人教版数学六年级上册-4比-例2按比例分配
- 格式:ppt
- 大小:1.33 MB
- 文档页数:14
人教版小学数学六年级上册第四单元《比的应用》教学设计一、教学内容人教版数学六年级上册第四单元54页例2《比的应用》。
二、教学目标1.知识层面:让学生了解比在生活中的广泛应用,掌握按比分配应用题的结构特点和解题思路,能运用这个知识来解决日常工作、生活中一些简单的实际问题。
2.能力方面:培养学生观察、归纳和语言表达能力及分析问题、解决问题的能力,发扬尝试、合作、协调精神,促进思维能力的发展。
3.情感方面:结合具体情境,发现并提出数学问题,能尝试着从不同角度探索出解决问题的有效方法,发散学生的思维。
培养学生认真审题、独立思考、自觉检验的好习惯,增强学生学好数学的信心。
三、教学重点掌握按比分配问题的结构特点和解题思路,能正确、灵活地解决此类实际问题。
四、教学难点正确分析数量关系,灵活解决按比分配的实际问题,能尝试着从不同角度探索出解决问题的有效方法,发散学生的思维。
五、教学方法通过小组合作探究,借助多媒体,采用“分析——讨论——归纳——总结”的方式尝试解决。
六、教学过程(一)创设情境,初步感知。
老师提问:1.平时学生喜欢喝奶茶成分3:7引入,让学生说出各种成分所占的分率。
2.学校把种植42棵小树苗的任务分配给六年级人数相等的两个班,怎样分配才合理?(平均分配)(二)自主探索,合作交流。
1.提出关于配制稀释液的实际问题,引导学生理解“稀释液”的意思。
2.出示例2,在情境中理解按比例分配。
让学生小组合作,交流探索的形式,帮助理解、掌握分配问题的结构特点。
接下来引导学生分析题中数量关系,重点思考讨论:从1:4这个比中,你能知道什么?鼓励小组合作尝试多种方法解答,重点理解按比分配的方法。
(1)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。
)(2)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml 的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。
六年级上册第四单元《比》疑难题解答【例1】已知甲:乙=3:4,乙:丙=3:2,那么甲、乙、丙三个数的大小关系是()。
A.甲〉乙>丙B.丙>乙>甲C.乙〉甲>丙D.甲二乙二丙解析:本题考查的知识点是比的基本性质解答连比问题。
解答时,需将两个不同的比中共有的量转化为同一个数。
甲:乙=3:4=9:12;乙:丙=3:2=12:8,则甲:乙:丙=9:12:8,所以,乙〉甲>丙,选C。
3【例2】苹果质量的云与梨质量的耳一样多,苹果与梨质量的比是多少?解析:本题考查学生对比的意义的理解以及和分数的关系。
根据题意:苹果质3?量的才与梨质量的耳一样多,我们把苹果和梨变成相等的份数,即苹果质量的66言与梨质量的5—样多,可以直接看出它们的比是8:9。
本题用线段图表示更加形象直观。
苹果I——I——I————I————I——一I梨I——I——_I——I——I——I~———I3626解答:4=?7=?苹果:梨=8:9【例3】甲、乙、丙三位同学分别调制了一杯蜂蜜水。
甲调制时用了40亳升的蜂蜜,200毫升水;乙调制时用了5小杯蜂蜜,20小杯水;丙调制时用的水是蜂蜜的7倍。
()调制的蜂蜜水最甜。
A.甲B.乙C.丙D.无法判断解析:本题考查的知识点是利用比的意义解决实际问题。
甲调制的蜂蜜水中,蜂蜜与水的比是40:200=1:5二!;乙调制的蜂蜜水中,蜂蜜与水的比是55:20=1:4=1;丙调制的蜂蜜水中,蜂蜜与水的比是1:7二上。
所以, 47457乙调制的蜂蜜水最甜。
解答:B解答:C【例4】成年人的足长与身高的比大约是1:7。
某小区发生了一起盗窃事件,在犯罪现场留下了一个长26厘米的足印。
经过周密侦察,锁定了四名犯罪嫌疑人,下表是这四名犯罪嫌疑人的身高记录。
犯韭嫌疑人王某张某刘某李某身高(匣米)180175169160请你根据以上信息计算说明:这四人中,谁的嫌疑最大?解析:本题考查的知识点是利用比的知识解决实际问题。
解答时,先根据“成年人的足长与身高的比大约是1:7”,可以看作成年人的身高是足长的7倍来推算出犯罪嫌疑人的身高。
第4讲比(思维导图+知识梳理+例题精讲+易错专练)一、思维导图二、知识点梳理知识点一:比的意义和各个部分的名称1、比:两个数相除也叫两个数的比;2、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
3、比的读法、写法:a比b记作a:b,读作a比b。
4、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20知识点二:比的基本性质和化简比1、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
2、化简比化简之后结果还是一个比,不是一个数。
(1)用比的前项和后项同时除以它们的最大公因数。
(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)两个小数的比,可以先把小数比化成整数比,再按整数比的化简方法化简。
知识点三:比的应用按比例分配问题的解决方法:1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙(2)甲比乙多(少)几分之几?4、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
两个量的关系画两条线段图,部分和整体的关系画一条线段图。
三、例题精讲考点一:比的意义、比各部分的名称【典型一】一根绳子,用去,用去的和剩下的比是3:2,剩下的是总长度的。
【分析】把一根绳子总长度看作5份,用去,也就是用去5×=3份。
据此可求出用去的和剩下的比,再用除法求出剩下的是总长度的几分之几。
【解答】解:5×=3(份)5﹣3=2(份)用去的和剩下的比是3:2。
4.2按比例分配(教案)20232024学年数学六年级上册当我站在讲台上,看着台下那一张张充满好奇和期待的笑脸,我知道,今天我要教授的知识将会点亮他们心中的数学火花。
我手持教材,翻到了4.2按比例分配这一章节,我知道,这将是一堂充满挑战和收获的课程。
教学内容:今天我们要学习的章节是数学六年级上册的4.2按比例分配。
这部分内容主要介绍了按比例分配的概念和应用。
我们会通过具体的例题来理解和掌握如何将总量按照一定的比例分配到各个部分。
教学目标:通过本节课的学习,我希望学生们能够理解按比例分配的含义,掌握按比例分配的计算方法,并能够将这一方法应用到实际问题中。
教学难点与重点:在这一章节中,理解按比例分配的原理和能够灵活运用是重点,也是难点。
学生们需要理解比例的概念,并能够将比例应用到实际的计算中。
教具与学具准备:为了帮助学生们更好地理解按比例分配,我准备了一些实际的物品,如苹果和糖果,以及一些图表和计算器。
教学过程:我用一个实践情景引入,我拿出了一篮子苹果,告诉学生们我们要将这些苹果按照一定的比例分配给一群小朋友。
我让学生们思考,如果我们要将这些苹果平均分给小朋友们,我们应该怎么做?然后,我给出了一个具体的例题,我告诉学生们,如果有一篮子糖果,总共有300颗,我们要将这些糖果按照2:3的比例分配给两个小组,我们应该怎么计算每个小组应该得到多少糖果?我让学生们分小组讨论,并给出了计算方法。
我引导学生们通过实际操作和计算,得出了答案。
在学生们掌握了按比例分配的计算方法后,我给出了随堂练习,我让学生们自己设定比例和总量,自己计算出各部分的数量。
板书设计:我在黑板上写下了按比例分配的公式,并给出了具体的例题和答案。
作业设计:我给学生们布置了这样的作业:假设有一群小朋友,其中有6个男孩和4个女孩,我们要将这些孩子按照男孩和女孩的比例分配到两个房间,每个房间应该有多少男孩和女孩?课后反思及拓展延伸:这节课结束后,我进行了反思。
人教版六年级上册数学第四单元《比》的知识点总结+相关练习!一、 比的意义1、两个数相除又叫做两个数的比。
“:”是比号;读作“比”。
比号前面的数叫做比的前项;比号后面的数叫做比的后项。
比的后项不能是零。
例如21:7 其中21是前项;7是后项。
2、比的前项除以后项所得的商;叫做比值。
比值通常用分数表示;也可以用小数表示;有时也可能是整数。
;如:甲∶乙=5∶6;乙∶丙3;因为[6;4]=12;所以5∶ 6=10∶ 12; 4∶3=12∶9;得到甲∶乙∶丙=10∶12∶9。
3、比与分数、除法之间的关系。
比同除法比较:比的前项相当于被除数;后项相当于除数;比值相当于商。
比同分数相比较:比的前项相当于分子;后项相当于分母;比值相当于分数值。
二、比的基本性质1、比的前项和后项同时乘或除以相同的数(0除外);比值不变;这叫做分数的基本性质。
2、比的前项和后项是互质数的比;叫做最简单的整数比。
把两个数的比化简成最简单的整数比叫做化简比;也叫做比的化简。
3、整数比的化简方法:把比的前项和后项同时除以它们的最大公因数。
例如:180:120=(180÷60):(120÷60)=3:24、分数比的化简方法:比的前项和后项同时乘它们分母的最小公倍数;变成整数比;再进行化简:例如:61:92=(61×18):(92×18)=3:4 5、小数比的化简方法:把比的前项和后项的小数点同时向右移动相同的位数;变成整数比;再化简。
例如:0.75:0.2=(0.75×100):(0.2×100)=75:20=15:46、一个比中;既有小数;又有分数;可以把小数化成分数;按照化简分数比的方法进行化简;也可以把分数化成小数;按照化简小数比的方法进行化简。
例如: 0.5:53=21:53=5:6 0.5:52=0.5:0.4=5:4 三、求比值和化简比的比较1.目的不同。
求比值就是求比的前项除以后项所得的商;而化简比是把两个数的比化成最简单的整数比;也就是化简后的比要符合两个条件;一是比的前、后项都应是整数;二是前、后项的两个数要互质。
第九讲比的应用一、知识梳理比的应用:按比例分配:二、方法归纳(1)按比例按分配的应用题:总量÷总分数=每一份的数(2)对于已知“一个长方体的棱长总和是120厘米,长、宽、高的比是6:5:4,”因为长方体的棱长和是由 4 条长、4 条宽、4 条高组成的,我们可以先算出一条长、一条宽、一条高的长度和。
又因为长、宽、高的比是 6:5:4,将长、宽、高的和 30 厘米按比例分配,知道了长、宽、高,我们就不难求出长方体的体积了三、课堂精讲(一)比的应用:按比例分配的应用题1.我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。
这种方法通常叫按比例分配。
2.一瓶500ml 的稀释液,其中浓缩液和水的体积分别是100ml 和400ml,_ ?(补充问题并解答)例1 (1)某班有男生25 人,女生20 人。
①男生人数与女生人数的比是( )。
②男生人数占全班人数的,男生人数与全班人数的比是( )。
③女生人数占全班人数的,女生人数与全班人数的比是( )。
(2)4∶5的前项扩大4 倍,要使比值不变,后项应增加( )。
(3)圆周长与它的面积的比是( )∶();a与它的倒数的比是( )∶()。
例 2 一瓶 500ml 的稀释液,其中浓缩液和水的体积的比是 1:4,其中浓缩液和水的体积的分别是多少?分析:“浓缩液和水的体积1:4”,就是说在500ml的稀释液,浓缩液占份,水的体积占份,一共是份,浓缩液占稀释液的(填分数)水的体积占稀释液的(填分数)【规律方法】理解按比例分配的应用题。
【搭配课堂训练题】【难度分级】 B1. 公园里有月季花和菊花共 400 盆,月季花和菊花的盆数比是5∶3,公园里月季花和菊花各有多少盆?(二)比的应用的变形例3 学校把栽280 棵树的任务,按照六年级三个班的人数分配给各班。
《按比分配》说课稿【教学目标】过程与方法:能运用比的意义解决按照一定的比进行分配的实际问题。
情感、态度与价值观:进一步体会比的意义,感受比在生活中的广泛应用,提高解决问题的能力。
知识与技能:培养学生运用数学解决生活中问题的能力。
【教学重难点】重点:利用比的知识解决相关实际问题。
难点:根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。
【导学过程】【自主预习】1、我们在教学中学过平均分,平均分的结果有什么特点?在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。
这种方法通常叫按比例分配。
2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml 和400ml,__________?(补充问题并解答)导入1.课前调查,上课汇报。
课前布置学生调查生活中某些事物各组成部分的比,上课时让学生汇报调查情况以及是如何获得这些信息的。
例如:妈妈洗衣服时,30克洗涤剂要兑5千克水。
(投影出示)提问:从这个信息中,你能知道什么?学生可能有以下回答。
(1)洗涤剂与水的比是3∶500。
(2)把洗衣液的总量平均分成503份,洗涤剂占3份,水占500份。
2.揭示课题。
在工业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配,这种分配的方法通常叫做按比例分配。
板书课题:比的应用。
各位领导、老师们:你们好!今天,我说课的内容是《按比分配》。
首先,是我对本节教材内容的分析。
一、说教材《按比分配》是人教版6年级上册4单元第3节的内容,是在学生学习了比的有关知识的基础上进行教学的,是前面比的相关知识的应用。
教材按问题解决的三个步骤编排,旨在使学生经历问题解决的完整过程,尤其是养成审题和反思的习惯。
二、教学目标根据课程标准的相关要求和学生已有的知识基础和认知能力,确定以下教学目标:1、通过解决典型问题,了解比在生活中的广泛应用,理解按一定比来分配一个数量的意义。
六年级上数学教案按比例分配人教新课标教学内容本节教学内容为六年级上册数学“按比例分配”单元,依据人教新课标进行设计。
学生将通过本课的学习,理解和掌握按比例分配的概念、方法和应用,进一步巩固对比例的理解,提高解决实际问题的能力。
教学目标1. 知识与技能:使学生理解按比例分配的意义,掌握按比例分配的方法,并能运用该方法解决实际问题。
2. 过程与方法:通过实例分析,培养学生运用数学知识解决实际问题的能力,提升逻辑思维和数学应用能力。
3. 情感态度与价值观:激发学生对数学学习的兴趣,培养合作学习的意识和习惯,增强解决问题的自信心。
教学难点1. 比例分配的概念理解,特别是比例关系的确定。
2. 按比例分配的计算方法,尤其是比例尺的应用。
3. 解决实际问题时,如何正确设定比例关系和应用按比例分配的方法。
教具学具准备1. 教具:多媒体教学设备、按比例分配教学课件。
2. 学具:直尺、圆规、比例尺、练习本、计算器。
教学过程1. 导入新课:通过日常生活实例,如分配水果、糖果等,引出按比例分配的概念,激发学生兴趣。
2. 新课讲授:详细讲解按比例分配的定义、方法及步骤,结合具体例子进行说明。
3. 实例演练:让学生分组进行按比例分配的练习,教师巡回指导,解答学生疑问。
4. 巩固练习:通过课堂练习,让学生独立完成按比例分配的题目,加深理解。
5. 互动讨论:组织学生讨论按比例分配在生活中的应用,分享各自的心得体会。
板书设计板书设计应简洁明了,重点突出按比例分配的概念、方法和步骤,通过图表和示例来直观展示。
作业设计1. 基础练习:设计一些简单的按比例分配题目,帮助学生巩固基础知识。
2. 综合练习:设计一些应用性较强的题目,让学生运用按比例分配解决实际问题。
3. 拓展练习:提供一些稍有难度的题目,鼓励学有余力的学生挑战自我。
课后反思1. 教学内容是否覆盖了按比例分配的所有要点,学生是否掌握了必要的知识和技能。
2. 教学方法是否有效,是否能够吸引学生的注意力并激发他们的学习兴趣。
比的认识知识集结知识元比知识讲解知识点:比的意义,比与除法、分数的关系;一、比的意义1. 比的意义:两个数相除又叫做两个数的比.2. 在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.例如 15 :10 = 15÷10=(比值通常用分数表示,也可以用小数或整数表示)15 ∶ 10 =前项比号后项比值3. 比可以表示两个相同量的关系,即倍数关系.例:长是宽的几倍.也可以表示两个不同量的比,得到一个新量.例:路程÷速度=时间.二、比与除法、分数的关系1. 根据分数与除法的关系,两个数的比也可以写成分数形式.2. 比和除法、分数的联系:3. 比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系.4.根据比与除法、分数的关系,可以理解比的后项不能为0.5.体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系.三、比值1、求比值:用前项除以后项,结果最好是写为分数 .2、比值:相当于商,是一个数,可以是整数,分数,也可以是小数.知识点:比的基本性质一、比的基本性质:1.比的前项和后项同时乘或除以相同的数(0除外),比值不变.二、化简比:依据比的基本性质1.两个整数的比:用比的前项和后项同时除以它们的最大公因数.2.两个分数的比:用比的前项和后项同时乘分母的最小的公倍数,再按化简整数比的方法来化简.3.两个小数的比:先把小数化成整数,再按化简整数比的方法来化简.例如:15∶10 = 15÷10 === 3∶2 最简整数比是3∶2三、求比值:用求比值的方法:求比值的过程是通过前项除以后项,求出商.注意:最后结果要写成分数、小数或整数的形式.例如:15∶10 = 15÷10 ==(不能写成3:2)四、最简整数比:1.比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比.2.根据比的基本性质,可以把比化成最简单的整数比.3.比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位.知识点:按比例分配应用题一、按比例分配:1.按比例分配:把一个数量按照一定的比来进行分配.这种方法通常叫做按比例分配.二、按比例分配应用题:1.用分率解:按比例分配通常把总量看作单位一,即转化成分率.要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几.例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?1+4=5 糖占用25×得到糖的数量,水占用25×得到水的数量.2. 用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少.例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?糖和水的份数一共有1+4=5 一份就是25÷5=5 糖有1份就是5×1 水有4分就是5×4知识点:部分与部分的比转化为部分与整体的比部分与部分的比转化为部分与整体的比的方法:先求出所有部分之和,然后再根据比的意义进行比较即可.例如:甲数:乙数=2:3,求甲数:甲、乙两数之和=().应该先求出甲数和乙数之和,2+3=5,然后在进行相比即可.知识点:化连比问题三、连比的概念:三个量以及三个量以上的比的关系,叫做连比.比如:30:20:10 像这样的比叫做连比,其中30、10、20叫做连比的项.四、连比的性质:⑴如果a∶b=m∶n,b∶c=n∶k,则a∶b∶c=m∶n∶k;⑵如果k≠0,则a∶b∶c=ak∶bk∶ck=::利用连比的性质可以求连比,也可以化简连比.三、比”和“连比”得区别:1、比和连比是两个不同的概念,从意义上看比是表示两个数的倍数关系(或两个数相除).连比是两个以上数之间的各自所占的份数比,它不是以上两个数连除的关系.2、比和连比中的“项”也是不同的:3、从比值上看:比既能表示两个数的倍数关系,也可以求出比值.如:3:4的比值是,连比不是连除的意思,不可能求出商,也无法求出比值.四、连比的化法:例如:甲和乙的比是3∶4,乙和丙的比是6∶5,甲、乙、丙的连比应该是9∶12∶10.其中项统一过程如下:知识点:按比例分配问题进阶.一、按比例分配:按比例分配:把一个数量按照一定的比来进行分配.这种方法通常叫做按比例分配.二、按比例分配应用题:1、比的第一种应用:已知两个数量的差,两个或几个数的比,求这两个或这几个数量是多少?例如:六年级的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?解题思路:男生比女生多几份:7-5=2求每一份:20÷2=10(人)因此,男生有10×7=70(人),女生有10×5=50(人)2、比的第二中应用:转化连比解答按比分配的问题例如:一个学校篮球队和足球队人数之比为5:4,足球队和排球队之比为3:5.已知篮球队比足球队和排球队总和少34人,求各组人数.解题思路:转化连比:篮球队:足球队:排球队=15:12:20篮球队比足球对和排球对之和少几份:12+20-15=17每份人数:34÷17=2(人)篮球队:2×15=30(人)2×12=24(人)2×20=40(人)3、比的第三种应用:行程问题中的比的应用例如:客车和货车从A、B两地同时出发,速度比为3:4,相遇后继续前行,当货车到达A 地后,客车距B地还有20千米,求两地的距离.解题思路:同时出发,速度比等于路程比分析:相遇时,两车路程之和为A、B两地的距离.把A、B两地距离当坐单位“1”,货车到达A地时,恰好为“1”,客车行驶的占货车的,还有未行驶,因此全程为20÷=80(千米)4、比的第四种应用:列方程解决比的问题例如:哥哥和弟弟原有钱之比为7:5,如果哥哥给弟弟520元之后,弟弟和哥哥的钱数之比为4:3,现在哥哥有多少钱?解题思路:用常规方法解不出,考虑用方程解答解:设哥哥现在有x元,则弟弟现在有x,哥哥原有(x+520)元,弟弟原有(x-520)元,列方程为:x-520=(x+520)例题精讲比例1.一个三角形三个内角的度数比是1:1:2,这个三角形是( )三角形.【答案】等腰直角三角形例2.一块铁与锌的合金,铁占合金的,那么铁与锌的质量之比();合金的质量是锌的质量的()倍【答案】2:7例3.公园里柳树和杨树的棵数比是5∶3,柳树和杨树共40棵,柳树和杨树各有多少棵?【答案】柳树:25棵;杨树:15棵例4.甲数与乙数的比是3:4,乙数与丙数的比是6:7,甲数与丙数的比是多少?甲数、乙数与丙数三个数的比是多少?【答案】9:12:14.【解析】题干解析:根据连比的性质,进而求出甲数与丙数的比、甲数、乙数与丙数三个数的比,化简成最简整数比即可.例5.师徒二人共同加工一批零件,已知师傅与徒弟的工作效率的比是5:7,完成任务时,师傅比徒弟少做120个.这批零件共有多少个?(两种方法解答)【答案】720个【解析】题干解析:(1)由“工效比是5:7,”得出工作量的比也是5:7,把两人的工作量分别看作5份和7份,则相差7﹣5=2份,由此求出一份,进而求出(5+7)份表示的个数就是这批零件的个数.(2)用方程解答,设完成任务时,师傅完成了x 个,徒弟完成了120+x个,再把工作量相比就是5:7,列出方程求出师傅完成的个数,再求徒弟完成的个数,然后相加即可.当堂练习填空题练习1.甲乙两个小朋友做游戏,在一个边长1分米的正方形地上划地盘。