第1章1-08样条插值
- 格式:ppt
- 大小:689.00 KB
- 文档页数:20
四、三次样条插值1.样条函数插值的原理给定区间[,]a b 上划分011:n n a x x x x b -∆=<<<<=,若分段函数()S x 满足: 1. ()S x 在各个子区间1[,]i i x x +,0,1,,1i n =-上均为x 的三次多项式;2. ()S x 在整个区间[,]a b 上有直至二阶的连续导数。
则称()S x 为[,]a b 上依次划分的三次样条函数,简称样条函数。
具体地有分段表达式:3200000132111112322222233211111,[,],[,](),[,](1),[,]n n n n n n a x b x c x d x x x a x b x c x d x x x S x a x b x c x d x x x a x b x c x d x x x -----⎧+++∈⎪+++∈⎪⎪=+++∈⎨⎪⎪⎪+++∈⎩共有4n 个参数,,,,0,1,,i i i i a b c d i n =,它们在内节点处满足00''00''''00()(),()(),1,2,, 1.(2)()(),i i i i i i S x S x S x S x i n S x S x -+---+=⎧⎪==-⎨⎪=⎩满足样条函数定义的函数集合称为分划∆上的三次样条函数空间,记为(3,)S ∆,可以证明(3,)S ∆为线性空间。
若()(3,)S x S ∈∆,且进一步满足插值条件()(),0,1,,(3)i i i S x y f x i n===其中i y 为节点i x 处的给定函数值(若被插函数()f x 已知,则用()i f x 代替之),则称()S x 为以011,,,,n n x x x x -为节点的三次样条函数。
其中式(3)插值节点提供了1n +个约束条件,加上式(2)的33n -个,合起来共有42n -个,欲求4n 个待定参数的唯一解,尚缺两个条件。
多项式插值方法—样条插值-5-4-3-2-1012345-0.500.511.52f (x)P 5(x)P 10(x)当插值节点过多→龙格现象插值多项式虽然满足插值条件,但是在节点之外,靠近插值区间端点处与实际函数偏离较大,出现了震荡现象如何解决龙格现象?☐根据数据特点选用三角函数或有理函数☐由于多项式的优良性能,更偏爱多项式☐使用分段函数数学模型,在较小的区间段上使用低次多项式插值要点与学习目标☐掌握样条插值的概念和数学模型☐了解样条插值函数系数的确定方法样条插值☐改善分段线性插值和二次插值的精度☐保持曲线的光滑性☐样条的概念三次样条插值函数对于给定的函数表 x)(x f yxx 1xny 1yn思考:根据该定义,关于四个节点的三次样条插值函数的数学模型是什么?需要多少个约束方程才能确定该样条?分段样条插值的数学模型231101112130123220212223122333031323323()=,[,]()()=,[,]()=,[,]S x a a x a x a x x x x S x S x a a x a x a x x x x S x a a x a x a x x x x ⎧+++∈⎪=+++∈⎨⎪+++∈⎩以四个节点为例,四个节点的样条插值函数思考:该函数能否由节点数据完全确定?231101112130123220212223122333031323323()=,[,]()()=,[,]()=,[,]S x a a x a x a x x x x S x S x a a x a x a x x x x S x a a x a x a x x x x ⎧+++∈⎪=+++∈⎨⎪+++∈⎩(0)(0)(1,2,...,1)'(0)'(0)(1,2, (1)''(0)''(0)(1,2, (1)()(0,1,...,)i i i i i ii i S x S x i n S x S x i n S x S x i n S x y i n -=+=-⎧⎪-=+=-⎪⎨-=+=-⎪⎪==⎩样条插值问题的边界条件归根到底,样条插值问题是线性方程组求解的问题。
第五节样条插值问题的背景高次插值函数的计算量大, 有剧烈振荡, 数值稳定性差;而分段线性插值在分段点上仅连续而不光滑(导数不连续)。
样条函数可以同时解决这两个问题, 使插值函数既是低阶分段函数,又是光滑的函数。
1. 样条函数在[a,b]上取n+1个插值结点a=x0<x1<…<xn=b,已知函数f(x)在这n+1个点的函数值为yk=f(xk), 则在[a,b]上函数y=f(x)的m次样条插值函数S(x)满足: (1) S(x)在(a,b)上直到m-1阶导数连续;(2) S(xk )=yk,(k=0,1,…,n) ;(3) 在区间[xk ,xk+1](k=0,1,…,n-1)上,S(x)是m次多项式。
2. 三次样条函数在[a,b]上函数y=f(x)的三次样条插值函数S(x)满足: (1) 在(a,b)上0、1、2阶导数连续; 即:s'(xk -0)=s'(xk+0),s″(xk-0)=s″(xk+0) ,(k=0,1,…,n-1)(2) S(xk )=yk,(k=0,1,…,n) ;(3) 在区间[xk ,xk+1](k=0,1,…,n-1)上,S(x)是三次多项式。
3. 三次样条函数的计算由二阶导数连续, 设是未知待定的数。
因S(x)是分段三次多项式, 则在每个区间[xk ,xk+1]内,S″(x)是分段一次多项式, 记hk=xk+1-xk, 则:将上式在区间[xk ,xk+1]上积分两次,并且由S(xk)=yk,S(xk+1)=yk+1来确定两个积分常数。
当x∈[xk,xk+1]时,利用S(x)一阶导数连续的性质,对上式求导,得:在上式中,令x=xk,得:将上式中的k换成k-1,得: s'(x)在[xk-1 ,xk]上的表达式, 将x=xk代入,而s'(xk +0)=s'(xk-0), 联立上述两式, 得到关于m 的方程:两边乘以, 得:上式中,等式左边含未知量mk-1 ,mk,mk+1,等式右边yk-1,yk,yk+1是已知的,令则得:λk mk-1+2mk+μkmk+1= Ck,(k=1,2,…,n-1).这是含有n+1个未知量m0,m1,…,mn,共有n-1个方程组成的线性方程组。
样条插值法公式样条插值法是一种在数学和计算机科学中非常有用的数值分析方法。
咱们今天就来好好聊聊这个听起来有点高大上的“样条插值法公式”。
想象一下,你正在做一个科学实验,测量了一些数据点,但是这些点之间的空白区域你不知道具体数值是多少。
这时候,样条插值法就派上用场啦!先来说说什么是样条插值法。
简单来说,就是通过一系列的分段多项式来连接给定的数据点,使得曲线不仅经过这些点,而且还很光滑。
样条插值法公式有很多种,比如三次样条插值公式。
咱们就以三次样条插值为例来深入了解一下。
假设我们有 n + 1 个数据点 (x₀, y₀), (x₁, y₁),..., (xₙ, yₙ) ,并且x₀ < x₁ <... < xₙ 。
对于每个区间 [xᵢ, xᵢ₊₁] ,我们定义一个三次多项式 Sᵢ(x) = aᵢ(x - xᵢ)³+ bᵢ(x - xᵢ)² + cᵢ(x - xᵢ) + dᵢ。
为了确定这些系数 aᵢ、bᵢ、cᵢ、dᵢ,我们需要满足一些条件。
首先,Sᵢ(xᵢ) = yᵢ,Sᵢ(xᵢ₊₁) = yᵢ₊₁,这保证了曲线经过给定的数据点。
然后,还需要满足在每个节点处一阶导数和二阶导数连续。
这一堆条件看起来很复杂,但其实就是为了让我们得到的曲线既经过点,又光滑自然。
我记得有一次,我在帮一个学生解决物理实验中的数据处理问题。
实验是测量一个物体自由下落的高度和时间的关系。
但是由于测量设备的精度问题,得到的数据点并不是很连续。
我们就用样条插值法来填补这些空缺。
通过计算那些复杂的公式,一点点地确定系数,最终得到了一条非常漂亮的曲线,准确地反映了物体下落的规律。
那个学生当时眼睛都亮了,直说:“老师,这太神奇了!”在实际应用中,样条插值法可广泛用于图像处理、工程设计、金融分析等领域。
比如说,在图像处理中,对图像进行缩放或者变形时,就可以用样条插值来保持图像的质量。
总之,样条插值法公式虽然看起来有点吓人,但只要我们掌握了它的原理和方法,就能在很多情况下发挥大作用,解决那些让我们头疼的数据空缺问题。