2019数学人教a版必修一优化练习:第二章 2.1 2.1.2 第2课时 指数函数及其性质的应用 word版含解析
- 格式:doc
- 大小:111.00 KB
- 文档页数:10
第二章学习单元一元二次函数、方程和不等式2.1 等式性质与不等式性质A级必备知识基础练1.(多选题)下列关于不等关系的说法正确的是( )A.某隧道入口竖立着“限高4.5米”的警示牌,是指示司机要安全通过隧道,应使车载货物高度h米满足关系为h≤4.5B.用不等式表示“a与b的差是非负数”为a-b>0C.不等式x≥2的含义是指x不小于2D.若a<b或a=b之中有一个正确,则a≤b正确2.已知0<=<NB.M>NC.M=ND.M与N的大小关系不确定3.设实数a=√5−√3,b=√3-1,c=√7−√5,则( )A.b>a>cB.c>b>aC.a>b>cD.c>a>b4.[吉林辽源高一月考]已知实数a,b,c满足c<b<a,ac<0,那么下列选项中正确的是( )A.ab>acB.ac>bcC.ab2>cb2D.ca2>ac25.(多选题)已知a,b,c为非零实数,且a-b≥0,则下列结论正确的有( )A.a+c≥b+cB.-a≤-bC.a2≥b2D.1a ≤1b6.(多选题)若正实数x,y满足x>y,则有下列结论,其中正确的有( )A.xy<y2B.>0)D.1x <1x-y8.若bc-ad≥0,bd>0,求证:a+bb ≤c+dd.B级关键能力提升练9.[北京顺义高一月考]已知实数a,b在数轴上对应的点如图所示,则下列式子中正确的是( )A.1b >1aB.a2>b2C.b-a>0D.|b|a<|a|b10.手机屏幕面积与整机面积的比值叫手机的“屏占比”,它是手机外观设计中一个重要参数,其值大于0且小于1,设计师将某手机的屏幕面积和整机面积同时增加相同的数量,升级为一款新手机的外观,则该手机“屏占比”相比升级之前( )A.“屏占比”不变B.“屏占比”变小C.“屏占比”变大D.变化不确定11.设x,y为实数,满足1≤x≤4,0<y≤2,求x+y及xy满足的范围.12.已知0<a<b,且a+b=1,试比较: (1)a2+b2与b的大小;的大小.(2)2ab与12参考答案学习单元一元二次函数、方程和不等式2.1 等式性质与不等式性质1.ACD 因为“限高4.5米”即为“高度不超过4.5米”.不超过用“≤”表示,故说法A正确;因为“非负数”即为“不是负数”,所以a-b≥0,故说法B错误;因为不等式x≥2表示x>2或x=2,即x不小于2,故说法C正确;因为不等式a≤b表示a<b或a=b,故若a<b或a=b中有一个正确,则a≤b一定正确,故说法D正确.2.B M-N=xy-x-y+1=x(y-1)-(y-1)=(x-1)(y-1).∵0<>N.故选B.3.A √5−√3=√5+√3,√3-1=√3+1√7−√5=√7+√5,∵√3+1<√3+√5<√5+√7,∴√3+1>√5+√3>√7+√5,即b>a>c.4.A 因为c<b<a,且ac<0,所以c<0,a>0,b-a<0.所以ab>ac,故A正确;因为a>b,c<0,所以ac<bc,故B错误;当b=0时,ab2=cb2,故C错误;因为a>c,ac<0,所以ca2<ac2,故D错误.故选A.5.AB 因为a-b≥0,则a≥b,根据不等式性质可知A,B正确;因为a,b符号不确定,所以C,D选项无法确定,故不正确.故选AB.6.BCD A中,由于x,y为正实数,且x>y,两边乘y得xy>y2,故A选项错误;B中,由于x,y为正实数,且x>y,所以)-(y-x)<0,则y(),所以yx <y+mx+m成立,故C选项正确;D中,由于x,y为正实数,且x>y,所以x>x-y>0,取倒数得0<1x <1x-y,故D选项正确.8.证明因为bc-ad≥0,所以ad≤bc.因为bd>0,所以ab ≤cd,所以ab+1≤cd+1,所以a+bb ≤c+dd.9.A 由实数a,b在数轴上对应的点可知b<a<0,因此1b >1a,故A正确;由b<a<0可知a2<b2,故B错误;由b<a,可得b-a<0,故C错误;由b<a<0,|b|a=|a|b,即-ba=-ab,故D错误.故选A.10.C 设升级前“屏占比”为ba ,升级后“屏占比”为b+ma+m(a>b>0,m>0),因为b+ma+m −ba=(a-b)ma(a+m)>0,所以该手机“屏占比”和升级前比变大.11.解∵1≤x≤4,0<y≤2,∴1<x+y≤6;∵1≤x≤4,0<y≤2,∴0<xy≤8.12.解(1)因为0<a<b,且a+b=1,所以0<a<12<b, 则a2+b2-b=a2+b(b-1)=a2-ab=a(a-b)<0,所以a2+b2<b.(2)因为2ab-12=2a(1-a)-12=-2a 2+2a-12=-2a 2-a+14=-2a-122<0,所以2ab<12.。
第2课时对数的运算1.理解对数的运算性质.(重点)2.能用换底公式将一般对数转化成自然对数或常用对数.(难点) 3.会运用运算性质进行一些简单的化简与证明(易混点).[基础·初探]教材整理1 对数的运算性质阅读教材P64至P65“例3”以上部分,完成下列问题.对数的运算性质:如果a>0,且a≠1,M>0,N>0,那么:(1)log a(M·N)=log a M+log a N;(2)log a MN=log a M-log a N;(3)log a M n=nlog a M__(n∈R).判断(正确的打“√”,错误的打“×”)(1)积、商的对数可以化为对数的和、差.( )(2)log a xy=log a x·log a y.( )(3)log a(-2)3=3log a(-2).( )【解析】(1)√.根据对数的运算性质可知(1)正确;(2)×.根据对数的运算性质可知log a xy=log a x+log a y;(3)×.公式log a M n=n log a M(n∈R)中的M应为大于0的数.【答案】(1)√(2)×(3)×教材整理2 换底公式阅读教材P 65至P 66“例5”以上部分,完成下列问题. 对数换底公式:log a b =logcblogca (a >0,且a ≠1,b >0,c>0,且c ≠1); 特别地:log a b ·log b a =1(a >0,且a ≠1,b >0,且b ≠1).计算:log 29·log 34=________.【解析】 由换底公式可得log 29·log 34=2lg 3lg 2·2lg 2lg 3=4. 【答案】4[小组合作型](1)lg 14-2lg 73+lg 7-lg 18; 【导学号:97030098】 (2)2lg 2+lg 32+lg 0.36+2lg 2;(3)log 34273+lg 25+lg 4+7log 72; (4)2log 32-log 3329+log 38-52log 53.【精彩点拨】 当对数的底数相同时,利用对数运算的性质,将式子转化为只含一种或少数几种真数的形式再进行计算.【自主解答】 (1)法一 原式=lg (2×7)-2(lg 7-lg 3)+lg 7-lg (32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.法二 原式=lg 14-lg ⎝ ⎛⎭⎪⎫732+lg 7-lg 18=lg 14×7⎝ ⎛⎭⎪⎫732×18=lg 1=0.(2)原式=2lg 2+lg 32+lg 36-2+2lg 2=错误!=错误!=错误!.(3)原式=log 33343+lg (25×4)+2=log 33-14+lg 102+2=-14+2+2=154. (4)原式=2log 32-(log 325-log 39)+3log 32-5log 532 =2log 32-5log 32+2log 33+3log 32-9=2-9=-7.1.利用对数性质求值的解题关键是化异为同,先使各项底数相同,再找真数间的联系. 2.对于复杂的运算式,可先化简再计算;化简问题的常用方法:①“拆”:将积(商)的对数拆成两对数之和(差);②“收”:将同底对数的和(差)收成积(商)的对数.[再练一题]1.求下列各式的值: (1)lg 25+lg 2·lg 50;(2)23lg 8+lg 25+lg 2·lg 50+lg 25.【解】 (1)原式=lg 25+(1-lg 5)(1+lg 5)=lg 25+1-lg 25=1. (2)23lg 8+lg 25+lg 2·lg 50+lg 25=2lg 2+lg 25+lg 2(1+lg 5)+2lg 5=2(lg 2+lg 5)+lg 2 5+lg 2+lg 2·lg 5=2+lg 5(lg 5+lg 2)+lg 2=2+lg 5+lg 2=3.一种放射性物质不断变化为其他物质,每经过一年剩余的质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13(结果保留1个有效数字)?(lg 2≈0.301 0,lg 3≈0.477 1)【精彩点拨】 由题目可知经过一年物质剩余的质量约是原来的75%,由此首先找到剩余量与年数的关系,再利用对数计算.【自主解答】 设物质的原有量为a ,经过t 年,该物质的剩余量是原来的13,由题意可得a ·0.75t =13a ,∴⎝ ⎛⎭⎪⎫34t =13,两边取以10为底的对数得lg ⎝ ⎛⎭⎪⎫34t=lg 13,∴t(lg 3-2lg 2)=-lg 3, ∴t =-lg 3lg 3-2lg 2≈0.477 12×0.301 0-0.477 1≈4(年).解对数应用题的步骤[再练一题]2.地震的震级R 与地震释放的能量E 的关系为R =23(lgE -11.4).根据英国天空电视台报道,英格兰南部2007年4月28日发生地震,欧洲地震监测站称,地震的震级为5.0级,而2011年3月11日,日本本州岛发生9.0级地震,那么此次地震释放的能量是5.0级地震释放能量的________倍.【解】 设9.0级地震所释放的能量为E 1,5.0级地震所释放的能量为E 2.由9.0=23(lg E 1-11.4),得lg E 1=32×9.0+11.4=24.9. 同理可得lg E 2=32×5.0+11.4=18.9, 从而lg E 1-lg E 2=24.9-18.9=6.故lg E 1-lg E 2=lg E1E2=6,则E1E2=106=1 000 000,即9.0级地震释放的能量是5.0级地震释放能量的1 000 000倍.[探究共研型]探究1 假设log25log23=x ,则log 25=xlog 23,即log 25=log 23x ,从而有3x =5,进一步可以得到什么结论?【提示】 进一步可以得到x =log 35,即log 35=log25log23.探究2 由探究1,你能猜测logcblogca 与哪个对数相等吗?如何证明你的结论?【提示】 logcb logca =log a b .假设logcblogca =x ,则log c b =xlog c a ,即log c b =log c a x ,所以b =a x ,则x =log a b ,所以logcblogca =log a b.(1)已知log 1227=a ,求log 616的值;(2)计算(log 2125+log 425+log 85)(log 52+log 254+log 1258)的值.【导学号:02962014】【精彩点拨】 各个对数的底数都不相同,需先统一底数再化简求值. 【自主解答】 (1)由log 1227=a ,得3lg 32lg 2+lg 3=a ,∴lg 2=3-a2a lg 3. ∴log 616=lg 16lg 6=4lg 2lg 2+lg 3=4×3-a 2a1+3-a 2a=错误!. (2)法一 原式=⎝ ⎛⎭⎪⎫log253+log225log24+log25log28·log 52+log54log525+log58log5125=⎝ ⎛⎭⎪⎫3log25+2log252log22+log253log22log 52+2log522log55+3log523log55=⎝ ⎛⎭⎪⎫3+1+13log 25·(3log 52) =13log 25·log22log25=13.法二 原式=⎝ ⎛⎭⎪⎫lg 125lg 2+lg 25lg 4+lg 5lg 8lg 2lg 5+lg 4lg 25+lg 8lg 125=⎝ ⎛⎭⎪⎫3lg 5lg 2+2lg 52lg 2+lg 53lg 2⎝ ⎛⎭⎪⎫lg 2lg 5+2lg 22lg 5+3lg 23lg 5 =⎝ ⎛⎭⎪⎫13lg 53lg 2⎝ ⎛⎭⎪⎫3lg 2lg 5=13. 法三 原式=(log 2153+log 2252+log 2351)·(log 512+log 5222+log 5323)=⎝ ⎛⎭⎪⎫3log25+log25+13log25(log 52+log 52+log 52)=3×⎝ ⎛⎭⎪⎫3+1+13log 25·log 52=3×133=13.1.在利用换底公式进行化简求值时,一般情况下是根据题中所给对数式的具体特点选择恰当的底数进行换底,如果所给的对数式中的底数和真数互不相同,我们可以选择以10为底数进行换底.2.在运用换底公式时,还可结合底数间的关系恰当选用一些重要的结论,如log a b ·log b a =1,log a b ·log b c·log c d =log a d ,log a m b n =n m log a b ,log a a n =n ,等,将会达到事半功倍的效果.[再练一题]3.求值:log 225·log 3116·log 519=________.【解析】 原式=log 252·log 32-4·log 53-2=2lg 5lg 2·-4lg 2lg 3·-2lg 3lg 5=16. 【答案】 161.若a >0,且a ≠1,x ∈R ,y ∈R ,且xy >0,则下列各式不恒成立的是( ) ①log a x 2=2log a x ;②log a x 2=2log a |x |; ③log a (xy )=log a x +log a y ; ④log a (xy )=log a |x |+log a |y |. A .②④ B .①③ C .①④D .②③【解析】 ∵xy >0,∴①中,若x <0,则不成立;③中,若x <0,y <0也不成立,故选B . 【答案】 B2.lg 2516-2lg 59+lg 3281等于( ) A .lg 2 B .lg 3 C .lg 4D .lg 5【解析】 lg 2516-2lg 59+lg 3281=lg ⎝ ⎛⎭⎪⎫2516÷2581×3281=lg 2.故选A .【答案】 A3.(2016·宝鸡高一检测)已知log a 2=m ,log a 3=n ,则log a 18=________.(用m ,n 表示) 【解析】 log a 18=log a (2×32)=log a 2+log a 32=log a 2+2log a 3=m +2n . 【答案】 m +2n4.计算(lg 2)2+lg 2·lg 50+lg 25=________. 【解析】 原式=(lg 2)2+lg 2·(1+lg 5)+2lg 5 =lg 2(1+lg 5+lg 2)+2lg 5=2lg 2+2lg 5=2. 【答案】 25.已知log 189=a ,18b =5,求log 3645. 【导学号:97030099】 【解】 法一 ∵log 189=a ,18b =5,即log 185=b , 于是log 3645=log1845log1836=错误!=错误!=错误!=错误!. 法二 ∵log 189=a ,18b =5, 即log 185=b .于是log 3645=错误!=错误!=错误!.法三 ∵log 189=a ,18b =5,∴lg 9=alg 18,lg 5=blg 18. ∴log 3645=lg 45lg 36=错误!=错误!=错误!=错误!.。
(2019新版)高中数学人教A 版必修一 第二章 一元二次函数、方程和不等式2.1 等式与不等式性质不等式的概念我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系.含有这些不等号的式子叫做不等式. 考点一:列不等式例1:完成一项装修工程,请木工共需付工资每人500无,请瓦工共需付工资每人400元,现有工人工资预算20 000元,设木工x 人,瓦工y 人,则工人满足的关系式是( ) A .5x +4y <200 B .5x +4y ≥200 C .5x +4y =200D .5x +4y ≤200解析:选D 据题意知,500x +400y ≤20 000,即5x +4y ≤200,故选D.练习:某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式(组)表示就是( ) A.⎩⎪⎨⎪⎧x ≥95y ≥380z >45 B.⎩⎪⎨⎪⎧ x ≥95y >380z ≥45 C.⎩⎪⎨⎪⎧x >95y >380z >45D .⎩⎪⎨⎪⎧x ≥95y >380z >45解析:选D 由题中x 不低于95即x ≥95,y 高于380即y >380,z 超过45即z >45. 作业:1.用不等式(组)表示下列问题中的不等关系: (1)限速80 km/h 的路标; (2)桥头上限重10 吨的标志;(3)某酸奶的质量检查规定,酸奶中脂肪的含量f 应不多于2.5%,蛋白质的含量p 不少于2.3%.解:(1)设汽车行驶的速度为v km/h ,则v ≤80. (2)设汽车的重量为ω吨,则ω≤10.(3)⎩⎨⎧f ≤2.5%,p ≥2.3%.问题1:怎样判断两个实数a、b的大小?提示:若a-b是正数,则a>b;若a-b是负数,则a<b;若a-b是零,则a=b. 问题2:你能否由问题1得出两个实数比较大小的方法?提示:能.通过两个实数作差,判断差的正负比较大小.比较两个实数a、b大小的依据考点二:比较两数(式)的大小例2:比较下列各组中两个代数式的大小:(1)x2+3与2x;(2)已知a,b为正数,且a≠b,比较a3+b3与a2b+ab2的大小.x-12+2≥2>0,∴x2+3>2x.解:(1)(x2+3)-2x=x2-2x+3=()(2)(a3+b3)-(a2b+ab2)=a3+b3-a2b-ab2=a2(a-b)-b2(a-b)=(a-b)(a2-b2)=(a-b)2(a+b),∵a>0,b>0,且a≠b,∴(a-b)2>0,a+b>0.∴(a3+b3)-(a2b+ab2)>0,即a3+b3>a2b+ab2.练习:(1)若x≠-2且y≠1,则M=x2+y2+4x-2y的值与-5的大小关系是() A.M>-5 B.M<-5C.M≥-5 D.M≤-5解析:选A M-(-5)=x2+y2+4x-2y+5=(x+2)2+(y-1)2,∵x≠-2,y≠1,∴(x+2)2>0,(y-1)2>0,因此(x+2)2+(y-1)2>0.故M>-5. (2)比较x3+6x与x2+6的大小.解:(x3+6x)-(x2+6)=x3-x2+6x-6=x2(x-1)+6(x-1)=(x-1)(x2+6)∵x2+6>0.∴当x>1时,(x-1)(x2+6)>0,即x3+6x>x2+6.当x=1时,(x-1)(x2+6)=0,即x3+6x=x2+6.当x<1时,(x-1)(x2+6)<0,即x3+6x<x2+6.作业:2.(1)如果a >b ,那么c -2a 与c -2b 中较大的是________. 解析:c -2a -(c -2b)=2b -2a =2(b -a)<0. 答案:c -2b(2)已知a =x 3+y 3,b =x 2y+xy 2,其中x ,y 均为正数,则a ,b 的大小关系为 . 解:a =x 3+y 3,b =x 2y+xy 2,则a ﹣b =x 3+y 3﹣x 2y ﹣xy 2=x 2(x ﹣y )﹣y 2(x ﹣y )=(x ﹣y )(x 2﹣y 2)=(x ﹣y )2(x+y ),x ,y 均为正数,所以(x ﹣y )2≥0,x+y >0,所以(x ﹣y )2(x+y )≥0,即a ﹣b ≥0, 所以a ≥b .故答案为:a ≥b .例3:已知:﹣1<b <0,a <0,那么下列不等式成立的是( ) A .a >ab >ab 2B .ab 2>ab >aC .ab >a >ab 2D .ab >ab 2>a解:∵﹣1<b <0,a <0,∴ab >0,b <0<1.b 2<1.∴ab ﹣ab 2=ab (1﹣b )>0,ab 2﹣a =a (b 2﹣1)>0.∴ab >ab 2>a .故选:D .练习:已知实数a 、x 满足x <a <0,则a 2、x 2、ax 中的最大数为 .解:已知实数a 、x 满足x <a <0,由不等式的性质可得:x 2>a 2>0,ax >a 2>0,x 2>ax >0,所以x 2>ax >a 2>0,则a 2、x 2、ax 中的最大数为x 2,故答案为:x 2. 作业:3. 若-1<a <b <0,试比较1a ,1b ,a 2,b 2的大小.解:∵-1<a <b <0,取11,,23a b =-=-则2211112,3,,.49a b a b =-=-== ∴a 2>b 2>1a >1b .考点三:不等式的性质 (1)对称性:a>b ⇔b<a ; (2)传递性:a>b ,b>c ⇒a>c ; (3)可加性:a>b ⇒a +c>b +c. (4)可乘性:⎭⎬⎫a>b c>0⇒ac>bc ;⎭⎬⎫a>b c<0⇒ac<bc ; (5)同向可加性:⎭⎬⎫a>b c>d ⇒a +c>b +d ;(6)同向同正可乘性:⎭⎬⎫a>b>0c>d>0⇒ac>bd ; (7)正数乘方性:a>b>0⇒a n >b n (n ∈N ,n ≥2).例4:用不等号“>”或“<”填空:(1)如果a>b,c<d,那么a﹣c b﹣d;(2)如果a>b>0,c<d<0,那么ac bd;(3)如果a>b>0,那么;(4)如果a>b>c>0.那么.解:(1))如果a>b,c<d,那么a﹣c>b﹣d;(2)如果a>b>0,c<d<0,那么ac<bd;(3)如果a>b>0,那么<;(4)如果a>b>c>0.那么<.故答案为:>,<,<,<.练习:若a,b,c∈R且a>b,则下列不等式中一定成立的是()A.ac>bc B.(a﹣b)c2>0 C.D.﹣2a<﹣2b 解:∵a,b,c∈R且a>b,∴取c=0,可排除A,B;取a=1,b=﹣1可排除C.由不等式的性质知当a>b时,﹣2a<﹣2b,故D正确.故选:D.作业:4.已知:a,b,c,d∈R,则下列命题中必成立的是()A.若a>b,c>b,则a>cB.若a>-b,则c-a<c+bC.若a>b,c<d,则ac>bdD.若a2>b2,则-a<-b解析:选B选项A,若a=4,b=2,c=5,显然不成立,选项C不满足倒数不等式的条件,如a>b>0,c<0<d时,不成立;选项D只有a>b>0时才可以.否则如a=-1,b =0时不成立,故选B.例5:(多选)对于任意实数a,b,c,d,则下列命题正确的是()A.若ac2>bc2,则a>b B.若a>b,c>d,则a+c>b+dC.若a>b,c>d,则ac>bd D.若a>b,则>解:若ac2>bc2,则a>b,A对,由不等式同向可加性,若a >b ,c >d ,则a +c >b +d ,B 对, 当令a =2,b =1,c =﹣1,d =﹣2,则ac =bd ,C 错, 令a =﹣1,b =﹣2,则,D 错.故选:AB .练习:(多选)若b <a <0列结论正确的是( ) A .a 2<b 2 B .ab <b 2 C .()b <()aD .+>2解:A .∵b <a <0,∴﹣b >﹣a >0,∴b 2>a 2,正确; B .∵b <a <0,∴b 2>ab ,正确; C .∵,b <a ,∴,因此C 不正确;D .∵b <a <0,∴,,∴,正确.故选:ABD . 作业:5. (多选)若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 都成立的是( ) A .ab ≤1B .+C .a 2+b 2≥2D .a 3+b 3≥3解:根据a >0,b >0,a +b =2,取a =b =1,则BD 不成立,再取31,,22a b ==验证,故AC 正确.故选:AC .考点四:利用不等式的性质求范围例6:已知2<a <3.﹣2<b <﹣1,求2a+b 的取值范围. 解:∵2<a <3.﹣2<b <﹣1,∴4<2a <6,∴2<2a+b <5. 练习:设-1<a <1,﹣3<b <2,求23ba -的取值范围. 解析: -2<2a <2, 21,33b -<<21,33b -<-<82 3.33ba -<-< 作业:6.已知1<a <4,2<b <8.试求2a +3b 与a -b 的取值范围. 解:∵1<a <4,2<b <8,∴2<2a <8,6<3b <24∴8<2a +3b <32.∵2<b <8,∴-8<-b <-2.又∵1<a <4,∴1+(-8)<a +(-b)<4+(-2),即-7<a -b <2.故2a +3b 的取值范围是8<2a +3b <32,a -b 的取值范围是-7<a -b <2考点五:利用不等式的性质证明例7:已知a >b >0,c <d <0,e <0,求证:e a -c >eb -d.证明: ∵c <d <0,∴-c >-d >0,又∵a >b >0,∴a +(-c)>b +(-d)>0, 即a -c >b -d >0,∴0<1a -c <1b -d ,又∵e <0,∴e a -c >eb -d .练习:已知a >b ,m >n ,p >0,求证:n -ap <m -bp.证明:∵a >b ,又p >0,∴ap >bp.∴-ap <-bp ,又m >n ,即n <m. ∴n -ap <m -bp. 作业:7.(1)a <b <0,求证:b a <ab ;(2)已知a >b ,1a <1b,求证:ab >0.证明:(1)由于b a -a b =b 2-a 2ab =(b +a )(b -a )ab,∵a <b <0,∴b +a <0,b -a >0,ab >0,∴(b +a )(b -a )ab <0,故b a <ab.(2)∵1a <1b ,∴1a -1b <0,即b -a ab<0,而a >b ,∴b -a <0,∴ab >0.。
[课时作业]
[A 组 基础巩固]
1.如果某林区森林木材蓄积量每年平均比上一年增长11.3%,经过x 年可以增长到原来的y 倍,则函数y =f(x)的图象大致为( )
解析:y =(1+11.3%)x =1.113x .
答案:D
2.设函数f(x)=⎩⎪⎨⎪⎧ 2x , x<0,
g (x ), x>0.
若f(x)是奇函数,则g(2)的值是( ) A .-14
B .-4 C.14 D .4
解析:由题设知g(2)=f(2)=-f(-2)=-2-2=
-122=-14
. 答案:A
3.函数y =2-x +1+2的图象可以由函数y =⎝ ⎛⎭
⎪⎪⎫12x 的图象经过怎样的平移得到
( )
A .先向左平移1个单位,再向上平移2个单位
B .先向左平移1个单位,再向下平移2个单位
C .先向右平移1个单位,再向上平移2个单位
D .先向右平移1个单位,再向下平移2个单位
解析:y =2-x +1+2=⎝ ⎛⎭⎪⎪⎫12x -1+2,设f(x)=⎝ ⎛⎭
⎪⎪⎫12x , 则f(x -1)+2=⎝ ⎛⎭⎪⎪⎫12x -1+2,要想得到y =2-x +1+2的图象,只需将y =⎝ ⎛⎭
⎪⎪⎫12x 图象先向右平移1个单位,再向上平移2个单位. 答案:C
4.若定义运算a ⊙b =⎩⎪⎨⎪⎧ a ,a<b ,
b ,a ≥b ,
则函数f(x)=3x ⊙3-x 的值域是( ) A .(0,1]
B.[1,+∞) C .(0,+∞) D .(-∞,+∞) 解析:解法一:当x>0时,3x >3-x ,f(x)=3-x , f(x)∈(0,1);当x =0时,f(x)=3x =3-x =1;
当x<0时,3x <3-x ,f(x)=3x ,f(x)∈(0,1).
综上,f(x)的值域是(0,1].
解法二:作出f(x)=3x ⊙3-x 的图象,如图.
可知值域为(0,1].
答案:A。