -<< C .0m < D .12m > 7、已知a >b ,下列变形一定正确的是( )A .3a <3bB .4+a >4﹣bC .ac 2>bc 2D .3+2a >3+2b8、某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打( )折.A .9B .8C .7D .69、不等式4x -8≤0的解集是( )A .x ≥-2B .x ≤-2C .x ≥2D .x ≤2 10、不等式﹣2x +4<0的解集是( )A .x >12B .x >﹣2C .x <2D .x >2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、按照下面给定的计算程序,当2x =-时,输出的结果是_____;使代数式25x +的值小于20的最大整数x 是__________.2、 “x 的3倍与2的和不大于5”用不等式表示为 _________.3、不等式组32510x x <⎧⎨-<⎩的解集是___________. 4、若关于x 的不等式1x m +>的解集如图所示,则m 的值为_____.5、如图,关于x 的不等式组在数轴上所表示的的解集是:______.三、解答题(5小题,每小题10分,共计50分)1、a 取什么值时,代数式3-2a 的值:(1)大于1?(2)等于1?(3)小于1?2、解不等式组331213(1)8x x x x-⎧+≥+⎪⎨⎪--<-⎩,并把解集在数轴上表示出来.3、由于近期疫情防控形势严峻,妈妈让小明到药店购买口罩,某种包装的口罩标价每袋10元,请认真阅读老板与小明的对话:(1)结合两人的对话内容,小明原计划购买几袋口罩?(2)此时,妈妈来电话说:“口罩只需要购买8袋,另外还需要购买消毒液和洗手液共5瓶,并且三种物品购买总价不超过200元.”现已知消毒液标价每瓶20元,洗手液标价每瓶35元,经过沟通,老板答应三种物品都给予8折优惠,那么小明最多可购买洗手液多少瓶?4、解不等式组2151232312(1)x xx x--⎧-≤⎪⎨⎪-<+⎩,并写出所有整数解.(不画数轴)5、某体育用品商店开展促销活动,有两种优惠方案.方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:小健:听说这家商店办一张会员卡是20元.小康:是的,上次我办了一张会员卡后,买了4副乒乓球拍,结果费用节省了12元.(会员卡限本人使用)(1)求该商店销售的乒乓球拍每副的标价.(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a盒,小健如何选择方案更划算?-参考答案-一、单选题1、D【分析】先将绝对值等式移项变形为|m﹣1|=1–m,利用绝对值的非负性质列不等式1–m≥0,解不等式即可.【详解】解:∵|m﹣1|+m=1,∴|m﹣1|=1–m,∵|m﹣1|≥0,∴1–m≥0,∴m≤1.故选择D.【点睛】本题考查绝对值的性质,列不等式与解不等式,掌握绝对值的性质,列不等式与解不等式方法是解题关键.2、B【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.3、C【分析】直接根据不等式的性质可直接进行排除选项解:∵x+2022>y+2022,∴x>y,∴x+2>y+2,x-2>y-2,-2x<-2y,2x>2y.故答案为:C.【点睛】本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可.4、C【分析】根据题意分别利用相反数的性质以及绝对值的代数意义和多项式的加法进行判断即可.【详解】解:①若a=﹣b,则a2=b2,说法正确;②若|m|+m=0,则m 0,说法错误;③若﹣1<m<0,则m2<﹣m,说法正确;④两个四次多项式的和不一定是四次多项式,说法错误;①③正确,共有2个.故选:C.【点睛】本题考查相反数的性质和不等式性质以及绝对值的代数意义和多项式的加法,熟练掌握相关的概念是解题的关键.5、D根据不等式的性质逐项分析即可.【详解】解:A. ∵x <y ,∴x -5<y -5,故不符合题意;B. ∵x <y ,∴1166x y <,故不符合题意; C. ∵x <y ,∴x-y <0,故不符合题意;D. ∵x <y ,∴55x y ->-,故符合题意;故选D .【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.6、A【分析】根据第一象限的横坐标为正、纵坐标为负,列出关于m 的不等式组解答即可.【详解】解:∵P (m ,1﹣2m )在第一象限,∴0120m m ⎧⎨-⎩>> ,解得:102m << 故选A .【点睛】本题主要考查了解一元一次不等式组、平面直角坐标系等知识点,根据点在平面直角坐标系的象限列出关于m 的一元一次不等式组成为解答本题的关键.7、D【分析】根据不等式的基本性质逐项排查即可.【详解】解:A .在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a >3b ,故A 不正确,不符合题意;B .无法证明,故B 选项不正确,不符合题意;C .当c =0时,不等式不成立,故C 选项不正确,不符合题意;D .不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D 选项正确,符合题意. 故选:D .【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.8、C【分析】设打x 折,由题意:某种商品进价为700元,标价1100元,商店准备打折销售,但要保证利润率不低于10%,列出一元一次不等式,解不等式即可.【详解】设打x 折, 根据题意得:1100×10x ﹣700≥700×10%, 解得:x ≥7,∴至多可以打7折故选:C .【点睛】本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解.9、D【分析】根据题意先移项,再把x 的系数化为1即可得出答案.【详解】解:不等式4x -8≤0,移项得,4x ≤8,把x 的系数化为1得,x ≤2.故选:D .【点睛】本题考查的是解一元一次不等式,熟练掌握解一元一次不等式的基本步骤是解答此题的关键.10、D【分析】首先通过移项得到-2-4x <,然后利用不等式性质进一步化简即可得出答案.【详解】解:移项可得:24x -<-,两边同时除以-2可得:>2x ,∴原不等式的解集为:>2x ,故选:D.【点睛】本题主要考查了解一元一次不等式,熟练掌握相关方法是解题关键.二、填空题1、1 7【分析】当2x =-时,代数式的值()2522+54+5=1x +=⨯-=-,根据1<20,可确定输出的值为1,列不等式2520x +<,求解即可得答案.【详解】解:当2x =-时,()2522+54+5=1x +=⨯-=-,∵120<,∴当2x =-时,25x +输出的值为1,2520x +<,移项合并得215x <, 系数化1得152x <, ∴x 最大整数=7.故1;7.【点睛】本题考查流程图与代数式求值,列不等式,不等式的最大整数解,掌握代数式求值,列不等式是解题关键.2、3x +2≤5【分析】不大于就是小于等于的意思,根据x 的3倍与2的和不大于5,可列出不等式.【详解】解:由题意得:3x +2≤5,故答案为:3x +2≤5.【点睛】本题考查由实际问题抽象出一元一次不等式,关键是抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.3、23x < 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】32510x x <⎧⎨-<⎩①② 解不等式①得:23x <解不等式②得:15x <∴不等式组32510x x <⎧⎨-<⎩的解集是23x < 故答案为:23x <【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键. 4、3【分析】由数轴可以得到不等式的解集是x >﹣2,根据已知的不等式可以用关于m 的式子表示出不等式的解集.就可以得到一个关于m 的方程,可以解方程求得.【详解】解:解不等式x +m >1得1x m >-由数轴可得,x >﹣2,则12m -=-解得,m =3.故答案为:3.【点睛】本题主要考查了解一元一次不等式,数轴上表示不等式的解集,解一元一次方程,注意数轴上的空心表示不包括﹣2,即x >﹣2.并且本题是不等式与方程相结合的综合题.5、21x -<≤【分析】根据图像特点向左是小于,向右是大于,即可得答案.【详解】∵从-2出发向右画出的折线中表示-2的点是空心,∴x >-2,∵从1出发向左画出的折线中表示1的点是实心,∴x ≤1,∴不等式的解集是:−2<x ≤1故答案为:−2<x ≤1.【点睛】本题考查了一元一次不等式的解法,做题的关键是掌握空心和实心的区别.三、解答题1、(1)a<1;(2)a =1;(3)a>1【分析】(1)根据代数式大于1列不等式,解不等式即可;(2)根据代数式等于1列方程,解方程即可;(3)根据代数式小于1列不等式,解不等式即可.【详解】解:(1)由3-2a>1,移项合并得-2a>-2,解得a<1;(2)由3-2a=1,移项合并得-2a=-2,解得a =1;(3)由3-2a<1,移项合并得-2a<-2,解得a>1.【点睛】本题考查列一元一次不等式与一元一次方程,解一元一次不等式与一元一次方程,掌握列不等式与方程的方法是解题关键.2、﹣2<x≤1,图见解析【分析】分别解不等式组中的两个不等式,再取两个不等式的解集的公共部分,再在数轴上表示不等式组是解集即可.【详解】解:331213(1)8x x x x -⎧+≥+⎪⎨⎪--<-⎩①②,∵解不等式①得:x ≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x ≤1.在数轴上表示不等式组的解集为:【点睛】本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,掌握解不等式组的方法是解本题的关键.3、(10)10;(2)4【分析】(1)设小明原计划购买x 袋口罩,列方程0.8510(1) 6.510x x ⨯++=,求解即可;(2)设购买洗手液a 瓶,则购买消毒液(5-a )瓶,由题意得列不等式[]0.881020(5)35200a a ⨯+-+≤,求解即可.【详解】解:(1)设小明原计划购买x 袋口罩,由题意得0.8510(1) 6.510x x ⨯++=,解得x =10,∴小明原计划购买10袋口罩;(2)设购买洗手液a 瓶,则购买消毒液(5-a )瓶,由题意得[]0.881020(5)35200a a ⨯+-+≤, 解得243a ≤, ∴小明最多可购买洗手液4瓶.【点睛】此题考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意列出方程或不等式是解题的关键.4、不等式组的解集为:13x -≤<;整数解为:-1,0,1,2.【分析】分别把不等式组中的两个不等式解出来,然后求得不等式组的解集,根据解集找到整数解即可.【详解】 解:2151232312(1)x x x x --⎧-≤⎪⎨⎪-<+⎩①②,解不等式①得:1x ≥-,解不等式②得:3x <,∴不等式组的解集为:13x -≤<,∴不等式组的整数解为:-1,0,1,2.【点睛】本题主要是考查了不等式组的求解,熟练掌握求解不等式组的方法,注意最后的解集要取不等式组中的每个不等式解集的公共部分,不要弄错.5、(1)40元;(2)当16a =时,两种方案一样;当016a <<时,选择方案一;当16a >时,选择方案二【分析】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意列出一元一次方程,解方程即可求得乒乓球拍每副的标价;(2)根据两种方案分别计算小健购买乒乓球拍6副,乒乓球a 盒,所需费用,比较即可【详解】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意得2040.8412x x +⨯=-解得40x =答:该商店销售的乒乓球拍每副的标价为40元(2)方案一:6400.850.85102048.5a a ⨯⨯+⨯=+方案二:206400.8100.82128a a +⨯⨯+⨯=+若2048.5a +=2128a +,即16a =时,两种方案一样当2048.5a +<2128a +解得16a <即当016a <<时,选择方案一,当2048.5a +>2128a +解得16a >即当16a >时,选择方案二【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意列出方程或不等式是解题的关键.。
七年级数学下册第10章相交线、平行线与平移单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中正确的有()①一条直线的平行线只有一条.②过一点与已知直线平行的直线只有一条.③因为a∥b,c∥d,所以a∥d.④经过直线外一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个2、在如图中,∠1和∠2不是同位角的是()A.B.C.D.3、如图,直线AB 与CD 相交于点O ,OE 平分∠AOC ,且∠BOE =140°,则∠BOC 为( )A .140°B .100°C .80°D .40°4、如图,AC ⊥BC ,CD ⊥AB ,则点C 到AB 的距离是线段( )的长度A .CDB .ADC .BD D .BC5、如图,已知//AD BC ,32B =︒∠,DB 平分ADE ∠,则DEC ∠=( )A .32°B .60°C .58°D .64°6、一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是( )A .第一次向右拐40°,第二次向右拐140°.B .第一次向右拐40°,第二次向左拐40°.C.第一次向左拐40°,第二次向右拐140°.D.第一次向右拐140°,第二次向左拐40°.7、如图,已知直线AD∥BC,BE平分∠ABC交直线DA于点E,若∠DAB=54°,则∠E等于()A.25°B.27°C.29°D.45°8、直线AB、BC、CD、EG如图所示.若∠1=∠2,则下列结论错误的是()A.AB∥CD B.∠EFB=∠3C.∠4=∠5D.∠3=∠59、如图,若AB∥CD,CD∥EF,那么∠BCE=()A.180°-∠2+∠1 B.180°-∠1-∠2 C.∠2=2∠1 D.∠1+∠210、下列命题正确的是()(1)两条直线被第三条直线所截,同位角相等;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直;(3)平移前后连接各组对应点的线段平行且相等;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)在同一平面内,三条直线的交点个数有三种情况.A.0个B.1个C.2个D.3个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一副三角板按如图所示的方式摆放,AC∥DF,BC与EF相交于点G,则∠CGF度数为_____度.2、如图,小明同学在练习本上的相互平行的横格上先画了直线a,度量出∠1=112°,接着他准备在点A处画直线b.若要使b∥a,则∠2的度数为_____度.3、判断正误:(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角( )(2)如果两个角相等,那么这两个角是对顶角( )(3)有一条公共边的两个角是邻补角( )(4)如果两个角是邻补角,那么它们一定互补( )(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角( )4、如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,若∠ABC =m °,∠ADC =n °,则∠E =_________°.5、已知直线AB 、CD 相交于点O ,且A 、B 和C 、D 分别位于点O 两侧,OE ⊥AB ,40DOE =︒∠,则AOC ∠=____________.三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB 与CD 相交于点O ,OE 是∠COB 的平分线,OE ⊥OF ,∠AOD =74°,求∠COF 的度数.2、如图,AB 与EF 交于点B ,CD 与EF 交于点D ,根据图形,请补全下面这道题的解答过程.∴∥CD()∴∠ABD+∠CDB = ()(2)∵∠BAC=65°,∠ACD=115°,( 已知 )∴∠BAC+∠ACD=180° (等式性质)∴AB∥CD()(3)∵CD⊥AB于D,EF⊥AB于F,∠BAC=55°(已知)∴∠ABD=∠CDF=90°(垂直的定义)∴∥(同位角相等,两直线平行)又∵∠BAC=55°,(已知)∴∠ACD = ()3、如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠B=60°.试求∠ADG的度数.4、完成下面的证明如图,点B在AG上,AG∥CD,CF平分∠BCD,∠ABE=∠FCB,BE⊥AF点E.求证:∠F=90°.证明:∵AG∥CD(已知)∴∠ABC=∠BCD(____)∴∠ABC﹣∠ABE=∠BCD﹣∠FCB即∠EBC=∠FCD∵CF平分∠BCD(已知)∴∠BCF=∠FCD(____)∴____=∠BCF(等量代换)∴BE∥CF(____)∴____=∠F(____)∵BE⊥AF(已知)∴____=90°(____)∴∠F=90°.5、如图,①过点Q作QD⊥AB,垂足为点D;②过点P作PE⊥AB,垂足为点E;③过点Q作QF⊥AC,垂足为点F;④连P,Q两点;⑤P,Q两点间的距离是线段______的长度;⑥点Q到直线AB的距离是线段______的长度;⑦点Q到直线AC的距离是线段______的长度;⑧点P到直线AB的距离是线段______的长度.-参考答案-一、单选题1、A【分析】根据平行线的性质,平行线的判定判断即可.【详解】∵一条直线的平行线有无数条,∴①的说法不正确;∵经过直线外一点有且只有一条直线与已知直线平行,∴②的说法不正确,④的说法正确;∵a∥b,c∥d,无法判定a∥d∴③的说法不正确.只有一个是正确的,故选A.【点睛】本题考查了平行线的性质,平行线的判定,熟练掌握性质,灵活运用平行线的判定定理是解题的关键.2、D【分析】同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.3、B【分析】根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.【详解】解:∵∠AOE+∠BOE=180°,∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,又∵OE平分∠AOC,∴∠AOE=∠COE=40°,∴∠BOC=∠BOE﹣∠COE=140°﹣40°=100°,故选:B.【点睛】本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.4、A【分析】⊥和点到直线的距离的定义即可得出答案.根据CD AB【详解】⊥,解:CD AB∴点C到AB的距离是线段CD的长度,故选:A.【点睛】本题考查了点到直线的距离,理解定义是解题关键.5、D【分析】先根据平行线的性质(两直线平行,内错角相等),可得∠ADB=∠B,再利用角平分线的性质可得:∠ADE=2∠ADB=64°,最后再利用平行线的性质(两直线平行,内错角相等)即可求出答案.【详解】解:∵AD∥BC,∠B=32°,∴∠ADB=∠B=32° .∵DB平分∠ADE,∴∠ADE=2∠ADB=64°,∵AD∥BC,∴∠DEC=∠ADE=64°.故选:D.【点睛】题目主要考查了平行线的性质和角平分线的性质,解题的关键是熟练掌握平行线的性质,找出题中所需的角与已知角之间的关系.6、B【分析】画出图形,根据平行线的判定分别判断即可得出.【详解】A.如图,由内错角相等可知,第二次拐弯后与原来平行,但方向相反,故不符合题意;B.如图,由同位角相等可知,第二次拐弯后与原来平行,且方向相同,故符合题意;C.如图,由内错角不相等可知,第二次拐弯后与原来不平行,故不符合题意;D.如图,由同位角不相等可知,第二次拐弯后与原来不平行,故不符合题意.故选:B.【点睛】本题考查了平行线的判定,正确画出图形,熟记判定定理是解题的关键.7、B【分析】根据两直线平行,内错角相等可求∠ABC=54°,再根据角平分线的性质可求∠EBC=27°,再根据两直线平行,内错角相等可求∠E.【详解】解:∵AD∥BC,∴∠ABC=∠DAB=54°,∠EBC=∠E,∵BE平分∠ABC,∠ABC=27°,∴∠EBC=12∴∠E=27°.故选:B.【点睛】本题考查了平行线的性质,角平分线,关键是求出∠EBC=27°.8、D【分析】根据平行线的判定与性质、对顶角相等逐项判断即可.【详解】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∴∠4=∠5,故C正确,不符合题意;∵∠EFB与∠3是对顶角,∴∠EFB=∠3,故B正确,无法判断∠3=∠5,故D错误,符合题意,故选:D.【点睛】本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.9、A【分析】根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.【详解】∵AB∥CD,CD∥EF,∴∠1=∠BCD,∠ECD+∠2=180°,∴∠BCE=∠BCD+∠ECD=180°-∠2+∠1,故选A.【点睛】本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.10、B【分析】根据平行线的性质、垂直的定义、平移的性质、点到直线的距离的定义、直线的位置关系逐个判断即可得.【详解】解:(1)两条平行线被第三条直线所截,同位角相等;则原命题错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直;则原命题正确;(3)平移前后连接各组对应点的线段平行(或在同一条直线上)且相等;则原命题错误;(4)从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离;则原命题错误;(5)在同一平面内,三条直线的交点个数可能为0个或1个或2个或3个,共有四种情况;则原命题错误;综上,命题正确的是1个,故选:B .【点睛】本题考查了平行线的性质、垂直的定义、平移的性质、点到直线的距离的定义、直线的位置关系,熟练掌握各定义和性质是解题关键.二、填空题1、30【分析】先证明90,A FMB ∠=∠=︒再证明,FG AB ∥再利用平行线的性质与对顶角的性质可得答案.【详解】解:如图,记,AB DF 交于点,M由题意得:90,30,A F B ∠=∠=︒∠=︒,AC DF ∥90,A FMB ∴∠=∠=︒180,F FMB ∴∠+∠=︒,FG AB ∴∥30,B BGE ∴∠=∠=︒30.CGF BGE ∴∠=∠=︒故答案为:30【点睛】本题考查的是平行线的判定与性质,掌握“两直线平行,同位角相等与同旁内角互补,两直线平行”是解本题的关键.2、68【分析】根据平行线的性质,得出23∠∠=,根据平行线的判定,得出13180∠+∠=︒,即可得到368∠=︒,进而得到2∠的度数.【详解】解:∵练习本的横隔线相互平行,∴23∠∠=,b a,∵要使//∠+∠=︒,∴13180又1112∠=︒,∴368∠=︒,即268∠=︒,故答案为:68.【点睛】本题主要考查了平行线的性质与判定条件,解题时注意:两直线平行,同位角相等;同旁内角互补,两直线平行.3、(1)×;(2)×;(3)×;(4)√;(5)×【分析】根据对顶角与邻补角的定义与性质分析判断即可求解.【详解】(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;(2)如果两个角相等,那么这两个角不一定是对顶角,错误;(3)有一条公共边的两个角不一定是邻补角,错误;(4)如果两个角是邻补角,那么它们一定互补,正确;(5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.【点睛】本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.4、2m n +⎛⎫ ⎪⎝⎭【分析】作EF ∥AB ,证明AB ∥ EF ∥CD ,进而得到∠BED =∠ABE +∠CDE ,根据角平分线定义得到11,22ABE m CDE n ∠=︒∠=︒,即可求出2m n BED +⎛⎫∠=︒ ⎪⎝⎭. 【详解】解:如图,作EF ∥AB ,∵AB ∥CD ,∴AB ∥ EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∴∠BED =∠BEF +∠DEF =∠ABE +∠CDE ,∵BE 平分∠ABC ,DE 平分∠ADC , ∴1111,2222ABE ABC m CDE ADC n ∠=∠=︒∠=∠=︒, ∴ 2m n BED ABE CDE +⎛⎫∠=∠+∠=︒⎪⎝⎭.故答案为:2m n +⎛⎫⎪⎝⎭【点睛】 本题考查了平行线性质,角平分线的定义,熟知角平分线的性质和平行公理的推论,根据题意添加辅助线是解题关键.5、130°或50°【分析】根据题意作出图形,根据垂直的定义,互余与互补的定义,分类讨论即可【详解】①如图,OE AB ⊥,90AOE ∴∠=︒40DOE =︒∠,∴ 904050COB AOD ∠=∠=︒-︒=︒180130AOC COB ∴∠=︒-∠=︒②如图,OE AB ⊥,90BOE40DOE =︒∠,904050BOD BOE DOE ∴∠=∠-∠=︒-︒=︒50AOC BOD ∴∠=∠=︒综上所述,50AOC ∠=︒或130︒故答案为:130°或50°【点睛】本题考查了相交线所成角,对顶角相等,垂直的定义,求一个角的余角,补角,分类讨论是解题的关键.三、解答题1、53°【分析】首先根据对顶角相等可得∠BOC =74°,再根据角平分线的性质可得∠COE =12∠COB =37°,再利用余角定义可计算出∠COF 的度数.【详解】解:∵∠AOD=74°,∴∠BOC=74°,∵OE是∠COB的平分线,∠COB=37°,∴∠COE=12∵OE⊥OF,∴∠EOF=90°,∴∠COF=90°-37°=53°.【点睛】本题考查了角平分线的性质、余角、对顶角的性质,关键是掌握对顶角相等,角平分线把角分成相等的两部分.2、(1)AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)同旁内角互补,两直线平行;(3)AB;CD;125°;两直线平行,同旁内角互补.【分析】(1)由题意直接依据内错角相等,两直线平行进行分析以及两直线平行,同旁内角互补即可;(2)由题意直接依据同旁内角互补,两直线平行进行分析即可;(3)由题意直接根据两直线平行,同旁内角互补进行分析即可得出结论.【详解】解:(1)∵∠1=∠2 (已知)∴AB∥CD(内错角相等,两直线平行)∴∠ABD+ ∠BDC =180°(两直线平行,同旁内角互补)故答案为:AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)∵∠BAC=65°,∠ACD=115°,(已知)∴∠BAC +∠ACD =180° (等式性质 )∴AB ∥CD (同旁内角互补,两直线平行)故答案为:同旁内角互补,两直线平行;(3)∵CD ⊥AB 于D ,EF ⊥AB 于F ,∠BAC =55°,(已知)∴∠ABD =∠CDF =90°(垂直的定义)∴AB ∥CD (同位角相等,两直线平行)又∵∠BAC =55°,(已知)∴∠ACD = 125°.(两直线平行,同旁内角互补)故答案为:AB ;CD ;125°;两直线平行,同旁内角互补.【点睛】本题考查平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.3、60°【分析】由CD ⊥AB ,FE ⊥AB ,则CD EF ∥,则∠2=∠4,从而证得BC DG ∥,得∠B =∠ADG ,则答案可解.【详解】解:CD ⊥AB 于D ,FE ⊥AB 于E ,∴CD EF ∥,∴∠2=∠4,又∵∠1=∠2,∴∠1=∠4,∴BC DG ∥,∴60ADG B ∠=∠=︒.【点睛】本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.4、两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义【分析】根据平行线的性质得到∠ABC=∠BCD,再根据角平分线的定义进而得到∠EBC=∠BCF,即可判定BE∥CF,根据平行线的性质得出∠BEF=∠F,再根据垂直的定义即可得解.【详解】证明:∵AG∥CD(已知),∴∠ABC=∠BCD(两直线平行,内错角相等),∵∠ABE=∠FCB(已知),∴∠ABC﹣∠ABE=∠BCD﹣∠FCB,即∠EBC=∠FCD,∵CF平分∠BCD(已知),∴∠BCF=∠FCD(角平分线的定义),∴∠EBC=∠BCF(等量代换),∴BE∥CF(内错角相等,两直线平行),∴∠BEF=∠F(两直线平行,内错角相等),∵BE⊥AF(已知),∴∠BEF=90°(垂直的定义),∴∠F=90°.故答案为:两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,熟练掌握相关知识是解题的关键.5、①②③④作图见解析;⑤PQ;⑥QD;⑦QF;⑧PE【分析】由题意①②③④根据题目要求即可作出图示,⑤⑥⑦⑧根据两点之间距离及点到直线的距离的定义即可得出答案.【详解】①②③④作图如图所示;⑤根据两点之间距离即可得出P,Q两点间的距离是线段PQ的长度;⑥根据点到直线的距离可得出点Q到直线AB的距离是线段QD的长度;⑦根据点到直线的距离可得出点Q到直线AC的距离是线段QF的长度;⑧根据点到直线的距离可得出点P到直线AB的距离是线段PE的长度.【点睛】本题主要考查基本作图和两点之间距离及点到直线的距离,熟练掌握相关概念与作图方法是解题的关键.。
沪科版七年级数学下册第六章实数单元试题含答案解析一、选择题(本大题共10小题,共40分) 1. 下列说法正确的是( )A. 116的平方根是14B. -16的算术平方根是4C. (-4)2的平方根是-4D. 0的平方根和算术平方根都是0 2. 立方根等于它本身的有( )A. −1,0,1B. 0,1C. 0,−1D. 13. 在实数:3.14159,√643,1.010010001…,4.2⋅1⋅,π,227中,无理数有( )A. 1个B. 2个C. 3个D. 4个 4. 已知√3743≈7.205,√37.43≈3.344,则√-0.0003743约等于( )A. -0.07205B. -0.03344C. -0.007205D. -0.003344 5. 估计√40的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间 6. 下列各式中,正确的是( )A. √25=±5B. ±√16=4C. √−273=−3D. √(−4)2=±47. 下列说法:①实数和数轴上的点是一一对应的; ②无理数是开方开不尽的数; ③负数没有立方根;④16的平方根是±4,用式子表示是√16=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0, 其中错误的是( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 实数√9的平方根为( ).A. 3B. −3C. ±3D. ±√39. 实数a 、b 在数轴上的位置如图,则|a +b|−|a −b|等于( )A. 2aB. 2bC. 2b −2aD. 2b +2a 10. 一个正数的两个平方根分别是2a −1与−a +2,则a 的值为( )A. 1B. −1C. 2D. −2二、填空题(本大题共4小题,共20分) 11. 2−√5的相反数是______.12. 比较大小:3______2√3(填“>”,“=”或“<”)13. 如图,将一个直径为1个单位长度的圆片上的点A 放在原点,并把圆片沿数轴滚动1周,点A 所在位置表示的数是______ .14. 已知5+√11的小数部分为m ,5−√11的小数部分为n ,则m +n =______ .三、计算题(本大题共2小题,共24分) 15. 计算:①|√3−√2|+|√3−2|−|√2−1|②√83+√(−2)2−√14+(−1)2016.16. 解方程:①(x −4)2=4;②13(x +3)3−9=0.四、解答题(本大题共6小题,共66分)17. 将下列各数的序号填在相应的集合里:①−√83,②2π,③3.1415926,④−0.86,⑤3.030030003…相邻两个3之间0的个数逐渐多1),⑥2√2,⑦20162017,⑧−√(−1)2. 有理数集合:{______ }.无理数集合:{______ }. 负实数集合:{______ }.18.按要求填空:已知:√7.2=2.638,则√720=______ ,√0.00072=______ ;已知:√0.0038=0.06164,√x=61.64,则x=______ .19.按要求填空:已知:√7.2=2.638,则√720=______ ,√0.00072=______ ;已知:√0.0038=0.06164,√x=61.64,则x=______ .20.正数x的两个平方根分别为3-a和2a+7.(1)求a的值;(2)求44-x这个数的立方根.21.已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为√2,f的算术平方根是8,求12ab+c+d5+e2+√f3的值.22.已知√2a−1=3,3a+b−1的平方根是±4,c是√60的整数部分,求a+2b+c的算术平方根。
2020年沪科版七年级数学下册第6章实数单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共12小题)1.一个正数的两个平方根分别是2a﹣1与﹣a+2,则a的值为()A.1B.﹣1C.2D.﹣22.的值等于()A.4B.﹣4C.±4D.±23.若+(y﹣3)2=0.则x y的值为()A.﹣8B.8C.9D.4.若a2=16,=﹣2,则a+b的值是()A.12B.12或4C.12或±4D.﹣12或45.式子2+的结果精确到0.01为(可用计算器计算或笔算)()A.4.9B.4.87C.4.88D.4.896.在给出的一组数0,π,,3.14,,中,无理数有()A.1个B.2个C.3个D.5个7.在实数范围内,下列判断正确的是()A.若|m|=|n|,则m=n B.若a2>b2,则a>bC.若=()2,则a=b D.若=,则a=b8.实数7的相反数是()A.B.﹣C.﹣7D.79.已知实数a、b在数轴上的对应的点如图所示,则下列式子正确的是()A.ab>0B.|a|>|b|C.a﹣b>0D.a+b>010.给出四个数0,,π,﹣1,其中最小的是()A.0B.C.πD.﹣111.一个正方形的面积为17,估计它的边长大小为()A.2与3之间B.3与4之间C.4与5之间D.5与6之间12.如图所示,长方形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为()A.(2﹣)B.(2﹣)2C.2D.2(2﹣)二.填空题(共8小题)13.如图是一数值转换机,若输出的结果为﹣32,则输入的x的值为.14.一个数的算术平方根是3,这个数是.15.代数式5﹣(x+y)2的最大值是,当取最大值时,x与y的关系是.16.已知x的平方根是±8,则x的立方根是.17.把取近似数并保留两个有效数字是.18.在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是.19.观察下列各式:=2,=3,=4…请你将发现的规律用含n(n≥1的整数)的等式表示出来.20.﹣的相反数是.三.解答题(共8小题)21.一个正数x的平方根是a+3和2a﹣18,求x的立方根.22.已知4是3a﹣2的算术平方根,2﹣15a﹣b的立方根为﹣5.(1)求a和b的值;(2)求2b﹣a﹣4的平方根.23.若|a﹣3|+(5+b)2+=0,求代数式的值.24.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.25.计算(写出计算过程,并用计算器验证):.26.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.27.把下列各数分别填入相应的集合里.﹣5,﹣2.626 626 662…,0,π,﹣,0.12,|﹣6|.(1)正数集合:{ …};(2)负数集合:{ …};(3)有理数集合:{ …};(4)无理数集合:{ …}.28.(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,①如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|;(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是;数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是;③如果|x+3|=2,那么x为;④代数式|x+3|+|x﹣2|最小值是,当代数式|x+3|+|x﹣2|取最小值时,相应的x的取值范围是.参考答案与试题解析一.选择题(共12小题)1.一个正数的两个平方根分别是2a﹣1与﹣a+2,则a的值为()A.1B.﹣1C.2D.﹣2【分析】由于一个正数的两个平方根应该互为相反数,由此即可列方程解出a.【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,故选:B.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.2.的值等于()A.4B.﹣4C.±4D.±2【分析】利用算术平方根的定义计算即可得到结果.【解答】解:=4.故选:A.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.3.若+(y﹣3)2=0.则x y的值为()A.﹣8B.8C.9D.【分析】根据非负数的性质可求出x、y的值,再将x、y代入x y中求解即可.【解答】解:∵+(y﹣3)2=0,∴x=﹣2,y=3;∴x y=(﹣2)3=﹣8.故选:A.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.4.若a2=16,=﹣2,则a+b的值是()A.12B.12或4C.12或±4D.﹣12或4【分析】根据a2=16,=﹣2,可得:a=±,﹣b=(﹣2)3,据此分别求出a、b的值各是多少,再把它们相加,求出a+b的值是多少即可.【解答】解:∵a2=16,=﹣2,∴a=±=±4,﹣b=(﹣2)3=﹣8,∴a=±4,b=8,∴a+b=4+8=12或a+b=﹣4+8=4.故选:B.【点评】此题主要考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.5.式子2+的结果精确到0.01为(可用计算器计算或笔算)()A.4.9B.4.87C.4.88D.4.89【分析】首先得出≈1.732,≈1.414,进一步代入求得答案即可.【解答】解:∵≈1.732,≈1.414,∴2+≈2×1.732+1.414=4.878≈4.88.故选:C.【点评】此题主要考查了利用计算器求数的开方运算,解题首先注意要让学生能够熟练运用计算器计算实数的四则混合运算,同时也要求学生会根据题目要求取近似值.6.在给出的一组数0,π,,3.14,,中,无理数有()A.1个B.2个C.3个D.5个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:π,,共有3个.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.在实数范围内,下列判断正确的是()A.若|m|=|n|,则m=n B.若a2>b2,则a>bC.若=()2,则a=b D.若=,则a=b【分析】A、根据绝对值的性质即可判定;B、根据平方运算的法则即可判定;C、根据算术平方根的性质即可判定;D、根据立方根的定义即可解答.【解答】解:A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=﹣3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.【点评】解答此题的关键是熟知以下概念:(1)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.(2)如果一个数的平方等于a,那么这个数叫作a的平方根.8.实数7的相反数是()A.B.﹣C.﹣7D.7【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:7的相反数是﹣7,故选:C.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.9.已知实数a、b在数轴上的对应的点如图所示,则下列式子正确的是()A.ab>0B.|a|>|b|C.a﹣b>0D.a+b>0【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可做出判断.【解答】解:根据点a、b在数轴上的位置可知0<a<1,b<﹣1,∴ab<0,|a|<|b|,a﹣b>0,a+b<0.故选:C.【点评】本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.10.给出四个数0,,π,﹣1,其中最小的是()A.0B.C.πD.﹣1【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<<π,故给出四个数0,,π,﹣1,其中最小的是﹣1.故选:D.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.11.一个正方形的面积为17,估计它的边长大小为()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】首先求出正方形的边长,进而估算其边长的取值范围.【解答】解:∵一个正方形的面积为17,∴正方形的变长为:,估计它的边长大小为:4<<5,故选:C.【点评】此题主要考查了估算无理数的大小,正确得出正方形的边长是解题关键.12.如图所示,长方形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为()A.(2﹣)B.(2﹣)2C.2D.2(2﹣)【分析】根据正方形的面积公式求得两个正方形的边长分别是2,,再根据阴影部分的面积等于矩形的面积减去两个正方形的面积进行计算.【解答】解:∵矩形内有两个相邻的正方形面积分别为4和2,∴两个正方形的边长分别是2,,∴阴影部分的面积=(2﹣)×=2﹣2.故选:A.【点评】本题要能够由正方形的面积表示出正方形的边长,再进一步表示矩形的长.二.填空题(共8小题)13.如图是一数值转换机,若输出的结果为﹣32,则输入的x的值为±4.【分析】根据转换机列出方程,再根据平方根的定义解答即可.【解答】解:由题意得x2×(﹣2)=﹣32,所以x2=16,∵(±4)2=16,∴x=±4.故答案为:±4.【点评】本题考查了平方根的定义,根据转换机列出方程是解题的关键.14.一个数的算术平方根是3,这个数是9.【分析】根据算术平方根的定义可以得到这个数就是3的平方,由此即可得到结果.【解答】解:∵一个数的算术平方根是3,∴这个数是32=9.故答案为:9.【点评】此题主要考查了算术平方根的性质,根据一个数等于它的算术平方根的平方是解决问题的关键.15.代数式5﹣(x+y)2的最大值是5,当取最大值时,x与y的关系是x+y=0.【分析】根据平方数非负数的性质可得(x+y)2大于等于0,然后求解即可.【解答】解:根据题意(x+y)2≥0,∴5﹣(x+y)2的最大值是5,此时,x+y=0,故答案为:5,x+y=0.【点评】本题主要考查了平方数非负数的性质,是基础题,比较简单.16.已知x的平方根是±8,则x的立方根是4.【分析】根据平方根的定义,易求x,再求x的立方根即可.【解答】解:∵x的平方根是±8,∴x=(±8)2,∴x=64,∴==4,故答案是4.【点评】本题考查了立方根,解题的关键是先求出x.17.把取近似数并保留两个有效数字是 1.4.【分析】首先熟练应用计算器,然后对计算器给出的结果,根据有效数字的概念用四舍五入法取近似数即可求解.【解答】解:根据题意在计算器计算:≈1.414,∵结果保留2个有效数字,∴≈1.4.故本题答案为:1.4.【点评】本题主要考查了学生能熟练应用计算器的能力,解题关键是会用科学记算器进行算术平方根计算.18.在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是π.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数只有:π.故答案是:π.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.19.观察下列各式:=2,=3,=4…请你将发现的规律用含n(n≥1的整数)的等式表示出来=(n+1)•.【分析】探究规律.利用规律即可解决问题.【解答】解:∵=2,=3,=4…∴=(n+1)•.故答案为=(n+1)•.【点评】本题考查实数、规律题,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.20.﹣的相反数是.【分析】根据相反数的定义进行填空即可.【解答】解:∵﹣的相反数是,故答案为.【点评】本题考查了实数的性质以及算术平方根,掌握相反数的定义是解题的关键.三.解答题(共8小题)21.一个正数x的平方根是a+3和2a﹣18,求x的立方根.【分析】根据平方根的和为零,可得一元一次方程,根据解方程,可得a的值,根据平方运算,可得这个数,根据开立方运算,可得答案.【解答】解:依题意得,(a+3)+(2a﹣18)=0,解得a=5,∴x的平方根是±8,∴x=64,∴x的立方根是4.【点评】本题考查了平方根,利用了开方运算,乘方运算.22.已知4是3a﹣2的算术平方根,2﹣15a﹣b的立方根为﹣5.(1)求a和b的值;(2)求2b﹣a﹣4的平方根.【分析】(1)根据算术平方根、立方根的定义,得到3a﹣2=16,2﹣15a﹣b=﹣125,求出a,b的值即可;(2)把a,b值代入代数式求出代数式的值,根据平方根即可解答.【解答】解:(1)∵4是3a﹣2的算术平方根,∴3a﹣2=16,∴a=6,∵2﹣15a﹣b的立方根为﹣5,∴2﹣15a﹣b=﹣125,∴2﹣15×6﹣b=﹣125,∴b=37.(2)2b﹣a﹣4=2×37﹣6﹣4=64,64的平方根为±8,∴2b﹣a﹣4的平方根为±8.【点评】本题考查了平方根、算术平方根,解决本题的关键是熟记平方根、算术平方根的定义.23.若|a﹣3|+(5+b)2+=0,求代数式的值.【分析】首先利用绝对值、平方和二次根式的非负性和已知条件即可得到关于a、b、c 的方程组,解方程组即可求得a、b、c的值,然后代入所求代数式中计算即可.【解答】解:∵|a﹣3|≥0,(5+b)2≥0,≥0,且|a﹣3|+(5+b)2+=0,∴a﹣3=0,5+b=0,c+1=0∴a=3,b=﹣5,c=﹣1∴=﹣.【点评】此题主要考查了非负数的性质,掌握绝对值、平方和二次根式的非负性是解决此类问题的关键.24.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.【分析】根据平方根、立方根的定义和已知条件可知x﹣2=4,2x+y+7=27,列方程解出x、y,最后代入代数式求解即可.【解答】解:∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27把x的值代入解得:y=8,∴x2+y2的算术平方根为10.【点评】本题主要考查了平方根、立方根的概念,难易程度适中.25.计算(写出计算过程,并用计算器验证):.【分析】利用二次根式乘法法则首先将括号里面进行计算,再去括号,利用二次根式的除法法则,除以一个数等于乘以一个数的倒数,整理后再通分即可得出答案,再利用计算器验证计算结果即可.【解答】解:原式=,=,=.∵≈1.414…,∴原式=≈0.195,用计算器求出原式≈(2.236…×2.449…﹣2×3.872…)÷3×3.872…≈0.195.故以上计算正确.【点评】此题主要考查了二次根式的乘除运算以及计算器的应用,解题关键是要求学生熟悉计算器的按键顺序以及熟练应用二次根式的乘、除法法则.26.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.【分析】先设=,再由已知条件得出,a2=5b2,又知道b是整数且不为0,所以a不为0且为5的倍数,再设a=5n,(n是整数),则b2=5n2,从而得到b也为5的倍数,与a,b是互质的正整数矛盾,从而证明了答案.【解答】解:设与b是互质的两个整数,且b≠0.则,a2=5b2,因为b是整数且不为0,所以a不为0且为5的倍数,设a=5n,(n是整数),所以b2=5n2,所以b也为5的倍数,与a,b是互质的正整数矛盾.所以是无理数.【点评】本题考查了无理数的概念,解题的关键是根据所给事例模仿去做,做到举一反三.27.把下列各数分别填入相应的集合里.﹣5,﹣2.626 626 662…,0,π,﹣,0.12,|﹣6|.(1)正数集合:{ …};(2)负数集合:{ …};(3)有理数集合:{ …};(4)无理数集合:{ …}.【分析】(1)根据大于零的数是正数,可得答案;(2)根据小于零的数是负数,可得答案;(3)根据有理数是有限小数或无限不循环小数,可得答案;(4)根据无理数是无限不循环小数,可得答案.【解答】解:(1)正数集合:{π,0.12,|﹣6|};(2)负数集合:{﹣5,﹣2.626 626 662…,﹣};(3)有理数集合:{﹣5,0,﹣,0.12,|﹣6|};(4)无理数集合:{﹣2.626 626 662…,π};故答案为:π,0.12,|﹣6|;﹣5,﹣2.626 626 662…,﹣;﹣5,0,﹣,0.12,|﹣6|;﹣2.626 626 662…,π.【点评】本题考查了实数,大于零的数是正数,小于零的数是负数;有理数是有限小数或无限不循环小数,无理数是无限不循环小数.28.(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,①如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|;(2)回答下列问题:①数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3;数轴上表示1和﹣3的两点之间的距离是4;②数轴上表示x和﹣1的两点A和B之间的距离是|x+1|;③如果|x+3|=2,那么x为﹣1或﹣5;④代数式|x+3|+|x﹣2|最小值是5,当代数式|x+3|+|x﹣2|取最小值时,相应的x的取值范围是﹣3≤x≤2.【分析】由所给阅读材料可知两点间的距离即为数轴上右边的点所对应的数减去左边的点所对应的数,据此分别求解即可.【解答】解:①|5﹣2|=5﹣2=3,|﹣2﹣(﹣5)|=﹣2﹣(﹣5)=﹣2+5=3,|1﹣(﹣3)|=1﹣(﹣3)=1+3=4,故答案为:3;3;4;②由题意可知|x﹣(﹣1)|=|x+1|,故答案为:|x+1|;③由题意可知x+3=2或x+3=﹣2,解得x=﹣1或x=﹣5,故答案为:﹣1或﹣5;④由绝对值的意义可知当﹣3≤x≤2时,|x+3|+|x﹣2的值即为2与﹣3两点间的距离,此时最小,最小值为|2﹣(﹣3)|=5.故答案为:5;﹣3≤x≤2.【点评】本题主要考查绝对值的意义,由所给阅读材料得出两点间的距离即为数轴上对应两点的数的差的绝对值是解题的关键.。
最新沪科版七年级数学下册单元测试题及答案全册第6章 实数时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题4分,满分40分) 1.下列各数中最大的数是( )A .5 B. 3 C .π D .-8 2.4的算术平方根是( ) A .2B .±2 C. 2 D .±23.下列各数:0,32,(-5)2,-4,-|-16|,π,其中有平方根的个数是( ) A .3个 B .4个 C .5个 D .6个4.如图,数轴上的A ,B ,C ,D 四点中,与数-3表示的点最接近的是( )A .点AB .点BC .点CD .点D5.下列式子中,正确的是( ) A.3-7=-37 B.36=±6C .- 3.6=-0.6 D.(-8)2=-86.在-3.5,227,0,π2,-2,-30.001,0.161161116…(相邻两个6之间依次多一个1)中,无理数有( )A .1个B .2个C .3个D .4个7.下列说法中,正确的是( ) A .不带根号的数不是无理数B.64的立方根是±2C .绝对值等于3的实数是3D .每个实数都对应数轴上一个点8.-27的立方根与81的平方根之和是( ) A .0 B .-6 C .0或-6 D .6 9.比较7-1与72的大小,结果是( ) A .后者大 B .前者大 C .一样大 D .无法确定10.如果0<x <1,那么在x ,1x ,x ,x 2中,最大的是( )A .x B.1xC.x D .x 2二、填空题(本大题共4小题,每小题5分,满分20分)11.-5的绝对值是________,116的算术平方根是________.12.已知x -1是64的算术平方根,则x 的算术平方根是________.13.若x ,y 为实数,且|x +2|+y -1=0,则(x +y )2018=________.14.对于“5”,有下列说法:①它是一个无理数;②它是数轴上离原点5个单位长度的点所表示的数;③若a <5<a +1,则整数a 为2;④它表示面积为5的正方形的边长.其中正确的说法是________(填序号).三、(本大题共2小题,每小题8分,满分16分) 15.将下列各数的序号填在相应的集合里:①0,②3-827,③3.1415,④π5, ⑤-0.3507··,⑥-2.3131131113…, ⑦-6133,⑧-8,⑨(-4)2,⑩0.9.16.计算:(1)|-5|+(-2)2+3-27-(-2)2-1;(2)30.125-3116×3×⎝⎛⎭⎫-182.四、(本大题共2小题,每小题8分,满分16分) 17.求下列各式中x 的值: (1)25x 2=9; (2)(x +3)3=8.18.计算:(1)3π-132+78(精确到0.01);(2)210×5÷6(精确到0.01).五、(本大题共2小题,每小题10分,满分20分)19.已知2a-1的平方根为±3,3a+b-1的算术平方根为4,求a+2b的平方根.20.如图,数轴的正半轴上有A,B,C三点,表示1和2的对应点分别为点A,B,点B到点A的距离与点C到点O的距离相等.设点C所表示的数为x.(1)请你写出数x的值;(2)求(x-2)2的立方根.六、(本题满分12分)21.某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=d3900,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(已知3900≈9.65,结果精确到0.1km)?七、(本题满分12分)22.如图是一个数值转换器.(1)当输入x=25时,求输出的y的值;(2)是否存在输入x的值后,始终输不出y的值?如果存在,请直接写出所有满足要求的x值;如果不存在,请说明理由;(3)输入一个两位数x,恰好经过三次取算术平方根才能输出无理数y,则x=________(只填一个即可).八、(本题满分14分)23.如图①,把2个边长为1的正方形沿对角线剪开,将所得到的4个三角形拼成第1个大的正方形(如图②).(1)拼成的第1个大正方形的边长是________;(2)再把2个图②这样的大正方形沿对角线剪开,将所得的4个三角形拼成第2个大的正方形,则这个正方形的边长是________;(3)如此下去,写出拼成的第n 个正方形的边长.参考答案与解析1.A 2.C 3.B 4.B 5.A 6.C 7.D 8.C 9.B 10.B 11.51412.3 13.1 14.①③④ 15.解:①②③⑤⑦⑨(2分) ⑥⑧(4分) ③④⑨⑩(6分) ①②⑤⑥⑦⑧(8分)16.解:(1)原式=5+4-3-2-1=3.(4分) (2)原式=0.5-74×3×18=-532.(8分)17.解:(1)x 2=925,x =±925,x =±35.(4分) (2)x +3=38,x +3=2,x =-1.(8分)18.解:(1)原式≈3×3.142-3.6062+0.875≈8.50.(4分)(2)原式≈2×3.162×2.236÷2.449≈5.77.(8分)19.解:由题意得⎩⎪⎨⎪⎧2a -1=(±3)2=9,3a +b -1=42=16,解得⎩⎪⎨⎪⎧a =5,b =2.(6分)所以a +2b =5+2×2=9,所以a +2b 的平方根是±3.(10分)20.解:(1)x =2-1.(4分)(2)(x -2)2=(2-1-2)2=1,所以(x -2)2的立方根是1.(10分) 21.解:(1)当d =9时,则t 2=93900,(3分)因此t =93900=0.9.(5分) 答:如果雷雨区域的直径为9km ,那么这场雷雨大约能持续0.9h.(6分) (2)当t =1时,则d 3900=12,(8分)因此d =3900≈9.65≈9.7.(11分)答:如果一场雷雨持续了1h ,那么这场雷雨区域的直径大约是9.7km.(12分)22.解:(1)由输入x =25得25=5.因为5是有理数,不能输出,再取5的算术平方根得 5.因为5是无理数,所以输出y ,所以输入x =25时,输出的y 的值是 5.(4分)(2)x =0或1时,始终输不出y 的值.(8分) (3)81(答案不唯一)(12分)23.解:(1)2(4分) (2)2(8分)(3)两个边长为1的正方形拼成的第1个大正方形面积为2,所以它的边长为2;两个边长为2的正方形拼出的第2个大正方形面积为4,所以它的边长为2=(2)2……因此,拼成的第n 个正方形的边长为(2)n .(14分)第7章一元一次不等式与不等式组时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题4分,满分40分) 1.y 的13与z 的5倍的差的平方是一个非负数,列出不等式为( )A .5(13-y )2>0 B.13y -(5z )2≥0C .(13y -5z )2≥0 D.13y -5z 2≥02.已知a <b ,则下列不等式一定成立的是( ) A .a +5>b +5 B .-2a <-2b C.32a >32b D .7a -7b <0 3.一元一次不等式2(x +1)≥4的解集在数轴上表示为( )C. D.4.不等式组⎩⎪⎨⎪⎧x +4>3,2x ≤4的解集是( )A .1<x ≤2B .-1<x ≤2C .x >-1D .-1<x ≤45.要使代数式3m -14-m2的值不小于1,那么m 的取值范围是( )A .m >5B .m >-5C .m ≥5D .m ≥-56.如果不等式2x -m <0只有三个正整数解,那么m 的取值范围是( ) A .m <8 B .m ≥6 C .6<m ≤8 D .6≤m <87.如果2m ,m ,1-m 这三个数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是( ) A .m >0 B .m >12 C .m <0 D .0<m <128.若方程组⎩⎪⎨⎪⎧3x +y =k +1,x +3y =3的解x ,y 满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .0<k <8D .k >-49.若不等式组⎩⎪⎨⎪⎧1+x <a ,x +92+1≥x +13-1有解,则实数a 的取值范围是( )A .a <-36B .a ≤-36C .a >-36D .a ≥-3610.某学校七年级学生计划用义卖筹集的1160元钱购买古典名著《水浒传》和《西游记》共30套.小华查到网上某图书商城的报价如图所示.如果购买的《水浒传》尽可能的多,那么《水浒传》和《西游记》可以购买的套数分别是( ) A .20,10 B .10,20 C .21,9 D .9,21二、填空题(本大题共4小题,每小题5分,满分20分)11.已知y 1=x +3,y 2=-x +1,当y 1>2y 2时,x 满足的条件是________. 12.关于x 的方程kx -1=2x 的解为正实数,则k 的取值范围是________.13.若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为____________.14.某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局反扣1分,在12局比赛中,积分超过15分就可以晋升下一轮比赛,而且在全部12轮比赛中,没有出现平局,小王最多输________局比赛.三、(本大题共2小题,每小题8分,满分16分) 15.解下列不等式:(1)3(x -1)>2x +2; (2)x -x -24>4x +35.16.解不等式组,并将解集分别表示在数轴上.(1)⎩⎪⎨⎪⎧4x -3>x ①,x +4<2x -1②; (2)⎩⎪⎨⎪⎧6x +15>2(4x +3)①,2x -13≥12x -23②.四、(本大题共2小题,每小题8分,满分16分)17.定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)求(-2)⊕3的值;(2)若3⊕x 的值小于13,求x 的取值范围,并在如图所示的数轴上表示出来.18.已知不等式5(x -2)+8<6(x -1)+7的最小整数解为方程2x -ax =4的解,求a 的值.五、(本大题共2小题,每小题10分,满分20分)19.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =m ,2x -y =6的解满足x >0,y <0,求满足条件的整数m 的值.20.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题备受人们关注,某学校计划在教室内安装空气净化装置,需购进A ,B 两种设备.已知购买1台A 种设备和2台B 种设备需要3.5万元;购买2台A 种设备和1台B 种设备需要2.5万元.(1)求每台A 种、B 种设备的价格;(2)根据学校实际情况,需购进A 种和B 种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A 种设备多少台.六、(本题满分12分)21.用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a >表示大于a 的最小整数,例如:<2.5>=3,<4>=5,<-1.5>=-1(请注意两个不同的符号).解决下列问题:(1)[-4.5]=________,<3.5>=________;(2)若[x ]=2,则x 的取值范围是____________;若<y >=-1,则y 的取值范围是____________;(3)已知x ,y 满足方程组⎩⎪⎨⎪⎧3[x ]+2<y >=3,3[x ]-<y >=-6,求x ,y 的取值范围.七、(本题满分12分)22.为增强居民节约用电意识,某市对居民用电实行“阶梯收费”,具体收费标准见下表:某居民五月份用电190千瓦时,缴纳电费90元.(1)求x的值和超出部分电费单价;(2)若该户居民六月份所缴电费不低于75元且不超过84元,求该户居民六月份的用电量范围.八、(本题满分14分)23.某公司有A,B两种客车,它们的载客量和租金如下表.星星中学根据实际情况,计划用A,B 型车共5辆,同时送七年级师生到校基地参加社会实践活动.(1)若要保证租金费用不超过980元,请问该学校有哪几种租车方案?(2)在(1)的条件下,若七年级师生共有150人,请问哪种租车方案最省钱?参考答案与解析1.C 2.D 3.A 4.B 5.C 6.C 7.C 8.A 9.C 10.A 11.x >-13 12.k >2 13.x >3214.215.解:(1)去括号,得3x -3>2x +2,移项,得3x -2x >2+3,合并同类项,得x >5.(4分)(2)去分母,得20x -5(x -2)>4(4x +3),去括号,得20x -5x +10>16x +12,移项、合并同类项,得-x >2,x 系数化成1,得x <-2.(8分)16.解:(1)解不等式①,得x >1,解不等式②,得x >5.因此,不等式组解集为x >5.在数轴上表示不等式组的解集为(4分)(2)解不等式①,得x <92,解不等式②,得x ≥-2.因此,不等式组解集为-2≤x <92.在数轴上表示不等式组的解集为(8分)17.解:(1)因为a ⊕b =a (a -b )+1,所以(-2)⊕3=-2(-2-3)+1=10+1=11.(4分)(2)因为3⊕x <13,所以3(3-x )+1<13,9-3x +1<13,-3x <3,x >-1.在数轴上表示如图所示.(8分)18.解:解不等式得x >-3,所以最小整数解为x =-2.(4分)所以2×(-2)-a ×(-2)=4,解得a =4.(8分)19.解:解方程组得⎩⎨⎧x =6+m 3,y =2m -63.(4分)又因为x >0,y <0,所以⎩⎨⎧6+m 3>0,2m -63<0,解得-6<m <3.(7分)因为m为整数,所以m 的值为-5,-4,-3,-2,-1,0,1,2.(10分)20.解:(1)设每台A 种、B 种设备的价格分别为x 万元、y 万元,根据题意得⎩⎪⎨⎪⎧x +2y =3.5,2x +y =2.5,解得⎩⎪⎨⎪⎧x =0.5,y =1.5.(4分)答:每台A 种、B 种设备各0.5万元、1.5万元.(5分)(2)设购买A 种设备z 台,根据题意得0.5z +1.5(30-z )≤30,解得z ≥15.(9分)21.解:(1)-5 4(2分)(2)2≤x <3 -2≤y <-1(6分)(3)解方程组得⎩⎪⎨⎪⎧[x ]=-1,<y >=3,所以x ,y 的取值范围分别为-1≤x <0,2≤y <3.(12分)22.解:(1)根据题意,得160x +(190-160)(x +0.15)=90,解得x =0.45.则超出部分的电费单价是x+0.15=0.6(元/千瓦时).(5分)答:x 和超出部分电费单价分别是0.45元/千瓦时和0.6元/千瓦时.(6分) (2)设该户居民六月份的用电量是a 千瓦时,因为160×0.45=72(元),所以该户居民六月份用电量超过160千瓦时,则75≤160×0.45+0.6(a -160)≤84,解得165≤a ≤180.(11分)答:该户居民六月份的用电量在165千瓦时到180千瓦时之间.(12分)23.解:(1)设租A 型车x 辆,则租B 型车(5-x )辆,根据题意得200x +150(5-x )≤980,解得x ≤235.(4分)因为x 取非负整数,所以x =0,1,2,3,4,所以该学校的租车方案有如下5种:租A 型车0辆、B 型车5辆;租A 型车1辆、B 型车4辆;租A 型车2辆、B 型车3辆;租A 型车3辆、B 型车2辆;租A 型车4辆、B 型车1辆.(7分)(2)根据题意得40x +20(5-x )≥150,解得x ≥52.(10分)因为x 取整数,且x ≤235,所以x =3或4.当x =3时,租车费用为200×3+150×2=900(元);当x =4时,租车费用为200×4+150×1=950(元).因为900<950,所以当租A 型车3辆、B 型车2辆时,租车费用最低.(14分)第8章 整式乘法与因式分解一、选择题(本大题共10小题,每小题4分,满分40分) 1.下列运算中,结果是a 6的式子是( ) A .a 2·a 3 B .a 12-a 6 C .(a 3)3 D .(-a )62.计算(-xy 3)2的结果是( ) A .x 2y 6 B .-x 2y 6 C .x 2y 9 D .-x 2y 9 3.科学家使用铁纳米颗粒以及具有磁性的钴和碳纳米颗粒合成了直径约为0.000000012米的新型材料,这种材料能在高温下储存信息,具有广阔的应用前景.这里的“0.000000012米”用科学记数法表示为( )A .0.12×10-7米B .1.2×10-7米C .1.2×10-8米D .1.2×10-9米 4.对于多项式:①x 2-y 2;②-x 2-y 2;③4x 2-y ;④x 2-4,能够用平方差公式进行因式分解的是( ) A .①和② B .①和③ C .①和④ D .②和④5.下列各式的计算中正确的个数是( )①100÷10-1=10; ②10-4·(2×7)0=1000;③(0.1)0÷⎝⎛⎭⎫-12-3=8; ④(-10)-4÷⎝⎛⎭⎫-110-4=-1. A .4个 B .3个C .2个D .1个6.若2x =3,8y =6,则2x -3y 的值为( )A.12 B .-2 C.62 D.327.下列计算正确的是( ) A .-3x 2y ·5x 2y =2x 2y B .-2x 2y 3·2x 3y =-2x 5y 4 C .35x 3y 2÷5x 2y =7xyD .(-2x -y )(2x +y )=4x 2-y 2 8.下列因式分解正确的是( ) A .a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9) B .x 2-x +14=⎝⎛⎭⎫x -122 C .x 2-2x +4=(x -2)2D .4x 2-y 2=(4x +y )(4x -y )9.已知ab 2=-1,则-ab (a 2b 5-ab 3-b )的值等于( ) A .-1 B .0C .1D .无法确定10.越越是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b ,x -y ,x +y ,a +b ,x 2-y 2,a 2-b 2分别对应城、爱、我、蒙、游、美这六个汉字,现将(x 2-y 2)a 2-(x 2-y 2)b 2因式分解,结果呈现的密码信息可能是( )A .我爱美B .蒙城游C .爱我蒙城D .美我蒙城二、填空题(本大题共4小题,每小题5分,满分20分) 11.计算:(12a 3-6a 2)÷(-2a )=__________.12.若代数式x 2-6x +b 可化为(x -a )2-1,则b -a 的值是________. 13.若a -b =1,则代数式a 2-b 2-2b 的值为________.14.a ,b 是实数,定义一种运算@如下:a @b =(a +b )2-(a -b )2.有下列结论:①a @b =4ab ;②a @b =b @a ;③若a @b =0,则a =0且b =0;④a @(b +c )=a @b +a @c .其中正确的结论是________(填序号).三、(本大题共2小题,每小题8分,满分16分) 15.计算:(1)(a 2)3·(a 3)2÷(a 2)5;(2)(a -b +c )(a +b -c ).16.因式分解:(1)3x 4-48; (2)(c 2-a 2-b 2)2-4a 2b 2.四、(本大题共2小题,每小题8分,满分16分)17.先化简,再求值:(x 2+3x )(x -3)-x (x -2)2+(x -y )(y -x ),其中x =3,y =-2.18.已知a +b =2,ab =2,求12a 3b +a 2b 2ab 3的值.五、(本大题共2小题,每小题10分,满分20分) 19.张老师给同学们出了一道题:当x =2018,y =2017时,求[(2x 3y -2x 2y 2)+xy (2xy -x 2)]÷x 2y 的值.题目出完后,小明说:“老师给的条件y =2017是多余的.”小兵说:“不多余,不给这个条件,就不能求出结果.”你认为他们谁说得有道理?并说明你的理由.20.已知多项式x2+nx+3与多项式x2-3x+m的乘积中不含x2和x3项,求m,n的值.六、(本题满分12分)21.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8……根据以上规律,解答下列问题:(1)(a+b)4的展开式共有________项,系数分别为____________;(2)写出(a+b)5的展开式:(a+b)5=________________________________________________________________________;(3)(a+b)n的展开式共有________项,系数和为________.七、(本题满分12分)22.将一张如图①所示的长方形铁皮四个角都剪去边长为30cm的正方形,再四周折起,做成一个有底无盖的铁盒,如图②.铁盒底面长方形的长是4a cm,宽是3a cm.(1)请用含有a的代数式表示图①中原长方形铁皮的面积;(2)若要在铁盒的外表面涂上某种油漆,每1元钱可涂油漆的面积为a50cm2,则在这个铁盒的外表面涂上油漆需要多少钱(用含有a的代数式表示)?八、(本题满分14分)23.阅读下列材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=__________;(2)因式分解:(a+b)(a+b-4)+4;(3)试说明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.1.D 2.A 3.C 4.C 5.D 6.A 7.C 8.B 9.C 10.C 11.-6a 2+3a 12.5 13.114.①②④ 解析:因为a @b =(a +b )2-(a -b )2=(a +b +a -b )(a +b -a +b )=2a ·2b =4ab ,①正确;因为a @b =4ab ,b @a =(b +a )2-(b -a )2=(b +a +b -a )(b +a -b +a )=2b ·2a =4ab ,所以a @b =b @a ,②正确;因为a @b =4ab =0,所以a =0或b =0或a =0且b =0,③错误;因为a @(b +c )=(a +b +c )2-(a -b -c )2=(a +b +c +a -b -c )(a +b +c -a +b +c )=2a ·(2b +2c )=4ab +4ac ,a @b =4ab ,a @c =(a +c )2-(a -c )2=(a +c +a -c )(a +c -a +c )=2a ·2c =4ac ,所以a @(b +c )=a @b +a @c ,④正确.故答案为①②④.15.解:(1)原式=a 6·a 6÷a 10=a 2.(4分)(2)原式=[a -(b -c )][a +(b -c )]=a 2-(b -c )2=a 2-b 2+2bc -c 2.(8分)16.解:(1)原式=3(x 4-16)=3(x 2+4)(x 2-4)=3(x 2+4)(x +2)(x -2).(4分)(2)原式=(c 2-a 2-b 2+2ab )(c 2-a 2-b 2-2ab )=[c 2-(a -b )2][c 2-(a +b )2]=(c +a -b )(c -a +b )(c +a +b )(c -a -b ).(8分)17.解:原式=x 3-3x 2+3x 2-9x -x (x 2-4x +4)-(x -y )2=x 3-9x -x 3+4x 2-4x -x 2+2xy -y 2=3x 2-13x +2xy -y 2.(4分)当x =3,y =-2时,原式=3×32-13×3+2×3×(-2)-(-2)2=-28.(8分)18.解:原式=12ab (a 2+2ab +b 2)=12ab (a +b )2.(4分)当a +b =2,ab =2时,原式=12×2×22=4.(8分)19.解:小明说得有道理.(2分)理由如下:原式=[2x 3y -2x 2y 2+2x 2y 2-x 3y ]÷x 2y =x 3y ÷x 2y =x .所以该式子的结果与y 的值无关,即小明说得有道理.(10分)20.解:(x 2+nx +3)(x 2-3x +m )=x 4-3x 3+mx 2+nx 3-3nx 2+mnx +3x 2-9x +3m =x 4+(n -3)x 3+(m -3n +3)x 2+(mn -9)x +3m .(5分)因为不含x 2和x 3项,所以⎩⎪⎨⎪⎧n -3=0,m -3n +3=0,所以⎩⎪⎨⎪⎧m =6,n =3.(10分)21.(1)5 1,4,6,4,1(4分)(2)a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5(8分) (3)(n +1) 2n (12分)22.解:(1)原长方形铁皮的面积是(4a +60)(3a +60)=(12a 2+420a +3600)(cm 2).(5分)(2)这个铁盒的表面积是12a 2+420a +3600-4×30×30=(12a 2+420a )(cm 2),(9分)则在这个铁盒的外表面涂上油漆需要的钱数是(12a 2+420a )÷a50=(600a +21000)(元).(12分)23.解:(1)(x -y +1)2(3分)(2)令B =a +b ,则原式=B (B -4)+4=B 2-4B +4=(B -2)2,故(a +b )(a +b -4)+4=(a +b -2)2.(8分) (3)(n +1)(n +2)(n 2+3n )+1=(n 2+3n )[(n +1)(n +2)]+1=(n 2+3n )(n 2+3n +2)+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n +1)2.(11分)因为n 为正整数,所以n 2+3n +1也为正整数,所以式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.(14分)第9章 分式一、选择题(本大题共10小题,每小题4分,满分40分)1.要使分式3x -2有意义,则x 的取值范围是( )A .x >2B .x <2C .x ≠-2D .x ≠2 2.若分式x -2x +1的值为0,则x 的值为( )A .2或-1B .0C .2D .-13.分式1,1,1的最简公分母是( )A .(a 2-1)2B .(a 2-1)(a 2+1)C .a 2+1D .(a -1)44.不改变分式2x -52y23x +y 的值,把分子、分母中各项系数化为整数,结果是( )A.2x -15y 4x +yB.4x -5y 2x +3yC.6x -15y 4x +2yD.12x -15y 4x +6y5.已知分式⎝⎛⎭⎫-x4y 22与另一个分式的商是2x 6y ,那么另一个分式是( ) A .-x 22y 5 B.x 142y 3 C.x 22y 5 D .-x2y 36.若1+2a +a 2a 2-1=1+a x ,则x 等于( )A .a +2B .a -2C .a +1D .a -1 7.已知1a -1b =4,则a -2ab -b 2a -2b +7ab 的值等于( )A .6B .-6 C.215 D .-278.下列说法:①解分式方程一定会产生增根;②方程x -2x 2-4x +4=0的根为2;③方程12x =12x -4的最简公分母为2x (2x -4);④x +1x -1=1+1x +1是分式方程.其中正确的个数为( )A .1个B .2个C .3个D .4个 9.关于x 的分式方程5x =ax -5有解,则字母a 的取值范围是( )A .a =5或a =0B .a ≠0C .a ≠5D .a ≠5且a ≠010.九年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是( )A.10x =102x -13B.10x =102x -20 C.10x =102x +13 D.10x =102x+20 二、填空题(本大题共4小题,每小题5分,满分20分) 11.化简⎝⎛⎭⎫1m +1n ÷m +n n 的结果是________.12.已知x 2-4x +4与|y -1|互为相反数,则式子⎝⎛⎭⎫x y -y x ÷(x +y )的值等于________. 13.如果方程a x -2+3=1-x 2-x有增根,那么a =________.14.有一个分式,三位同学分别说出了它的一些特点:甲说:分式的值不可能为0;乙说分式有意义时,x 的取值范围是x ≠±1;丙说:当x =-2时,分式的值为1.请你写出满足上述三个特点的一个分式:________.15.计算: (1)4a 2b 3cd 2·5c 2d 4ab 2÷2abc 3d ;(2)2m -n n -m +m m -n +n n -m .16.化简:(1)2x x +1-2x +6x 2-1÷x +3x 2-2x +1;(2)⎝⎛⎭⎫a a 2-b 2-1a +b ÷b b -a .四、(本大题共2小题,每小题8分,满分16分) 17.解方程:(1)1+3x x -2=6x -2;(2)1-x -32x +2=3x x +1.18.先化简,再求值:1-x -y x +2y ÷x 2-y 2x 2+4xy +4y 2,其中x ,y 满足|x -2|+(2x -y -3)2=0.五、(本大题共2小题,每小题10分,满分20分) 19.观察下列等式: ①1-56=12×16;②2-107=22×17;③3-158=32×18;……(1)请写出第4个等式:________________;(2)观察上述等式的规律,猜想第n 个等式(用含n 的式子表示),并验证其正确性.20.已知A =x 2+2x +1x 2-1-xx -1.(1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.六、(本题满分12分)21.甲、乙两座城市的中心火车站A ,B 两站相距360km.一列动车与一列特快列车分别从A ,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h ,当动车到达B 站时,特快列车恰好到达距离A 站135km 处的C 站.求动车和特快列车的平均速度各是多少.七、(本题满分12分)22.抗洪抢险,需要在一定时间内筑起拦洪大坝,甲队单独做正好按期完成,而乙队由于人少,单独做则延期3小时才能完成.现甲、乙两队合作2小时后,甲队又有新任务,余下的由乙队单独做,刚好按期完成.求甲、乙两队单独完成全部工程各需要多少小时.八、(本题满分14分) 23.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数,如:83=6+23=2+23=223.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如x -1x +1,x 2x -1这样的分式就是假分式;再如3x +1,2x x 2+1这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:x -1x +1=(x +1)-2x +1=1-2x +1;解决下列问题:(1)分式2x 是________(填“真分式”或“假分式”);(2)将假分式x 2-1x +2化为带分式;(3)如果x 为整数,分式2x -1x +1的值为整数,求所有符合条件的x 的值.参考答案与解析1.D 2.C 3.A 4.D 5.C 6.D 7.A 8.A 9.D 10.C11.1m 12.12 13.1 14.3x 2-1(答案不唯一) 15.解:(1)原式=4a 2b 3cd 2·5c 2d 4ab 2·3d 2abc =52b2.(4分)(2)原式=2m -n n -m -m n -m +n n -m =2m -n -m +n n -m =mn -m.(8分)16.解:(1)原式=2x x +1-2(x +3)(x +1)(x -1)·(x -1)2x +3=2x x +1-2(x -1)x +1=2x +1.(4分)(2)原式=a -(a -b )(a +b )(a -b )·b -a b =-b (a +b )(a -b )·a -b b =-1a +b.(8分)17.解:(1)去分母,得x -2+3x =6,移项、合并同类项,得4x =8,x 系数化成1,得x =2.检验:当x =2时,x -2=0.所以x =2不是原方程的根,原方程无解.(4分)(2)去分母,得2x +2-(x -3)=6x ,去括号,得2x +2-x +3=6x ,移项、合并同类项,得5x =5,x 系数化成1,得x =1.检验:当x =1时,2x +2≠0,所以原方程的根是x =1.(8分)18.解:原式=1-x -y x +2y ·(x +2y )2(x +y )(x -y )=1-x +2y x +y =x +y -x -2y x +y =-yx +y .(4分)因为|x -2|+(2x-y -3)2=0,所以⎩⎪⎨⎪⎧x -2=0,2x -y =3,解得⎩⎪⎨⎪⎧x =2,y =1.当x =2,y =1时,原式=-12+1=-13.(8分)19.解:(1)4-209=42×19(3分)(2)猜想:n -5n 5+n =n 2×15+n (其中n 为正整数).(7分)验证:n -5n 5+n =n (5+n )-5n 5+n =n 25+n ,所以左式=右式,所以猜想成立.(10分)20.解:(1)A =x 2+2x +1x 2-1-x x -1=(x +1)2(x +1)(x -1)-x x -1=x +1x -1-x x -1=1x -1.(5分)(2)解不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,得1≤x <3.因为x 为整数,所以x =1或x =2.当x =1时,A =1x -1无意义;当x =2时,A =1x -1=12-1=1.(10分)21.解:设特快列车的平均速度为x km/h ,则动车的平均速度为(x +54)km/h ,由题意得360x +54=360-135x ,解得x =90.(8分)经检验,x =90是这个分式方程的解.x +54=144.(11分)答:特快列车的平均速度为90km/h ,动车的平均速度为144km/h.(12分)22.解:设甲队单独完成需要x 小时,则乙队需要(x +3)小时.由题意得2x +xx +3=1,解得x =6.(8分)经检验,x =6是方程的解.所以x +3=9.(11分)答:甲单独完成全部工程需6小时,乙单独完成全部工程需9小时.(12分) 23.解:(1)真分式(2分)(2)x 2-1x +2=x 2+2x -2x -1x +2=x -2x +1x +2=x -2(x +2)-3x +2=x -2+3x +2.(8分) (3)2x -1x +1=2(x +1)-3x +1=2-3x +1,由x 为整数,分式的值为整数,得到x +1=-1,-3,1,3,解得x =-2,-4,0,2,则所有符合条件的x 值为0,-2,2,-4.(14分)第10章相交线与平行线、平移时间:120分钟满分:150分1.下列图形中∠1与∠2互为对顶角的是()2.下列图形中,∠1和∠2不是同位角的是()3.下列图形中,不能通过平移其中一个四边形得到的是()4.如图,下列能判定AB∥CD的条件有()①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.A.1个B.2个C.3个D.4个第4题图第5题图5.如图,观察图形,下列说法正确的个数是()①线段AB的长必大于点A到直线BD的距离;②线段BC的长小于线段AB的长,根据是两点之间线段最短;③图中对顶角共有9对;④线段CD的长是点C到直线AD的距离.A.1个B.2个C.3个D.4个6.如图,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为() A.20° B.40° C.50° D.60°第6题图第7题图7.如图,点E,F分别是AB,CD上的点,点G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列判断中,错误的是()A.∠AEF=∠EFC B.∠A=∠BCFC.∠AEF=∠EBC D.∠BEF+∠EFC=180°8.如图,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为()A.互余B.相等C.互补D.不等第8题图第9题图9.如图,若AB∥CD,CD∥EF,则∠BCE等于()A.∠2-∠1 B.∠1+∠2C.180°+∠1-∠2 D.180°-∠1+∠210.如图,将面积为5的三角形ABC沿BC方向平移至三角形DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A.5 B.10C.15 D.20第10题图第11题图二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,请填写一个你认为恰当的条件______________,使AB∥CD.第12题图第13题图12.如图,已知∠1=82°,∠2=98°,∠3=80°,则∠4的度数为________.13.如图,折叠一张长方形纸片,已知∠1=70°,则∠2的度数是________°.14.如图,C为∠AOB的边OA上一点,过C作CD∥OB交∠AOB的平分线OE于点F,作CH⊥OB 交BO的延长线于点H.若∠EFD=α,现有以下结论:①CH>CO;②∠COF=α;③CH⊥CD;④∠OCH =2α-90°.其中正确的结论是________(填序号).第14题图三、(本大题共2小题,每小题8分,满分16分)15.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O,求∠2,∠3的度数.16.如图,∠1=∠2,∠D=50°,求∠B的度数.四、(本大题共2小题,每小题8分,满分16分)17.如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,求∠PQC的度数.18.如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.解:因为EF∥AD(已知),所以∠2=______(________________________).又因为∠1=∠2(已知).所以∠1=∠3(等式性质或等量代换),所以AB∥______(____________________________),所以∠BAC+________=180°(__________________________).又因为∠BAC=70°(已知),所以∠AGD=________(____________).五、(本大题共2小题,每小题10分,满分20分)19.画图并填空:(1)画出三角形ABC先向右平移6格,再向下平移2格得到的三角形A1B1C1;(2)线段AA1与BB1的关系是______________;(3)三角形ABC的面积是________平方单位.20.如图,∠BAP+∠APD=180°,∠1=∠2.试说明:∠E=∠F.六、(本题满分12分)21.如图,一个楼梯的总长度为5米,总高度为4米,楼梯宽为2米.若在楼梯上铺地毯,且每平方米地毯售价30元,则至少需要多少钱?七、(本题满分12分)22.如图,∠CDH+∠EBG=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?八、(本题满分14分)23.问题情境:如图①,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:如图②,过点P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.问题迁移:(1)如图③,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,∠ADP=α,∠BCP =β,∠CPD,α,β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P分别在射线AM和射线OB上运动时(点P与点A,B,O三点不重合),请你分别直接写出∠CPD,α,β间的数量关系.参考答案与解析1.C 2.C 3.D 4.C 5.A 6.C7.C8.A9.C10.C11.∠F AB=∠FCD(答案不唯一)12.80°13.5514.②③④15.解:因为∠1=∠2,∠1=30°,所以∠2=30°.(3分)因为AB⊥CD,所以∠AOD=90°,所以∠2+∠3=90°,所以∠3=90°-∠2=90°-30°=60°.(8分)16.解:因为∠1=∠2,∠2=∠EHD,所以∠1=∠EHD,所以AB∥CD.(4分)所以∠B+∠D=180°,所以∠B=180°-∠D=180°-50°=130°.(8分)17.解:(1)如图所示.(2分)(2)如图所示.(4分)(3)因为CD∥PQ,所以根据两直线平行,同旁内角互补得∠PQC+∠DCQ=180°.又因为∠DCQ=120°,所以∠PQC=60°.(8分)18.∠3两直线平行,同位角相等DG内错角相等,两直线平行∠AGD两直线平行,同旁内角互补110°等式性质(8分)19.解:(1)三角形A1B1C1如图所示.(4分)(2)平行且相等(7分)(3)3.5(10分)20.解:因为∠BAP+∠APD=180°,所以AB∥CD,所以∠BAP=∠APC.(5分)又因为∠1=∠2,所以∠FP A=∠EAP,所以AE∥PF,所以∠E=∠F.(10分)21.解:由平移知识可知,地毯的总长度为5+4=9(米),(5分)所以其面积为9×2=18(平方米),所需费用为18×30=540(元).(11分)答:至少需要540元.(12分)22.解:(1)AE与FC平行.(1分)理由如下:因为∠CDH+∠EBG=180°,∠CDH+∠CDB=180°,所以∠CDB=∠EBG,所以AE∥FC.(4分)(2)AD与BC平行.(5分)理由如下:由(1)知AE∥FC,所以∠CDA+∠A=180°.因为∠A=∠C,所以∠CDA+∠C=180°,所以AD∥BC.(8分)(3)BC平分∠DBE.(9分)理由如下:由(1)知AE∥FC,所以∠EBC=∠C.由(2)知AD∥BC,所以∠C=∠FDA,∠DBC=∠BDA.又因为DA平分∠BDF,所以∠FDA=∠BDA,所以∠EBC=∠DBC,所以BC 平分∠DBE.(12分)23.解:(1)∠CPD=α+β.(2分)理由如下:如图③,过点P作PE∥AD交CD于点E.(3分)因为AD∥BC,所以AD∥PE∥BC,所以∠DPE=α,∠CPE=β,所以∠CPD=∠DPE+∠CPE=α+β.(6分)(2)如图④,当点P在射线AM上时,∠CPD=β-α.(10分)如图⑤,当点P在线段OB上时,∠CPD =α-β.(14分)。
《第7章一元一次不等式与不等式组》试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、已知一元一次不等式(3x−5<4), 那么解集为:A.(x<3)B.(x>3)C.(x<−3)D.(x>−3)2、若不等式组$({.)$的解集是下列哪一项?A.(x>2)且(x≤2)B.(x<2)且(x≥2)C.(x>2)且(x≤6)D. 无解3、下列哪个不是一元一次不等式的正确形式?A. 2x + 3 > 5B. x - 4 ≤ 2C. 3x = 7D. x + 2 < 54、不等式 3x - 5 < 2x + 1 的解集是:A. x < 6B. x < 4C. x > 6D. x > 45、若不等式(3x−7<2x+5)成立,则(x)的取值范围是:A.(x<12)B.(x>12)C.(x<2)D.(x>2)6、设(a<b),下列哪个不等式一定成立?A.(−a<−b)B.(2a<2b)C.(a−3<b−3)D.(a−5<b−5)7、已知不等式 -2x + 3 > 5,解得 x 的取值范围是:A. x < -1B. x > -1C. x ≤ -1D. x ≥ -18、若不等式 3(x - 2) < 2x + 4 成立,则 x 的取值范围是:A. x < 4B. x ≤ 4C. x > 4D. x ≥ 49、若不等式 -3x + 4 > 2x - 1,那么x的取值范围是:A. x < 1B. x > 1C. x < 3D. x > 3 10、不等式组[{2x+3<7x−4>−5]的解集是:A. -4 < x < 2B. -3 < x < 3C. -2 < x < 6D. -1 < x < 5二、计算题(本大题有3小题,每小题5分,共15分)第一题:已知不等式(3x−2<4x+1),求解不等式。
2019春沪科版七年级下册全套单元试卷和期末试卷含答案第6章达标检测卷(150分,120分钟)一、选择题(每题4分,共40分)1.9的算术平方根是()A.±3 B.3 C.-3 D. 32.与1+5最接近的整数是()A.4 B.3 C.2 D.13.下列各组数中,互为相反数的是()A.-3与 3 B.|-3|与-1 3C.|-3|与- 3 D.3与(-3)2 4.下列各式中正确的是()A.49144=±712B.-3-278=-32C.-9=-3D.3(-8)2=45.比较三个数-3,-π,-10的大小,下列结论正确的是()A.-π>-3>-10 B.-10>-π>-3C.-10>-3>-πD.-3>-π>-106.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②B.①③C.①②③D.②③④7.正数x的两个平方根分别为3-a和2a+7,则44-x的立方根为()A.-5 B.5 C.13 D.108.有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()(第8题)A .4B .34C .23D .329.一个正方体木块的体积是343 cm 3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是( )A .72 cm 2B .494 cm 2C .498 cm 2D .1472cm 2 10.如图,数轴上A 、B 两点对应的实数分别为1和3,若点A 关于点B 的对称点为点C ,则点C 所对应的实数为( )(第10题)A .23-1B .1+ 3C .2+ 3D .22+1二、填空题(每题5分,共20分)11.3的算术平方根是________,-64的立方根为________.12.点A 在数轴上和表示1的点相距6个单位长度,则点A 表示的数为________. 13.规定用符号[x]表示一个数的整数部分,例如[3.69]=3,[3]=1,则[13]-1=________.14.若两个连续整数x ,y 满足x <5+1<y ,则x +y 的值是________.三、解答题(15题20分,16题15分,17题8分,18~20题每题9分,21、22题每题10分,共90分)15.计算: (1)(-1)2 015+16-94; (2)14+0.52-38;(3)-(-2)2+(-2)2-3-82; (4)32+|3-32|-(-5)2.16.求下列各式中未知数的值:(1)|a-2|=5;(2)(x-6)3=-27;(3)25(x2-1)=24.17.已知2b+1的平方根为±3,3a+2b-1的算术平方根为4,(1)求a、b的值;(2)求a+2b的平方根.18.如图是高度相同的A、B、C三个圆柱形杯子,A、B两个杯子装满了水,C杯是空杯子.现在小颖把A、B两个杯子中的水全部倒入C杯中,水恰好把C杯装满.小颖测得A、B两个杯子底面圆的半径分别是2 cm和3 cm,由此她猜想:C杯底面圆的半径是5 cm.小颖的猜想正确吗?请说明理由.(第18题)19.设6的整数部分和小数部分分别是x、y,试求x、y的值与x-1的算术平方根.20.实数a、b、c在数轴上的对应点如图所示,其中|a|=|c|,化简|b+3|+|a-2|+|c -2|+2c.(第20题)21.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和其生长年限,近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?22.阅读材料:已知a 、b 是有理数,且满足等式5-3a =2b +233-a ,求a 、b 的值.解:因为5-3a =2b +233-a ,所以5-3a =(2b -a)+233,所以⎩⎪⎨⎪⎧2b -a =5,-a =23.解得⎩⎨⎧a =-23,b =136. 依照材料中的解法,解答下列问题:(1)已知x 、y 都是有理数,且满足等式2x +3y =-6y -x23+20,求x 、y 的值;(2)已知x 、y 都是有理数,且满足等式x 2-2y =196-132,求3x +y 的值.答案一、1.B 2.B 3.C4.D 点拨:A 中49144=712;B 中-3-278=32;C 中-9无算术平方根;只有D 正确.5.D6.C 点拨:因为a 2=2,a >0,所以a =2≈1.414,即a >1,故④错误.7.A 点拨:因为一个正数的两个平方根互为相反数,则3-a +2a +7=0,即a =-10,则x =(3-a)2=169,所以44-x =44-169=-125,所以44-x 的立方根为-5.故选A .8.B 点拨:64的立方根是4,4的立方根是34. 9.D 点拨:由题意可知,小正方体木块的体积为3438cm 3,则每个小正方体木块的棱长为72 cm ,故每个小正方体木块的表面积为⎝⎛⎭⎫722×6=1472(cm 2).10.A二、11.3;-412.1-6或1+6 点拨:数轴上到某个点距离为a(a >0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.13.2 点拨:因为3<13<4,所以[13]=3,故[13]-1=2.14.7 点拨:因为2<5<3,所以3<5+1<4.因为x <5+1<y ,且x ,y 为两个连续整数,所以x =3,y =4.所以x +y =3+4=7.三、15.解:(1)(-1)2 015+16-94=-1+4-32=32; (2)14+0.52-38=12+0.5-2=-1; (3)-(-2)2+(-2)2-3-82=-4+2-(-4)=2; (4)32+|3-32|-(-5)2=32+(32-3)-5=32+32-3-5=62-8.16.解:(1)由|a -2|=5,得a -2=5或a -2=- 5.当a -2=5时,a =5+2;当a -2=-5时,a =-5+2;(2)两边开立方得x -6=3-27,所以x -6=-3,解得x =3; (3)两边同时除以25得x 2-1=2425,所以x 2=4925,所以x =±75.17.解:(1)因为2b +1的平方根为±3, 所以2b +1=9,解得b =4. 因为3a +2b -1的算术平方根为4, 所以3a +2b -1=16,解得a =3.(2)由(1)得a +2b =3+2×4=11,故a +2b 的平方根为±11. 18.解:小颖的猜想不正确.理由:设三个圆柱形杯子的高为h cm ,C 杯底面圆的半径为r cm , 则由题意得π×22×h +π×32×h =πr 2h. 所以r 2=22+32=13. 因为r >0,所以r =13.因为13≠5,所以小颖的猜想不正确.19.解:因为4<6<9,所以4<6<9,即2<6<3, 所以x =2,y =6-2,x -1=1=1.20.解:由题图可知a >2,c <2,b <-3,所以原式=-(b +3)+(a -2)-(c -2)+2c =-b -3+a -2+2-c +2c =-b -3+a +c.又|a|=|c|,所以a +c =0,所以原式=-b - 3.21.解:(1)当t =16时,d =7×16-12=7×2=14. (2)当d =35时,t -12=5,即t -12=25,解得t =37.答:冰川消失16年后苔藓的直径为14厘米;如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.22.解:(1)因为2x +3y =-6y -x23+20, 所以2x +3y =(-6y +20)-x23, 所以⎩⎪⎨⎪⎧-6y +20=2x ,-x 2=y.解得⎩⎪⎨⎪⎧x =-20,y =10.(2)因为x 2-2y =196-132,所以x 2=196,y =13, 所以x =±196,即x =±14,所以x +y =27或-1, 所以3x +y =3或-1.第7章达标检测卷(150分,120分钟)一、选择题(每题4分,共40分)1.某市4月5日的气温是20 ℃±3 ℃,用不等式表示该市4月5日的气温T 的范围是( )A .17 ℃<T <20 ℃B .17 ℃≤T ≤20 ℃C .20 ℃<T <23 ℃D .17 ℃≤T ≤23 ℃ 2.若x >y ,则下列式子中错误的是( )A .x -3>y -3B .x 3>y3 C .x +3>y +3 D .-3x >-3y3.不等式2x ≥x -1的解集在数轴上表示正确的是( )4.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( ) A .m >92 B .m <0 C .m <92D .m >05.在平面直角坐标系中,若点P(m -3,m +1)在第二象限,则m 的取值范围是( ) A .-1<m <3 B .1<m <3 C .-3<m <1 D .m >-16.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围是( )A .m >-23B .m ≤23C .m >23D .m ≤-237.若不等式组⎩⎪⎨⎪⎧x <1,x >m -1恰有两个整数解,则m 的取值范围是( )A .-1≤m <0B .-1<m ≤0C .-1≤m ≤0D .-1<m <08.方程组⎩⎪⎨⎪⎧3x +y =k +1,x +3y =3的解满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .0<k <8D .k >-49.某运输公司要将300吨的货物运往某地,现有A ,B 两种型号的汽车可调用,已知A 型汽车每辆可装货物20吨,B 型汽车每辆可装货物15吨.在每辆汽车不超载的情况下,要把这300吨货物一次性装运完成,并且A 型汽车确定要用7辆,至少调用B 型汽车的辆数为( )A .10B .11C .12D .13 10.我们定义⎝ ⎛⎭⎪⎫a b cd =ad +bc ,例如⎝⎛⎭⎪⎫2 34 5=2×5+3×4=22,若x 满足-2≤⎝⎛⎭⎪⎫4 23 x <2,则整数x 的值有( )A .0个B .1个C .2个D .3个二、填空题(每题5分,共20分)11.如图是某机器零件的设计图纸,用不等式表示零件长度的合格尺寸,则长度l 的取值范围是________.(第11题)12.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.13.某校规定期中考试成绩的40%与期末考试成绩的60%的和作为学生的总成绩.该校李红同学期中数学考了86分,她希望自己这学期数学总成绩不低于95分,她在期末考试中数学至少应得多少分?设她在期末考试中数学应得x 分,可列不等式__________________.14.如果不等式组⎩⎪⎨⎪⎧4x -a ≥0,3x -b <0的整数解仅为1,2,3,那么适合这个不等式组的整数a ,b 的有序数对(a ,b)共有________个.三、解答题(15题16分,16~20题每题10分,其余每题12分,共90分) 15.解下列不等式或不等式组,并把它们的解集在数轴上表示出来. (1)5x +15>4x -13; (2)2x -13≤3x -46;(3)⎩⎪⎨⎪⎧x -5>1+2x ,①3x +2<4x ;② (4)⎩⎪⎨⎪⎧x -x -22≤1+4x3,①1+3x>2(2x -1).②16.下面不等式的解法有错误,按要求完成解答: 解不等式:2x +13-x +26<2.解:去分母,得2(2x +1)-x +2<12,① 去括号,得4x +2-x +2<12,② 移项、合并同类项,得3x <8,③ 解得x <83.(1)以上解法中错误的一步是________(写出序号即可);(2)改正错误的步骤,求出不等式的解集,并画出数轴,在数轴上表示不等式的解集.17.若式子5x +46的值不小于78-1-x3的值,求满足条件的x 的最小整数值.18.若不等式5(x -2)+8<6(x -1)+7的最小整数解是方程2x -ax =3的解,求4a -14a 的值.19.先阅读,再解题. 解不等式:2x +5x -3>0.解:根据两数相除,同号得正,异号得负,得①⎩⎪⎨⎪⎧2x +5>0,x -3>0或②⎩⎪⎨⎪⎧2x +5<0,x -3<0.解不等式组①,得x >3,解不等式组②,得x <-52.所以原不等式的解集为x >3或x <-52.参照以上解题过程所反映的解题思想方法,试解不等式:2x -31+3x <0.20.若关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =30-k ,3x +y =50+k 的解都是非负数.(1)求k 的取值范围;(2)若M =3x +4y ,求M 的取值范围.21.今年我区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设购买甲种树苗x 棵,有关甲、乙两种树苗的信息如图所示.(1)当n=500时,①根据信息填表(用含x的式子表示);②如果购买甲、乙两种树苗共用去25 600元,那么甲、乙两种树苗各购买了多少棵?(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26 000元,求n的最大值.(第21题)22.某村计划建造A,B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、可供使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365 m2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱?答案一、1.D 2.D 3.B4.A 点拨:方程4x -2m +1=5x -8的解为x =9-2m.由题意得9-2m <0,则m >92.5.A 点拨:点P(m -3,m +1)在第二象限,则有⎩⎪⎨⎪⎧m -3<0,m +1>0,解得-1<m <3.6.C 点拨:⎩⎪⎨⎪⎧x -2m <0,①x +m >2,②解不等式①,得x <2m. 解不等式②,得x >2-m.因为不等式组有解, 所以2m >2-m. 所以m >23.7.A 点拨:不等式组⎩⎪⎨⎪⎧x <1,x >m -1的解集为m -1<x <1.又因为不等式组⎩⎪⎨⎪⎧x <1,x >m -1恰有两个整数解,所以-2≤m -1<-1,解得-1≤m <0.8.A 点拨:两个方程左,右两边分别相加得4x +4y =k +4,所以x +y =k +44,又因为0<x +y <1,所以0<k +44<1,所以-4<k <0.9.B 点拨:设调用B 型汽车的辆数为x ,由题意得7×20+15x ≥300,解得x ≥1023,因为x 取整数,所以至少应该调用B 型汽车11辆.故选B .10.B 点拨:根据题意得-2≤4x +6<2,解得-2≤x <-1,则x 的整数值是-2,共1个,故选B .二、11.39.8≤l ≤40.2 12.0 13.86×40%+60%x ≥9514.12 点拨:由原不等式组可得a 4≤x <b3.在数轴上画出这个不等式组解集的可能区间,如图所示:(第14题)根据数轴可得0<a 4≤1,3<b 3≤4.由0<a4≤1得0<a ≤4,所以a =1,2,3,4,共4个;由3<b3≤4得9<b ≤12,所以b =10,11,12,共3个.4×3=12(个).故适合这个不等式组的整数a ,b 的有序数对(a ,b)共有12个.三、15.解:(1)移项,得5x -4x>-13-15,所以x>-28.不等式的解集在数轴上表示如图.[第15(1)题](2)去分母,得2(2x -1)≤3x -4,去括号、移项,得4x -3x ≤2-4,所以x ≤-2.不等式的解集在数轴上表示如图.[第15(2)题](3)解不等式①得x<-6;解不等式②得x>2.所以原不等式组无解.不等式组的解集在数轴上表示如图.[第15(3)题](4)解不等式①得x ≥45;解不等式②得x<3,所以原不等式组的解集为45≤x<3.不等式组的解集在数轴上表示如图.[第15(4)题]16.解:(1)①(2)去分母,得2(2x +1)-(x +2)<12, 去括号,得4x +2-x -2<12,移项、合并同类项,得3x <12,解得x <4, 所以不等式的解集是x <4. 不等式的解集在数轴上表示如图.(第16题)17.解:由题意得5x +46≥78-1-x3,解得x ≥-14,故满足条件的x 的最小整数值为0.18.解:由不等式5(x -2)+8<6(x -1)+7得x >-3, 所以不等式5(x -2)+8<6(x -1)+7的最小整数解是-2. 因为x =-2是方程2x -ax =3的解, 所以2×(-2)-a ×(-2)=3, 所以a =72,所以4a -14a=10.19.解:根据两数相除,同号得正,异号得负,得①⎩⎪⎨⎪⎧2x -3>0,1+3x <0或②⎩⎪⎨⎪⎧2x -3<0,1+3x >0.不等式组①无解,解不等式组②,得-13<x <32,所以原不等式的解集为-13<x <32.点拨:理解好给出的例子是解此题的关键.20.解:(1)解关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =30-k ,3x +y =50+k ,得⎩⎪⎨⎪⎧x =k +10,y =20-2k ,所以⎩⎪⎨⎪⎧k +10≥0,20-2k ≥0,解得-10≤k ≤10.故k 的取值范围是-10≤k ≤10.(2)M =3x +4y =3(k +10)+4(20-2k)=110-5k ,所以k =110-M5,所以-10≤110-M5≤10,解得60≤M ≤160.即M 的取值范围是60≤M ≤160.21.解:(1)①500-x 50x 80(500-x);②50x +80(500-x)=25 600,解得x =480,500-x =20. 答:甲种树苗购买了480棵,乙种树苗购买了20棵.(2)依题意,得90%x +95%(n -x )≥92%×n ,解得x ≤35n .又50x +80(n -x )=26 000,解得x =8n -2 6003,所以8n -2 6003≤35n ,所以n ≤4191131.因为n 为正整数,所以n 的最大值为419.22.解:(1)设建造A 型沼气池x 个,则建造B 型沼气池(20-x)个.依题意得:⎩⎪⎨⎪⎧15x +20(20-x )≤365,18x +30(20-x )≥492,解得:7≤x ≤9.因为x 为整数,所以x =7,8,9, 所以满足条件的方案有三种.(2)由(1)知共有三种方案,其费用分别为:方案一:建造A 型沼气池7个,建造B 型沼气池13个,总费用为:7×2+13×3=53(万元);方案二:建造A型沼气池8个,建造B型沼气池12个,总费用为:8×2+12×3=52(万元);方案三:建造A型沼气池9个,建造B型沼气池11个,总费用为:9×2+11×3=51(万元).所以方案三最省钱.第8章达标检测卷(150分,120分钟)一、选择题(每题4分,共40分) 1.计算(-2)0的结果是( ) A .0 B .-1 C .-2 D .1 2.下列运算正确的是( )A .(a +1)2=a 2+1B .3a 2b 2÷a 2b 2=3abC .(-2ab 2)3=8a 3b 6D .x 3·x =x 43.下列从左边到右边的变形,是因式分解的是( ) A .(3-x)(3+x)=9-x 2 B .(y +1)(y -3)=-(3-y)(y +1) C .4yz -2y 2z +z =2y(2z -yz)+z D .-8x 2+8x -2=-2(2x -1)2 4.多项式a(x 2-2x +1)与多项式(x -1)(x +1)的公因式是( ) A .x -1 B .x +1 C .x 2+1 D .x 25.已知a -b =9,ab =-14,则a 2+b 2的值为( ) A .23 B .32 C .53 D .37 6.计算⎝⎛⎭⎫232 013×⎝⎛⎭⎫322 014×(-1)2 015的结果是( ) A .23 B .32 C .-23 D .-32 7.若a m =2,a n =3,a p =5,则a 2m +n -p的值是( )A .2.4B .2C .1D .08.把式子2x 3-12x 2+18x 分解因式,结果正确的是( ) A .2x(x 2-6x +9) B .2x(x -6)2 C .2x(x +3)(x -3) D .2x(x -3)29.因式分解x 2+ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)10.用四个完全一样的长方形(长和宽分别设为x ,y)拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )(第10题)A .x +y =6B .x -y =2C .x·y =8D .x 2+y 2=36二、填空题(每题5分,共20分) 11.若m x =4,则m 2x =________.12.已知a +b =4,a -b =3,则a 2-b 2=________.13.据估算,500万粒芝麻的质量为20 kg ,那么一粒芝麻的质量为________kg (用科学记数法表示).14.对于任意整数a 、b ,我们约定a ★b =10a ×10b ,例如:2★3=102×103=105.根据约定,下列结论:①12★(-3)=109;②4★8=6★6;③(2m)★n =m ★(2n)(m 、n 都为整数);④(x ★y)★z =x ★(y ★z)(x 、y 、z 都为整数).正确的结论有________________.(把所有正确结论的序号都填在横线上)三、解答题(16题6分,17题16分,20,21题每题10分,22,23题每题12分,其余每题8分,共90分)15.计算.(1)5a 2b÷⎝⎛⎭⎫-13ab ·(2ab 2)2; (2)(a -2b -3c)(a -2b +3c).16.先化简,再求值:(x +5)(x -1)+(x -2)2,其中x =-2.17.把下列各式分解因式:(1)6ab3-24a3b;(2)2x2y-8xy+8y;(3)a2(x-y)+4b2(y-x); (4)4m2n2-(m2+n2)2.18.已知x3m=2,y2m=3,求(x2m)3+(y m)6-(x2y)3m·y m的值.19.已知a,b,c是△ABC的三边长,且a2+2b2+c2-2b(a+c)=0,你能判断△ABC 的形状吗?请说明理由.20.因为(x-2)(x+3)=x2+x-6,所以(x2+x-6)÷(x-2)=x+3,这说明x2+x-6能被x-2整除.另外,当x-2=0即x=2时,多项式x2+x-6的值为0.利用上述材料求解:(1)已知x-3能整除x2+kx-15,求k的值;(2)已知(x+1)(x-2)能整除x3+ax2+6x+b,试求a、b的值.21.如图,把一块L形菜地分成面积相等的两部分,种两种不同的蔬菜.已知这两部分是两个梯形,上底都为a m,下底都为b m,高都是(b-a) m.(1)请你算一算这块L形菜地的面积S是多少.(2)当a=20,b=30时,求菜地的面积.(第21题)22.如图①是一个长为2m、宽为2n的长方形(m>n),沿图中虚线用剪刀均匀分成四块小长方形,然后按图②形状拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于多少.(2)观察图②你能写出下列三个式子之间的等量关系吗?式子:(m+n)2,(m-n)2,mn(3)已知m+n=7,mn=6,求(m-n)2的值.23.已知x≠1,(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4.(1)根据以上式子计算:①(1-2)×(1+2+22+23+24+25);②2+22+23+…+2n(n为正整数);③(x-1)(x99+x98+x97+…+x2+x+1).(2)通过以上计算,请你进行下面的探索:①(a-b)(a+b)=____________;②(a-b)(a2+ab+b2)=____________;③(a-b)(a3+a2b+ab2+b3)=____________.答案一、1.D 2.D 3.D 4.A 5.C 6.D 7.A 8.D 9.B 10.D二、11.16 点拨:m 2x =(m x )2=42=16.12.12 点拨:a 2-b 2=(a +b)(a -b)=4×3=12.13.4×10-6 点拨:一粒芝麻的质量为20÷5 000 000=4×0.000 001=4×10-6(kg ).14.①②④ 点拨:12★(-3)=1012×10-3=109,①正确;4★8=104×108=1012,6★6=106×106=1012,②正确;(2m)★n =102m ×10n =102m +n ,m ★(2n)=10m ×102n =10m+2n,③错误;(x ★y)★z =10x +y ×10z =10x+y +z,x ★(y ★z)=10x ×10y +z =10x+y +z,④正确.三、15.解:(1)原式=5a 2b÷⎝⎛⎭⎫-13ab ·4a 2b 4=-60a 3b 4. (2)原式=[(a -2b)-3c][(a -2b)+3c]=(a -2b)2-(3c)2=a 2-4ab +4b 2-9c 2. 16.解:原式=x 2-x +5x -5+x 2-4x +4=2x 2-1. 当x =-2时, 原式=2×(-2)2-1=7.17.解:(1)原式=6ab(b 2-4a 2)=6ab(b +2a)(b -2a); (2)原式=2y(x 2-4x +4)=2y(x -2)2; (3)原式=a 2(x -y)-4b 2(x -y) =(x -y)(a 2-4b 2) =(x -y)(a +2b)(a -2b).(4)原式=(2mn +m 2+n 2)(2mn -m 2-n 2) =-(m +n)2(m -n)2.18.解:原式=(x 3m )2+(y 2m )3-(x 3m )2·(y 2m )2=22+33-22×32=4+27-4×9=-5. 19.解:△ABC 是等边三角形.理由如下:因为a 2+2b 2+c 2-2b(a +c)=0,所以a 2-2ab +b 2+b 2-2bc +c 2=0,即(a -b)2+(b -c)2=0.所以a -b =0,且b -c =0,即a =b =c.故△ABC 是等边三角形.20.解:(1)由题意知,当x -3=0, 即x =3时, x 2+kx -15=0, 所以9+3k -15=0, 解得k =2.(2)由题意知,当x +1=0或x -2=0,即x =-1或x =2时, x 3+ax 2+6x +b =0,所以⎩⎪⎨⎪⎧-1+a -6+b =0,8+4a +12+b =0,解得⎩⎪⎨⎪⎧a =-9,b =16.21.解:(1)S =2×12(a +b)(b -a)=(b +a)(b -a)=b 2-a 2(m 2);(2)当a =20,b =30时, S =302-202=500(m 2).22.解:(1)m -n ;(2)(m +n)2-(m -n)2=4mn ; (3)由(2)知:(m -n)2=(m +n)2-4mn =72-4×6=25.23.解:(1)①原式=1-26=-63;②由已知得:(1-2)×(1+2+22+…+2n )=1-2n+1,所以1+2+22+…+2n =2n +1-1,所以,原式=2n +1-2;③原式=-(1-x)(1+x +x 2+…+x 99)=x 100-1.(2)①a 2-b 2;②a 3-b 3;③a 4-b 4.第9章达标检测卷(150分,120分钟)一、选择题(每题4分,共40分) 1.下列式子是分式的是( ) A .a -b 2 B .5+y π C .x +3xD .1+x2.函数y =x x +1中的自变量x 的取值范围是( )A .x ≥0B .x ≠-1C .x>0D .x ≥0且x ≠1 3.当x =1时,下列分式中值为0的是( ) A .1x -1 B .2x -2x -2 C .x -3x +1 D .|x|-1x -14.分式①a +2a 2+3,②a -b a 2-b 2,③4a 12(a -b ),④1x -2中,最简分式有( )A .1个B .2个C .3个D .4个 5.下列各式中,正确的是( )A .--3x 5y =3x -5yB .-a +b c =-a +b cC .-a -b c =a -b cD .-a b -a =aa -b6.化简⎝⎛⎭⎫1+a 21+2a ÷1+a1+2a 的结果为( ) A .1+a B .11+2a C .11+a D .1-a7.分式方程2x -3=3x 的解为( )A .x =0B .x =3C .x =5D .x =98.若关于x 的分式方程mx +1=1的解是负数,则m 的取值范围是( )A .m<1B .m<1且m ≠0C .m ≤1D .m ≤1且m ≠09.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A .20x +10x +4=15B .20x -10x +4=15C .20x +10x -4=15D .20x -10x -4=1510.已知实数a ,b 满足的关系式为1a +1b =5a +b ,则a 2+b 2ab 的值为( )A .-1B .1C .2D .3二、填空题(每题5分,共20分)11.代数式1|x|-1有意义时,x 应满足的条件为________.12.若x =3是分式方程a -2x -1x -2=0的根,则a =________.13.如果实数x 满足x 2+2x -3=0,那么代数式⎝⎛⎭⎫x 2x +1+2÷1x +1=________.14.小成每周末要到离家5 km 的体育馆打球,他骑自行车前往体育馆比乘汽车多用10 min ,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x km /h ,根据题意列方程为________________.三、解答题(16、17、19题每题10分,其余每题12分,共90分) 15.计算:(1)2a a 2-9-1a -3;(2)⎝⎛⎭⎫1a -1b ÷a 2-b 2ab .16.先化简,再求值:x 2-4x +4x ÷⎝⎛⎭⎫2x -1,其中x =2- 2.17.先化简:⎝ ⎛⎭⎪⎫x +1x -1+1÷x 2+x x 2-2x +1+2-2x x 2-1,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.18.解分式方程:(1)x -2x +3-3x -3=1; (2)2x +2x -x +2x -2=x 2-2x 2-2x .19.某校组织学生到生态园春游,某班学生9:00从樱花园出发,匀速前往距樱花园2 km 的桃花园.在桃花园停留1 h 后,按原路返回樱花园,返程中先按原来的速度行走了6 min ,随后接到通知,要尽快回到樱花园,故速度提高到原来的2倍,于10:48回到了樱花园,求这班学生原来的行走速度.20.阅读下列材料,回答问题: 方程1x +1-1x =1x -2-1x -3的解为x =1.方程1x -1x -1=1x -3-1x -4的解为x =2.方程1x -1-1x -2=1x -4-1x -5的解为x =3.…(1)请你观察上述方程与解的特征,写出能反映上述方程的一般规律的方程,并写出方程的解;(2)根据(1)中所得的结论,写出一个解为x =-5的分式方程.21.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天才能完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,现安排甲、乙两个工程队合作完成此工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.22.对x ,y 定义一种新运算T ,规定:T(x ,y)=ax +by2x +y(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a ×0+b ×12×0+1=b.(1)已知T(1,-1)=-2,T(4,2)=1. ①求a ,b 的值.②若关于m 的不等式组⎩⎪⎨⎪⎧T (2m ,5-4m )≤4,T (m ,3-2m )>p 恰好有3个整数解,求实数p 的取值范围.(2)若T(x ,y)=T(y ,x)对任意实数x ,y 都成立(这里T(x ,y)和T(y ,x)均有意义),则a ,b 应满足怎样的关系式?答案一、1.C 2.A 3.B 4.B 5.D 6.A 7.D 8.B 9.A10.D 点拨:因为1a +1b =5a +b ,所以a +b ab =5a +b .所以(a +b)2=5ab.所以a 2+2ab +b 2=5ab.所以a 2+b 2=3ab.所以a 2+b 2ab=3.故选D .二、11.x ≠±112.5 点拨:因为x =3是分式方程a -2x -1x -2=0的根,所以a -23-13-2=0.解得a=5.13.5 点拨:原式=x 2+2x +2x +1·(x +1)=x 2+2x +2,因为x 2+2x -3=0,所以x 2+2x=3.所以原式=3+2=5.14.5x =52x +1060三、15.解:(1)原式=2a(a +3)(a -3)-a +3(a +3)(a -3)=a -3(a +3)(a -3)=1a +3. (2)原式=b -a ab ·ab (a +b )(a -b )=-a -b ab ·ab (a +b )(a -b )=-1a +b.16.解:x 2-4x +4x ÷⎝⎛⎭⎫2x -1=(x -2)2x ÷2-x x =(2-x )2x ·x2-x =2-x.当x =2-2时,原式=2-(2-2)= 2.17.解:原式=⎝ ⎛⎭⎪⎫x +1x -1+x -1x -1·(x -1)2x (x +1)+2(1-x )(x +1)(x -1)=2x x -1·(x -1)2x (x +1)-2x +1=2(x -1)x +1-2x +1=2x -4x +1. 满足-2≤x ≤2的整数有:-2、-1、0、1、2, 但当x =-1、0、1时,原式无意义, 所以x =-2或2.当x =-2时,原式=2x -4x +1=2×(-2)-4-2+1=-8-1=8.当x =2时,原式=2x -4x +1=2×2-42+1=0.(注:结果为0或8其中之一即可)18.解:(1)方程两边同乘(x +3)(x -3),得(x -2)(x -3)-3(x +3)=(x +3)(x -3), 去括号,得x 2-5x +6-3x -9=x 2-9, 移项、合并同类项,得-8x =-6, 解得x =34.经检验,x =34是原方程的根.(2)原方程可化为2(x +1)x -x +2x -2=x 2-2x (x -2),方程两边同时乘x(x -2),得2(x +1)(x -2)-x(x +2)=x 2-2, 整理得-4x =2, 解得x =-12,检验:当x =-12时,x(x -2)=54≠0,所以原分式方程的解是x =-12.19.解:设这班学生原来的行走速度为x km /h .易知从9:00到10:48共1.8 h , 故可列方程为2x +660+2-660x 2x +1=1.8,解得x =4.经检验,x =4是原方程的解,且符合题意. 答:这班学生原来的行走速度为4 km /h .20.解:(1)方程1x -(n -2)-1x -(n -1)=1x -(n +1)-1x -(n +2)的解为x =n.(2)1x -(-5-2)-1x -(-5-1)=1x -(-5+1)-1x -(-5+2),即1x +7-1x +6=1x +4-1x +3. 21.解:(1)设乙队单独完成这项工程需要x 天,则甲队单独完成这项工程需要23x 天.根据题意,得1023x +30⎝ ⎛⎭⎪⎫123x+1x =1, 解得x =90.经检验,x =90是原方程的根. 所以23x =23×90=60.答:甲、乙两队单独完成这项工程分别需60天和90天. (2)设甲、乙两队合作完成这项工程需要y 天, 则有y ⎝⎛⎭⎫160+190=1,解得y =36. 需要施工费用:36×(8.4+5.6)=504(万元).因为504>500,所以工程预算的施工费用不够用,需追加预算4万元. 22.解:(1)①根据T(1,-1)=-2,T(4,2)=1,得⎩⎪⎨⎪⎧a -b =-2,4a +2b =10,解得⎩⎪⎨⎪⎧a =1,b =3. ②由①得T(x ,y)=x +3y2x +y ,由题意可得⎩⎨⎧2m +3(5-4m )5≤4,m +3(3-2m )3>p ,所以⎩⎨⎧m ≥-12,m <9-3p 5.要使得整数解恰好为3个,必须满足⎩⎨⎧9-3p5>2,9-3p5≤3,解得-2≤p<-13.(2)由T(x ,y)=T(y ,x)得ax +by 2x +y =ay +bx2y +x,去分母、整理得:ax 2+2by 2=2bx 2+ay 2. 因为上式对任意实数x ,y 都成立,所以a =2b.第10章达标检测卷(150分,120分钟)一、选择题(每题4分,共40分)1.下面四个选项中,∠1=∠2一定成立的是()2.如图,已知ON⊥a,OM⊥a,则OM与ON重合的理由是()A.过两点只有一条直线B.在同一平面内,过一点有且只有一条直线垂直于已知直线C.过一点只能作一条直线D.垂线段最短(第2题)(第3题)(第5题)(第6题)3.如图,在5×5的方格纸中将图①中的图形N平移到如图②所示的位置,那么下列平移正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格4.直线a与直线b相交于点O,则直线b上到直线a的距离等于2 cm的点有() A.1个B.2个C.4个D.无数个5.如图,在江边有一赵庄,现要建一码头,为了使赵庄人乘船最方便,请你在岸上选一点来建码头,应建在()A.A点B.B点C.C点D.D点6.如图,点A在直线BG上,AD∥BC,AE平分∠GAD,若∠CBA=80°,则∠GAE 的度数为()A.60°B.50°C.40°D.30°7.如图,若将木条a绕点O旋转后使其与木条b平行,则旋转的最小角度为() A.65°B.85°C.95°D.115°(第7题)(第8题)(第9题)(第10题)8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是72°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B等于()A.81°B.99°C.108°D.120°9.如图,把一张长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置,若∠EFB =70°,则∠AED′等于()A.40°B.45°C.50°D.60°10.如图是一汽车探照灯纵剖面,从位于O点的灯泡发出的两束光线OB,OC经过灯碗反射以后平行射出,如果∠ABO=α,∠DCO=β,则∠BOC的度数是()A .a +βB .180°-αC .12(a +β) D .90°+(a +β)二、填空题(每题5分,共20分)11.如图,剪刀在使用的过程中,当两个把手之间的夹角(∠DOC)增大20°时,剪刀刀刃之间的夹角(∠AOB)也相应______________,理由是______________.12.如图,在所标识的角中,∠1的同位角有________个;添加条件________________,可使a ∥b(填一个条件即可).(第11题)(第12题)(第13题)(第14题)13.如图,直线l 1∥l 2,∠α=∠β,∠1=40°,则∠2=________.14.如图,已知直线AB ∥CD ,∠GEB 的平分线EF 交CD 于点F.若∠1=42°,则∠2=________.三、解答题(15~18题每题10分,19~21题每题12分,22题14分,共90分) 15.如图,M ,N 为坐落于公路两旁的村庄,如果一辆施工的机动车由A 向B 行驶,产生的噪音会对两个村庄造成影响.(1)当施工车行驶到何处时,产生的噪音分别对两个村庄影响最大?在图中标出来. (2)当施工车从A 向B 行驶时,产生的噪音对M ,N 两个村庄的影响情况如何?(第15题)16.如图,在一个边长为1的正方形网格中,把三角形ABC向右平移4格,再向上平移2格,得到三角形A′B′C′(A′、B′、C′分别对应A、B、C).(1)请画出平移后的图形,并标明对应字母;(2)连接A′B,已知∠ABA′=104°,求∠B′A′B的度数.(第16题)17.如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠NCD的度数.(第17题)18.如图,已知DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,试判断BF与AC的位置关系,并说明理由.(第18题)19.如图所示,要想判断AB与CD是否平行,我们可以测量哪些角?请你写出三种方案,并说明理由.(第19题)20.光线从空气中射入水中会发生折射现象,光线从水中射入空气中,同样会发生折射现象.如图是光线从空气中射入水中,再从水中射入空气中的示意图.已知∠1=∠4,∠2=∠3.请你用所学知识来判断c与d是否平行?并说明理由.21.如图,把一张长方形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,ED′与BC的交点为G,若∠EFG=55°,求∠1、∠2的度数.(第21题)22.(1)根据下列叙述填依据:已知:如图①,AB∥CD,∠B+∠BFE=180°,求∠B+∠BFD+∠D的度数.解:因为∠B+∠BFE=180°,所以AB∥EF().因为AB∥CD,所以CD∥EF().所以∠D+∠DFE=180°().所以∠B+∠BFD+∠D=∠B+∠BFE+∠EFD+∠D=360°.(2)根据以上解答进行探索:如图②,AB∥EF,∠BDF与∠B,∠F有何数量关系?并说明理由.(3)你能探索出图③、图④两个图形中,∠BDF与∠B,∠F的数量关系吗?请直接写出结果.(第22题)答案一、1.B 点拨:对顶角相等. 2.B 3.C(第4题)4.B 点拨:如图所示,直线a 与直线b 相交于点O ,在直线a 的两侧分别作直线a 的平行线m ,n ,分别交直线b 于A 、B 两点,且与直线a 的距离都为2 cm ,则直线b 上A 、B 两点到直线a 的距离都为2 cm .本题易错在只在直线a 的一侧作平行线,从而出现位置情况考虑不全而致错.5.A6.B 点拨:因为AD ∥BC ,∠CBA =80°,所以∠BAD =80°.因为∠GAD +∠BAD =180°,所以∠GAD =180°-∠BAD =100°.又因为AE 平分∠GAD ,所以∠GAE =12∠GAD=12×100°=50°. 7.B8.B 点拨:如图,过点B 作MN ∥AD ,所以∠ABN =∠A =72°.因为CH ∥AD ,AD ∥MN ,所以CH ∥MN ,所以∠NBC +∠BCH =180°,所以∠NBC =180°-∠BCH =180°-153°=27°.所以∠ABC =∠ABN +∠NBC =72°+27°=99°.(第8题)9.A 点拨:因为AD ∥BC ,∠EFB =70°,所以∠DEF =70°.由折叠的性质可知∠D′EF =∠DEF =70°,所以∠AED′=180°-∠D′EF -∠DEF =180°-70°-70°=40°.10.A二、11.增大20°;对顶角相等12.2;∠1=∠4(答案不唯一) 13.140°14.159° 点拨:因为CD ∥AB ,所以∠GEB =∠1=42°.因为EF 为∠GEB 的平分线,所以∠FEB =12∠GEB =12×42°=21°.又因为CD ∥AB ,所以∠2+∠FEB =180°,所以∠2=180°-∠FEB =180°-21°=159°.三、15.解:(1)如图所示,过点M ,N 分别作AB 的垂线,垂足分别为P ,Q ,则当施工车行驶到点P ,Q 处时产生的噪音分别对M ,N(第15题)(2)由A 至P 时,产生的噪音对两个村庄的影响越来越大,到P 处时,对M 村庄的影响最大;由P 至Q 时,对M 村庄的影响越来越小,对N 村庄的影响越来越大,到Q 处时,对N 村庄的影响最大;由Q 至B 时,对M ,N 两个村庄的影响越来越小.点拨:本题运用了建模思想,即灵活运用数学知识解决实际问题,此题运用了垂线段最短的知识.16.解:(1)如图.(第16题)(2)如图,因为三角形A′B′C′是由三角形ABC 经过平移得到的,所以AB ∥A′B′,所以∠B′A′B =∠ABA′=104°.17.解:因为AB ∥CD ,所以∠B +∠BCE =180°(两直线平行,同旁内角互补).又因为∠B =65°,所以∠BCE =115°.因为CM 平分∠BCE ,所以∠ECM =12∠BCE =57.5°.因为∠ECM +∠MCN +∠NCD =180°,∠MCN =90°,所以∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.18.解:BF 与AC 的位置关系是BF ⊥AC. 理由:因为∠AGF =∠ABC , 所以BC ∥GF.所以∠1=∠3. 又因为∠1+∠2=180°,所以∠2+∠3=180°.所以BF ∥DE. 所以∠BFC =∠DEC.因为DE ⊥AC ,所以∠DEC =90°,所以∠BFC =90°,即BF ⊥AC.19.解:方案一:可以测量∠EAB 与∠D ,如果∠EAB =∠D ,那么根据“同位角相等,两直线平行”可以得出AB ∥CD ;方案二:可以测量∠BAC 与∠C ,如果∠BAC =∠C ,那么根据“内错角相等,两直线平行”可以得出AB ∥CD ;方案三:可以测量∠BAD 与∠D ,如果∠BAD +∠D =180°,那么根据“同旁内角互补,两直线平行”可以得出AB ∥CD.20.解:c∥d.理由:如图,(第20题)因为∠2+∠5=∠3+∠6=180°,∠2=∠3,所以∠5=∠6.又因为∠1=∠4,所以∠1+∠5=∠4+∠6,所以c∥d(内错角相等,两直线平行).21.解:因为AD∥BC,所以∠3=∠EFG=55°,∠2+∠1=180°.由折叠的性质得∠3=∠4,所以∠1=180°-∠3-∠4=180°-2∠3=70°,所以∠2=180°-∠1=110°.22.解:(1)同旁内角互补,两直线平行;平行于同一直线的两条直线互相平行;两直线平行,同旁内角互补(2)∠BDF=∠B+∠F,理由如下:过点D向右作DC∥AB,则∠B=∠BDC.又因为AB∥EF,所以DC∥EF,所以∠CDF=∠F.又∠BDF=∠BDC+∠CDF,所以∠BDF=∠B +∠F.(3)图③,图④中均有:∠BDF=∠F-∠B.点拨:(2)过拐点D作AB的平行线是解本题的关键,也是解决这类问题的常用方法.期末达标检测卷(150分,120分钟)一、选择题(每题4分,共40分) 1.下列说法不正确的是( )A .-1的立方根是-1B .-1的平方是1C .-1的平方根是-1D .1的平方根是±1 2.下列计算正确的是( )A .a 2·a 3=a 6B .(-2ab)2=4a 2b 2C .(a 2)3=a 5D .3a 3b 2÷a 2b 2=3ab 3.把代数式3x 3-6x 2+3x 分解因式,结果正确的是( )A .3x(x 2-2x +1)B .3x(x -2)2C .3x(x +1)(x -1)D .3x(x -1)2 4.将分式15x +13y 35x -y 中的字母的系数化为整数得( )A .3x +5y 9x -15yB .3x +y 9x -yC .x +5y x -15yD .3x +5y 9x -y 5.下列结论正确的是( ) A .3a 2b -a 2b =2B .单项式-x 2的系数是-1C .使式子x +2有意义的x 的取值范围是x >-2D .若分式a 2-1a +1的值等于0,则a =±16.四根火柴棒摆成如图所示的形状,平移火柴棒后,可得到下列图形中的( )(第6题)7.不等式组⎩⎪⎨⎪⎧x +4>3,x ≤1的解集在数轴上可表示为( )8.关于x 的分式方程m -2x -1-2xx -1=1有增根,则m 的值为( )A .1B .4C .2D .0(第9题)9.如图,AB ∥CD ,CD ∥EF ,则∠BCE 等于( ) A .∠2-∠1 B .∠1+∠2C .180°+∠1-∠2D .180°-∠1+∠210.读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为Σ100n =1n ,这里“Σ”是求和符号.通过对以上材料的阅读,计算Σ2 015n =11n (n +1)=( )A .2 0142 015B .2 0152 016C .2 0162 015D .2 0152 014二、填空题(每题5分,共20分)11.写出一个比-1大的负无理数:________.12.将一张长方形(对边平行)纸条按如图方式折叠,则∠1=________.(第12题)13.若m 为正实数,且m -1m =3,则m 2-1m 2=________.14.定义新运算“△”,a △b =ab a +b,如:2△3=65.则下列结论:①a △a =a2;②2△x=1的解是x =2;③若(x +1)△(x -1)的值为0,则x =1;④1a △1+2a △2+-3a △(-3)=3.正确的结论是________________.(把所有正确结论的序号都填在横线上)三、解答题(15~18题每题8分,19、20题每题10分,21、22题每题12分,23题14分,共90分)。
最新沪科版七年级数学下册单元测试题及答案全册最新沪科版七年级数学下册单元测试题及答案全册第6章实数时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)1.下列各数中最大的数是()A。
5 B。
3 C。
π D。
-82.4的算术平方根是()A。
2 B。
±2 C。
2 D。
±23.下列各数:√2,32,(-5)²,-4,-| -16|,π,其中有平方根的个数是()A。
3个 B。
4个 C。
5个 D。
6个4.如图,数轴上的A,B,C,D四点中,与数-3表示的点最接近的是()A。
点A B。
点B C。
点C D。
点D5.下列式子中,正确的是()A。
-7 = -7 B。
36 = ±6 C。
-3.6 = -0.6 D。
(-8)² = 646.在-3.5,√2,π,-2,-0.001,0.xxxxxxxx6…(相邻两个6之间依次多一个1)中,无理数有()A。
1个 B。
2个 C。
3个 D。
4个7.下列说法中,正确的是()A。
不带根号的数不是无理数 B。
6根是±4 C。
绝对值等于3的实数是3 D。
每个实数都对应数轴上一个点8.-27的立方根与81的平方根之和是()A。
√3 B。
-6 C。
√3或-6 D。
69.比较7-1与2的大小,结果是()A。
后者大 B。
前者大 C。
一样大 D。
无法确定10.如果0<x<1,那么在x,√x,x²中,最大的是()A。
x B。
√x C。
x² D。
无法确定二、填空题(本大题共4小题,每小题5分,满分20分)11.-5的绝对值是______,16的算术平方根是______。
12.已知x-1是64的算术平方根,则x的算术平方根是______。
13.若x,y为实数,且| x+2 |+y-1=√5,则(x+y)²=______。
14.对于“5”,有下列说法:①它是一个无理数;②它是数轴上离原点5个单位长度的点所表示的数;③若a<5<a+1,则整数a为4;④它表示面积为5的正方形的边长。
七年级数学下册第7章一元一次不等式与不等式组单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式:①1﹣x :②4x +5>0;③x <3;④x 2+x ﹣1=0,不等式有( )个.A .1B .2C .3D .42、已知x =1是不等式(x ﹣5)(ax ﹣3a +2)≤0的解,且x =4不是这个不等式的解,则a 的取值范围是( )A .a <﹣2B .a ≤1C .﹣2<a ≤1D .﹣2≤a ≤13、不等式820x ->的解集在数轴上表示正确的是 ( )A .B .C .D .4、设m 为整数,若方程组3131x y m x y m+=-⎧⎨-=+⎩的解x 、y 满足175x y +>-,则m 的最大值是( ) A .4 B .5 C .6 D .75、如果点P (m ,1﹣2m )在第一象限,那么m 的取值范围是 ( )A.12m<<B.12m-<<C.0m<D.12m>6、解集如图所示的不等式组为()A.12xx>-⎧⎨≤⎩B.12xx≥-⎧⎨>⎩C.12xx≤-⎧⎨<⎩D.12xx>-⎧⎨<⎩7、下列不等式组,无解的是()A.1030xx->⎧⎨->⎩B.1030xx-<⎧⎨-<⎩C.1030xx->⎧⎨-<⎩D.1030xx-<⎧⎨->⎩8、把不等式36x≥-的解集在数轴上表示正确的是()A.B.C.D.9、下列各式中,是一元一次不等式的是()A.5+4>8 B.2x-1C.2x≤5D.2x+y>710、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为()A.24人B.23人C.22人D.不能确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、3x与2y的差是非正数,用不等式表示为_________.2、关于x 的不等式组11223x m x +-⎧⎨--⎩>>恰好有3个整数解,那么m 的取值范围是 _____. 3、已知不等式(a ﹣1)x >a ﹣1的解集是x <1,则a 的取值范围为______.4、某种药品的说明书上贴有如图所示的标签,则一次服用这种药品的最大剂量是______mg .5、据了解,受国庆节期间火爆上映的六部影片的影响,而其相关著作也受到广大书迷朋友的追捧.已知某网上书店《长津湖》的销售单价与《我和我的父辈》相同,《铁道英雄》的销售单价是《五个扑水的少年》单价的3倍,《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元;若自电影上映以来,《长津湖》与《五个扑水的少年》的日销售量相同,《我和我的父辈》的日销售量为《铁道英雄》日销售量的3倍,《长津湖》与《铁道英雄》的日销售量和为450本,且《长津湖》的日销售量不低于《铁道英雄》的日销售量的23且小于230本,《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,则当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为______元.三、解答题(5小题,每小题10分,共计50分)1、解不等式组求它的整数解:()202131x x x ->⎧⎪⎨+≥-⎪⎩2、某工厂需将产品分别运送至不同的仓库,为节约运费,考察了甲、乙两家运输公司.甲、乙公司的收费标准如下表:(1)仓库A 距离该工厂120千米,应选择哪家运输公司?(2)仓库B ,C ,D 与该工厂的距离分别为60千米、100千米、200千米,运送到哪个仓库时,可以从甲、乙两家运输公司任选一家?(3)根据以上信息,你能给工厂提供选择甲、乙公司的标准吗?3、某体育用品商店开展促销活动,有两种优惠方案.方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:小健:听说这家商店办一张会员卡是20元.小康:是的,上次我办了一张会员卡后,买了4副乒乓球拍,结果费用节省了12元.(会员卡限本人使用)(1)求该商店销售的乒乓球拍每副的标价.(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a 盒,小健如何选择方案更划算?4、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”.将一个“多多数”m 各个数位上的数字倒序排列可得到一个新的四位数m ',记()540909m m F m '--=. 例如:4512m =,∴2154m '=,则()4512215454045122909F --== (1)判断7643和4631是否为“多多数”?请说明理由;(2)若A 为一个能被13整除的“多多数”,且()0F A ≥,求满足条件的“多多数”A .5、春节将至,小明家亲友团准备去某地旅游,甲旅行社的优惠办法是:买4张全票其余人按半价优惠;乙旅行社的优惠办法是:一律按原价的七五折优惠;已知这两家旅行社的原价均为4000元每人.(1)若亲友团有6人,甲、乙旅行社各需多少费用?(2)亲友团为多少人时,甲、乙旅行社的费用相同?(3)当亲友团人数满足什么条件时,甲旅行社的收费更优惠?当亲友团人数满足什么条件时,乙旅行社的收费更优惠?(直接写出结果,不需说明理由)-参考答案-一、单选题1、B【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:根据不等式的定义可知,所有式子中是不等式的是②4x +5>0; ③x <3,有2个.故选:B .【点睛】本题主要考查了不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子叫作不等式.2、A【分析】根据不等式解的定义列出不等式,求出解集即可确定出a 的范围.【详解】解:∵x =1是不等式(x ﹣5)(ax ﹣3a +2)≤0的解,且x =4不是这个不等式的解,∴()()15320a a --+≤ 且()()454320a a --+> ,即﹣4(﹣2a +2)≤0且﹣(a +2)>0,解得:a <﹣2.故选:A .【点睛】此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.3、B【分析】先解不等式,得到不等式的解集,再在数轴上表示不等式的解集即可.【详解】解:820x ->,移项得:28,x解得:4,x <所以原不等式得解集:4x <.把解集在数轴上表示如下:故选B【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“画图时,小于向左拐,大于向右拐”是解本题的关键,注意实心点与空心圈的使用.4、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①②把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=, 把25m x -=代入①得6315m y m -+=-,解得125m y --=, ∵175x y +>-, ∴21217555m m ---+>-,即131755m ->-, 解得6m <,∵m 为整数,∴m 的最大值为5,故选B .【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.5、A【分析】根据第一象限的横坐标为正、纵坐标为负,列出关于m 的不等式组解答即可.【详解】解:∵P (m ,1﹣2m )在第一象限,∴0120m m ⎧⎨-⎩>> ,解得:102m <<故选A .【点睛】本题主要考查了解一元一次不等式组、平面直角坐标系等知识点,根据点在平面直角坐标系的象限列出关于m 的一元一次不等式组成为解答本题的关键.6、A【分析】根据图象可得数轴所表示的不等式组的解集,然后依据不等式组解集的确定方法“同大取大,同小取小,小大大小中间找,大大小小无处找”,依次确定各选项的解集进行对比即可.【详解】解:根据图象可得,数轴所表示的不等式组的解集为:12x -<≤,A 选项解集为:12x -<≤,符合题意;B 选项解集为:2x >,不符合题意;C 选项解集为:1x ≤-,不符合题意;D 选项解集为:12x -<<,不符合题意;故选:A .【点睛】题目主要考查不等式组的解集在数轴上的表示及解集的确定,理解不等式组解集的确定方法是解题关键.7、D【分析】根据不等式组的解集的求解方法进行求解即可.【详解】解:A 、1030x x ->⎧⎨->⎩,解得13x x >⎧⎨>⎩,解集为:3x >,故不符合题意; B 、1030x x -<⎧⎨-<⎩,解得13x x <⎧⎨<⎩,解集为:1x <,故不符合题意; C 、1030x x ->⎧⎨-<⎩,解得13x x >⎧⎨<⎩,解集为:13x <<,故不符合题意; D 、1030x x -<⎧⎨->⎩,解得13x x <⎧⎨>⎩,无解,符合题意; 故选:D .【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键.8、D【分析】解一元一次不等式求出不等式的解集,由此即可得出答案.【详解】解:不等式36x ≥-的解集为2x ≥-,在数轴上的表示如下:故选:D .【点睛】本题考查了将一元一次不等式的解集在数轴上表示出来,熟练掌握不等式的解法是解题关键.9、C【分析】从是否含有不等号,是否含有未知数,未知数的个数是否一个,这个未知数的指数是否为1,四个方面判断即可.【详解】∵5+4>8中,没有未知数,∴不是一元一次不等式,A不符合题意;∵2x-1,没有不等号,∴不是一元一次不等式,B不符合题意;∵2x≤5是一元一次不等式,∴C符合题意;∵2x+y>7中,有两个未知数,∴不是一元一次不等式,D不符合题意;故选C.【点睛】本题考查了一元一次不等式的定义即含有一个未知数且未知数的次数是1的不等式,正确理解定义是解题的关键.10、C【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x为整数.【详解】解:设每组预定的学生数为x人,由题意得,9(1)2009(1)190x x +>⎧⎨-<⎩ 解得21212299x << x 是正整数22x ∴=故选:C .【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.二、填空题1、3x -2y ≤0【分析】根据题意直接利用非正数的定义进而分析即可得出不等式.【详解】解:3x 与2y 的差是非正数,用不等式表示为3x -2y ≤0.故答案为:3x -2y ≤0.【点睛】本题主要考查由实际问题抽象出一元一次不等式,正确理解相关定义是解题的关键.2、1≤m <2【分析】表示出不等式组的解集,根据不等式组恰好有3个整数解,确定出m 的范围即可.【详解】解:不等式组11223x mx+>-⎧⎨->-⎩整理得252x mx>-⎧⎪⎨<⎪⎩,关于x的不等式组11223x mx+>-⎧⎨->-⎩恰好有3个整数解,∴整数解为0,1,2,120m∴--<,解得:12m <.故答案为:12m <.【点睛】本题考查了一元一次不等式组的整数解,解题的关键是熟练掌握一元一次不等式组的解法.3、a<1【分析】根据不等式的性质3,可得答案.【详解】解:∵(a﹣1)x>a﹣1的解集是x<1,不等号方向发生了改变,∴a﹣1<0,∴a<1.故答案为:a<1.【点睛】本题考查了不等式的性质,不等式的两边都除以同一个负数,不等号的方向改变.4、30【分析】根据30≤2次服用的剂量≤60,30≤3次服用的剂量≤60,列出两个不等式组,求出解集,再求出解集的公共部分即可.【详解】设一次服用的剂量为xmg,根据题意得:30≤2x≤60或30≤3x≤60,解得:15≤x≤30或10≤x≤20.则一次服用这种药品的剂量范围是:10~30mg.故答案为30.【点睛】本题考查了一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键.5、28.25【分析】设《长津湖》的销售单价为m元,则《五个扑水的少年》销售单价为n元;《长津湖》的日销售量a 本,《铁道英雄》日销售量为b本,则《我和我的父辈》销售单价为m元,《铁道英雄》的销售单价为3n元;《五个扑水的少年》的日销售量为a本,《我和我的父辈》的日销售量为3b元,根据题意,列出相应的方程和不等式,得出未知数的取值范围,最后根据当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即可求解.【详解】解:设《长津湖》的销售单价为m元,则《五个扑水的少年》销售单价为n元;《长津湖》的日销售量a本,《铁道英雄》日销售量为b本,则《我和我的父辈》销售单价为m元,《铁道英雄》的销售单价为3n元;《五个扑水的少年》的日销售量为a本,《我和我的父辈》的日销售量为3b元,∵《长津湖》与《铁道英雄》的日销售量和为450本,∴a+b=450,即b=450-a,∵《长津湖》的日销售量不低于《铁道英雄》的日销售量的23且小于230本,∴22303b a≤<,即()24502303a a-≤<,解得:180230a ≤< ,∵《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元,∴5060m n <+≤ ,∵《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,∴()()332205ma nb mb na +-+= ,∵b =450-a ,∴()()345034502205ma n a m a na +---+=⎡⎤⎡⎤⎣⎦⎣⎦,∴()()13503135032205n a m a ma na ---+-= ,∴()()413502205m n a --= ,∵180230a ≤<,∴413500a -<,∴0m n -< ,即m n < ,∴当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即()3345013503ma nb ma n a ma n na +=+-=+- 最大,∴此时3na 的值最小,则m 最大,∵180230a ≤<,∴a 的最小值为180,将a =180代入()()413502205m n a --=,解得: 3.5m n -=- ,即 3.5n m =+ ,∵5060m n <+≤,∴50 3.560m m <++≤,即23.2528.25m <≤ ,∵m 最大,∴28.25m = ,即当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为28.25元.故答案为:28.25【点睛】本题主要考查了一元一次不等式的应用等知识,根据题意设未知数,建立相应的方程和不等式求出未知数的值或取值范围是解决问题的关键.三、解答题1、不等式组的解集为23x <≤,不等式组的整数解为3.【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出不等式组的整数解即可.【详解】解:()202131x x x ->⎧⎪⎨+≥-⎪⎩①② 解不等式①得:2x >,解不等式②得:3x ≤,∴不等式组的解集为23x <≤,∴不等式组的整数解为3.【点睛】本题主要考查了解一元一次不等式组和求一元一次不等式组的整数解,解题的关键在于能够熟练掌握解不等式组的方法.2、(1)该工厂选择甲运输公司更划算(2)运送到C 仓库时,甲、乙两家运输公司收费相同,可以任选一家(3)当仓库与工厂的距离大于100千米时,选择甲公司;当仓库与工厂的距离等于100千米时,可以从甲、乙公司中任选一家;当仓库与工厂的距离小于100千米时,选择乙公司【分析】(1)根据收费方式分别计算出甲乙公司的费用比较即可;(2)设当运输距离为x 千米时,甲、乙两家运输公司收费相同,由两家公司的收费方式列方程,然后解出即可;(3)根据收费方式计算出甲公司的费用大于乙公司时的运输距离,和甲公司的费用小于于乙公司时的运输距离即可得出结论.(1)甲运输公司收费为100051201600+⨯=(元),乙运输公司收费为500101201700+⨯=(元).因为16001700<,所以该工厂选择甲运输公司更划算.(2)设当运输距离为x 千米时,甲、乙两家运输公司收费相同.根据题意,得1000550010x x +=+,解得100x =.答:运送到C 仓库时,甲、乙两家运输公司收费相同,可以任选一家.(3)当甲公司收费大于乙公司时:1000550010x x +>+,100x > ,当甲公司收费小于乙公司时:1000550010x x +<+,100x <,综上:当仓库与工厂的距离大于100千米时,选择甲公司;当仓库与工厂的距离等于100千米时,可以从甲、乙公司中任选一家;当仓库与工厂的距离小于100千米时,选择乙公司.【点睛】本题考查了一元一次方程的实际应用及一元一次不等式的应用,依据题意,正确建立方程是解题关键.3、(1)40元;(2)当16a =时,两种方案一样;当016a <<时,选择方案一;当16a >时,选择方案二【分析】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意列出一元一次方程,解方程即可求得乒乓球拍每副的标价;(2)根据两种方案分别计算小健购买乒乓球拍6副,乒乓球a 盒,所需费用,比较即可【详解】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意得2040.8412x x +⨯=-解得40x =答:该商店销售的乒乓球拍每副的标价为40元(2)方案一:6400.850.85102048.5a a ⨯⨯+⨯=+方案二:206400.8100.82128a a +⨯⨯+⨯=+若2048.5a +=2128a +,即16a =时,两种方案一样当2048.5a +<2128a +解得16a <即当016a <<时,选择方案一,当2048.5a +>2128a +解得16a >即当16a >时,选择方案二【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意列出方程或不等式是解题的关键.4、故答案为:1040,111(2)设有x 盒乒乓球,由题意得,甲:200×5+40(x ﹣5)=800+40x (元),乙:0.9(200×5+40x )=900+36x (元),∵在两家商店花费金额一样,∴800+40x =900+36x ,解得:x =25,答:当购买乒乓球25盒时,在两家商店花费金额一样.(3)由(2)得,甲店需要(800+40x )元,乙店需要(900+36x )元,∵在乙商店购买划算,∴800+40x >900+36x ,解得:x >25,答:当购买乒乓球大于25盒时,在乙商店购买划算.【点睛】本题考查了一元一次方程和一元一次不等式的应用,解题的关键是正确理解题意用含有x 的式子表示甲乙两个商店所需金额.6.(1)7643是“多多数”, 4631不是“多多数”,(2)5421或6734【分析】(1)根据新定义,即可判断;(2)设A 的个位数字为x ,十位数字为y ,则百位数字为x +3,千位数字为y +3,根据新定义,分别表示出A 、F (A ),根据A 为一个能被13整除的“多多数”,且()0F A ≥,,列出关系式,进而求解.(1)在7643中,7-4=3,6-3=3,∴7643是“多多数”,在4631中,3-3=1,6-1=5,∴4631不是“多多数”,(2)设A 的个位数字为x ,十位数字为y ,则百位数字为x +3,千位数字为y +3,∴A 表示的数为1000(3)100(3)1010101013300y x y x y x +++++=++100010010(3)(3)101010133A x y x y x y '=+++++=++∴9099093267A A y x '-=-+∴()54090990932675403909909A A y x F A y x '---+-===-+ ∵()0F A ≥∴30y x -+≥∴3y x ≥-∵个位数字为x ,十位数字为y ,则百位数字为x +3,千位数字为y +3,∴1909039139x y x y ≤≤⎧⎪≤≤⎪⎨≤+≤⎪⎪≤+≤⎩,解得1606x y ≤≤⎧⎨≤≤⎩ ∴x 、y 的范围为16063x y y x ≤≤⎧⎪≤≤⎨⎪≥-⎩,且x 、y 为整数 ∵若A 为一个能被13整除的“多多数”,∴ 10101013300A y x =++(13779)(13710)1325311y x =⨯++⨯++⨯+13(777253)91011y x y x =+++++当1x =时,910119219813y x y y ++=+=++,06y ≤≤,y 的值可以为0、1、2、3、4、5、6,分别代入9813y ++后结果是13的倍数的是2y = 同理,当2x =时,910119319526y x y y ++=+=++,06y ≤≤,没有符合条件的y ; 当3x =时,910119419239y x y y ++=+=++,06y ≤≤,没有符合条件的y ; 当4x =时,9101195191239y x y y ++=+=++,16y ≤≤,符合条件的3y =; 当5x =时,910119619952y x y y ++=+=++,26y ≤≤,没有符合条件的y ; 当6x =时,910119719665y x y y ++=+=++,36y ≤≤,没有符合条件的y ;综上符合条件的是12x y =⎧⎨=⎩、43x y =⎧⎨=⎩当12x y =⎧⎨=⎩时A 为5421,当43x y =⎧⎨=⎩时A 为6734 综上足条件的“多多数”A 为5421或6734.【点睛】本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解.5、(1)甲旅行社费用20000元,乙旅行社费用18000元;(2)8人;(3)亲友团人数超过8人时,甲旅行社的收费更优惠,亲友团人数少于8人时,乙旅行社的收费更优惠.【分析】(1)由题意直接根据甲、乙旅行社的优惠办法列式进行计算即可;(2)根据题意设亲友团有x 人,进而依据甲、乙旅行社的费用相同建立方程求解即可;(3)由题意直接根据(2)的结论可知当亲友团人数满足什么条件时,甲、乙旅行社的收费更优惠.【详解】解:(1)甲旅行社费用=1400044000(64)200002⨯+⨯⨯-=元, 乙旅行社费用=0.754000618000⨯⨯=元;(2)设亲友团有x 人,甲旅行社费用=1400044000(4)200080002x x ⨯+⨯⨯-=+ 乙旅行社费用=0.7540003000x x ⨯=由20008000x +=3000x解得:x =8∴亲友团有8人,甲、乙旅行社的费用相同(3)由(2)可知当亲友团有8人,甲、乙旅行社的费用相同,则8x >,有200080003000x x +<,即亲友团人数超过8人时,甲旅行社的收费更优惠;则8x <,有200080003000x x +>,亲友团人数少于8人时,乙旅行社的收费更优惠.【点睛】本题考查一元一次方程的运用以及一元一次不等式的运用,读懂题意并根据题意列出方程和不等式求解是解题的关键.。
C 最新版七年级数学(沪科版)下学期单元试卷(七 )
内容:第10章 总分:100分
一、选择题(本大题共10小题,每小题3分,共30分)
1.下列关于对顶角的说法:
(1)相等的角是对顶角, (2)对顶角相等, (3)不相等的角不是对顶角, (4)不是对顶角不相等。
其中正确的有( )
A .1个
B .2个
C .3个
D .4个
2.若两条平行线被第三条直线所截,则下列说法错误的是( )
A .一对同位角的平分线互相平行
B .一对内错角的平分线互相平行
C .一对同旁内角的平分线互相垂直
D .一对同旁内角的平分线互相平行
3.如图,已知∠1=∠2,∠3=80°,则∠4=( )
A .80° B. 70° C. 60° D. 50°
4.如图,AB ∥CD ,直线EF 分别交AB ,CD 于E ,F 两点,∠BEF 的平分线交CD 于点G ,若∠AEF =72°,则∠EGF 等于( )
A .36°
B .54°
C .72°
D .108°
5.如图,∠PQR 等于138°,SQ ⊥QR ,QT ⊥PQ 。
则∠SQT 等于( )
A .42°
B .64°
C .48°
D .24°
(第3题图)
(第5题图)
6.下列图形中,由AB ∥CD ,能得到12∠=∠的是( )
7.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两次拐弯的角度可能为( )
A. 先右转50°,后右转40°
B.先右转50°,后左转40°
C .先右转50°,后左转130° D.先右转50°,后左转50°
8.如图,已知AC ∥ED ,∠C =26°,∠CBE =37°,则∠BED 的度数是( )
A .63°
B .83°
C .73°
D .53°
9.如图,直线a ,b 被直线c 所截,下列说法正确的是( )
A .当12∠=∠时,a ∥b ;
B .当a ∥b 时,12∠=∠;
C .当a ∥b 时,1290∠+∠=;
D .当a ∥b 时,12180∠+∠=。
10.如图,△DEF 是由△ABC 经过平移后得到的,则平移的距离是( )
A .线段BE 的长度
B .线段E
C 的长度 C .线段BC 的长度
D .线段EF 的长度 A C B D 1 2 A C B D 1 2 A . B . 1 2 A C B D C . B D C A D . 1 2 c a
b 21P Q
T S R
(第8题图) (第9题图) (第10题图)
二、填空题(本大题共4小题,每小题3分,共12分)
11.在同一平面内不重合的两条直线的位置关系有 。
12.如图所示,AB ∥CD ,已知∠ABE =66°,∠D =54°,则∠E 的度数为 度。
13.如图,AB ∥CD ,AC ⊥BC ,∠BAC =65°,则∠BCD = 度。
14.将一长方形纸条,按如图所示折叠,则∠1 = 度。
(第12题图) (第13题图) (第14题图)
三、(本题共2小题,每小题5分,满分10分)
15.如图,直线a 、b 相交,已知∠2+∠3=124°,求∠1的度数。
16.如图,已知AB ∥CD ,∠1=50°,求∠2和∠3的度数。
四、(本题共2小题,每小题5分,满分10分)
17.画图并填空,如图,请作出由A 地经过B 地去河边L 的最短路线(要求:画图痕迹要清晰,准确):
(1)确定A 地到B 地路线的依据是 。
(2)确定B 地到河边L 的路线的依据是 。
18.若∠A 和∠B 的两边分别平行,且∠A 比∠B 的2倍少30°,求∠B 的度数。
a b
12
3A
B C D E
C B
五、(本题共2小题,每小题6分,满分12分)
19.如图,OM 、ON 分别是∠BOC 和∠AOC 的平分线,且∠AOB =84°。
(1)求∠MON 的度数;
(2)当OC 在∠AOB 内转动时,∠MON 的值是否会变,简单说明理由。
20.看图填空
⑴∵∠A =∠CEF (已知),
∴ ∥ ( )
⑵∵∠ADE = (已知)
∴AB ∥ ( )
⑶∵∠DEF + _=180°(已知)
∴ED ∥BC ( )
⑷∵AB ∥EF (已知) ∴∠A + =180°( )
⑸∵ED ∥BC (已知) ∴∠DEF = ( )
⑹∵AB ∥EF (已知)
∴∠B = ( )
六、(本大题满分8分)
21.如图,AB ∥CD ,∠1=115°,∠2=140°,求∠3的度数。
七、(本大题满分8分)
22.已知:如图.AB∥CD,∠B=∠C。
那么∠E与∠F大小有何关系?说明理由。
八、(本大题满分10分)
23.已知:如图,AB∥CD,请你观察∠E、∠B、∠D之间有什么关系,并证明你所得的结论。
七年级数学(沪科版)下学期单元试卷(七)答案
一、1.B 2.D 3.A 4.B 5.A 6.B 7.D 8.A 9.D 10.A
二、11.相交、平行; 12.12; 13.25; 14.52。
三、15.∠1=118°;
16.∠2=130°,∠3=50°。
四、17.图略(1)是两点之间线段最短。
(2)垂线段最短。
18.设∠B =x °,则∠A =(2x -30)°。
∵∠A 和∠B 的两边分别平行,
∴∠A =∠B 或∠A +∠B =180°,
∴2x -30=x ,或2x -30+x =180°。
∴x =30,或x =70。
五、19.(1)42°,(2)∠MON =2
1∠AOB 。
20.⑴∴EF ∥AB ( 同位角相等,两直线平行 )
⑵∠DEF
EF ( 内错角相等,两直线平行 )
⑶∠EFB ( 同旁内角互补,两直线平行 )
⑷∠AEF ( 两直线平行,同旁内角互补 )
⑸∠EFC ( 两直线平行,内错角相等 )
⑹∠EFC ( 两直线平行,同位角角相等 )
六、21.过点E 作EG ∥AB (如图)。
∵ AB ∥CD ,∴EG ∥CD 。
由此可求得∠AEG =65°,∠CEG =40°。
由平角定义可求得∠3=75°。
七、22.解:∠E =∠F 。
理由是:∵ AB ∥CD (已知),
∴ ∠B =∠CDF (两直线平行,同位角相等)。
∵ ∠B =∠C (已知),
∴ ∠CDF =∠C (等量代换)。
∴ AC ∥BD (内错角相等,两直线平行)。
∴ ∠E =∠F (两直线平行,内错角相等)。
八、23.解:结论:∠B +∠E =∠D 。
证明:过点E 作EF ∥AB ,
∴
∠FEB =∠B (两直线平行,内错角相等)。
∵
AB ∥CD ,EF ∥AB , ∴
EF ∥CD (平行公理推论), ∴
∠FED =∠D (两直线平行,内错角相等)。
∵
∠FED =∠FEB +∠BED =∠B +∠BED , ∴
∠B +∠BED =∠D (等量代换)。