高三数学,一轮复习,人教B版 (文), 8.6 热点专题,——立体几何中,的热点问题 , 课件 (1)
- 格式:ppt
- 大小:1.16 MB
- 文档页数:42
2024年高考数学立体几何知识点总结立体几何是数学中的一个重要分支,也是高考数学中的重要内容之一。
在高考中,立体几何的知识点主要包括空间几何、立体图形的面积与体积等方面。
下面是对2024年高考数学立体几何知识点的总结,供考生参考。
一、空间几何1. 空间几何中的点、线、面的概念和性质。
点是没有长度、宽度和高度的,只有位置的大小,用字母表示。
线是由一组无限多个点构成的集合,用两个点的字母表示。
面是由无限多条线构成的,这些线共面且没有相交或平行关系。
2. 空间几何中的垂直、平行等概念和性质。
两条线在同一平面内,如果相交角为90°,则称两线垂直。
两条线没有相交关系,称两线平行。
3. 点到直线的距离的计算。
点到直线的距离等于该点在直线上的正交投影点的距离。
二、立体图形的面积与体积1. 立体图形的分类和性质。
立体图形包括球体、圆柱体、圆锥体、棱柱体、棱锥体等。
各种立体图形具有不同的性质,如球体表面上每一点到球心的距离都相等。
2. 立体图形的面积计算。
(1)球体的表面积计算公式:S = 4πr²,其中r为球的半径。
(2)圆柱体的侧面积计算公式:S = 2πrh。
(3)圆柱体的全面积计算公式:S = 2πrh + 2πr²。
(4)圆锥体的侧面积计算公式:S = πrl,其中r为圆锥底面半径,l为斜高。
(5)棱柱体的侧面积计算公式:S = ph,其中p为棱柱底面周长,h为高。
3. 立体图形的体积计算。
(1)球体的体积计算公式:V = 4/3πr³,其中r为球的半径。
(2)圆柱体的体积计算公式:V = πr²h。
(3)圆锥体的体积计算公式:V = 1/3πr²h。
(4)棱柱体的体积计算公式:V = ph。
(5)棱锥体的体积计算公式:V = 1/3Bh,其中B为底面积,h 为高。
三、立体几何的一般理论1. 点、线、面的位置关系。
在空间中,点、线、面可以相互相交、平行、垂直等。
第八章 立 体 几 何1.立体几何初步 (1)空间几何体①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.③会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④了解球、棱柱、棱锥、台的表面积和体积的计算公式.(2)点、直线、平面之间的位置关系①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理:·公理1:如果一条直线上的两点在同一个平面内,那么这条直线在此平面内.·公理2:过不在一条直线上的三点,有且只有一个平面.·公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.·公理4:平行于同一条直线的两条直线平行. ·定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理: ·平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.·一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.·一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直.·一个平面过另一个平面的垂线,则两个平面垂直.理解以下性质定理,并能够证明:·如果一条直线与一个平面平行,那么过该直线的任一个平面与此平面的交线和该直线平行.·两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行.·垂直于同一个平面的两条直线平行.·两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.③能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.2.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会简单应用空间两点间的距离公式. 3.空间向量与立体几何 (1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示. (3)掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.(4)理解直线的方向向量及平面的法向量. (5)能用向量语言表述线线、线面、面面的平行和垂直关系.(6)能用向量方法证明立体几何中有关线面位置关系的一些简单定理(包括三垂线定理).(7)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.§8.1 空间几何体的结构、三视图和直观图1.棱柱、棱锥、棱台的概念 (1)棱柱:有两个面互相______,其余各面都是________,并且每相邻两个四边形的公共边都互相______,由这些面所围成的多面体叫做棱柱.※注:棱柱又分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱.(2)棱锥:有一个面是________,其余各面都是A.棱柱的底面一定是平行四边形( 得到图解:还原正方体知该几何体侧视图为正方形,为实线,B 1C 的正投影为A 1D ,且B 1C 被遮挡为虚故选B.(2014·福建)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面________.解:所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.故填2π.已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为________.解:如图所示是实际图形和直观图.由图可知,A ′B ′=AB =a ,O ′C ′=12OC =34在图中作C ′D ′⊥A ′B ′,垂足为D ′,则C ′D ′O ′C ′=68a.各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是三棱柱 C.四棱锥解:该几何体的三视图由一个三角形,两个矩形组成,经分析可知该几何体为三棱柱,故选解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是解:D 选项的正视图应为如图所示的图形.故选积为20cm ________cm 解:由三视图可知,该几何体为三棱锥,此三棱锥的底面为直角三直角边长分别为5cm ,6cm ,三棱锥的高为则三棱锥的体积为V =13×12×5×6×h =20,解得4.对于空间几何体的考查,从内容上看,锥的定义和相关性质是基础,以它们为载体考查三视图、体积和棱长是重点.本题给出了几何体的三视图,要掌握三视图的画法“长对正、高平齐,宽相等”,不难将其还原得到三棱锥.(2014·北京)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为__________.解:该三棱锥的直观图如图所示,易知PB ⊥平面ABC ,则有PA =22+2,故最长棱为P A.类型三 空间多面体的直观图 如图是一个几何体的三视图,用斜二测画法画出它的直观图解:由三视图知该几何体是一个简单组合体,它的下部是一个正四棱台,上部是一个正四棱锥画法:(1)画轴.如图1,画x 轴、y 使∠xOy =45°,∠xOz =90°.图1画底面.利用斜二测画法画出底面′使OO ′等于三视图中相应高度,过的平行线′,Oy 的平行线O ′y ′,利用′画出底面A ′B ′C ′D ′.图2画正四棱锥顶点.在Oz 上截取点等于三视图中相应的高度.连接PA ′,PB ′,PC ′,PD ′D ,整理得到三视图表示的几何体2所示.点拨:根据三视图可以确定一个几何体的长、宽、高,再按照斜二测画法,建立x 轴、y 轴、z 轴,使∠xOy =45°,∠xOz =90°,确定几何体在x 轴、y 轴、z 轴方向上的长度,最后连线画出直观图.已知一个四棱锥的高为3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为( )A. 2B.6 2C.13D.2 2解:因为四棱锥的底面直观图是一个边长为1的正方形,该正方形的对角线长为2,根据斜二测画法的规则,原图底面的底边长为1,高为直观图中正方形的对角线长的两倍,即22,则原图底面积为S =22.因此该四棱锥的体积为V =13Sh =13×22×3=22.故选D.类型四 空间旋转体的直观图用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3cm ,求圆台的母线长.解:设圆台的母线长为l ,截得圆台的上、下底面半径分别为r ,4r.根据相似三角形的性质得, 33+l =r4r,解得 l =9. 所以,圆台的母线长为9cm .点拨:用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,设相关几何变量列方程求解.(2014·湖南)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4解:该几何体为一直三棱柱,底面是边长为6,8,10的直角三角形,侧棱为12,其最大球的半径为底面直角三角形内切圆的半径r ,由等面积法可得12×(6+8+10)·r =12×6×8,得r =2.故选B.1.在研究圆柱、圆锥、圆台的相关问题时,主要方法就是研究它们的轴截面,这是因为在轴截面中容易找到这些几何体的有关元素之间的位置关系以及数量关系.2.正多面体(1)正四面体就是棱长都相等的三棱锥,正六面体就是正方体,连接正方体六个面的中心,可得到一个正八面体,正八面体可以看作是由两个棱长都相等的正四棱锥拼接而成.(2)如图,在棱长为a 的正方体ABCD A 1B 1C 1D 1中,连接A 1B ,BC 1,A 1C 1,DC 1,DA 1,DB ,可以得到一个棱长为2a的正四面体A 1BDC 1,其体积为正方体体积的13.(3)正方体与球有以下三种特殊情形:一是球内切于正方体;二是球与正方体的十二条棱相切;三是球外接于正方体.它们的相应轴截面如图所示(正方体的棱长为a ,球的半径为R).3.长方体的外接球(1)长、宽、高分别为a ,b ,c 的长方体的体对角线长等于外接球的直径,即a 2+b 2+c 2=2R .(2)棱长为a 的正方体的体对角线长等于外接球的直径,即3a =2R .4.棱长为a 的正四面体(1)斜高为32a ;(2)高为63a ;(3)对棱中点连线长为22a ; (4)外接球的半径为64a ,内切球的半径为612a ;(5)正四面体的表面积为3a 2,体积为212a 3.5.三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,主视图反映了物体的长度和高度;俯视图反映了物体的长度和宽度;左视图反映了物体的宽度和高度.由此得到:主俯长对正,主左高平齐,俯左宽相等.6.一个平面图形在斜二测画法下的直观图与原图形相比发生了变化,注意原图与直观图中的“三变、三不变”.三变:坐标轴的夹角改变,与y 轴平行线段的长度改变(减半),图形改变.三不变:平行性不变,与x 轴平行的线段长度不变,相对位置不变.1.由平面六边形沿某一方向平移形成的空间几何体是( )A.六棱锥B.六棱台C.六棱柱D.非棱柱、棱锥、棱台的一个几何体解:平面六边形沿某一方向平移形成的空间几何体符合棱柱的定义,故选C.2.下列说法中,正确的是( ) A.棱柱的侧面可以是三角形B.若棱柱有两个侧面是矩形,则该棱柱的其它侧面也是矩形C.正方体的所有棱长都相等D.棱柱的所有棱长都相等 解:棱柱的侧面都是平行四边形,选项A 错误;其它侧面可能是平行四边形,选项B 错误;棱柱的侧棱与底面边长并不一定相等,选项D 错误;易知选项C 正确.故选C.3.将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括( )A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆锥D.一个圆柱、两个圆锥解:把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体包括一个圆柱、两个圆锥.故选D.4.(2014·江西)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )解:由直观图可知,该几何体由一个长方体和一个截角三棱柱组成,从上往下看,外层轮廓线是一矩形,矩形内部有一条线段连接两个三角形.故选B.5.(2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是( )A.棱柱B.棱台C.圆柱D.圆台解:由俯视图可知该几何体的上、下两底面为半径不等的圆,又∵正视图和侧视图相同,∴可判断其为旋转体.故选D.6.(2014·课标Ⅰ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6 2B.4 2C.6D.4解法一:如图甲,设辅助正方体棱长为4,三视图对应的多面体为三棱锥D ABC ,最长的棱为AD =6.解法二:将三视图还原为三棱锥D ABC ,如图若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于________.解:由正视图知,三棱柱是底面边长为的正三棱柱,所以底面积为2×3×2×1=6,所以其表面积为3.已知某一多面体内接于球构成一个简单组合体,该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球____________.解:由三视图可知该组合体为球内接棱长为∴正方体的体对角线为球的直径,,r=3.故填是截去一个角的长方体,试按图示的中几何体三视图如图b.如图1是某几何体的三视图,试说明该几何体的结构特征,并用斜二测画法画出它的直观图1中几何体是由上部为正六棱柱,下部为倒立的正六棱锥堆砌而成的组合体.斜二测画法:(1)画轴.如图2,画x轴,xOy=45°,∠xOz=∠yOz=90°画底面,利用斜二测画法画出底面ABCDEF 轴上截取O′,使OO′等于正六棱柱的高,过的平行线O′x′,Oy的平行线O′x′与O′y′画出底面A′.画正六棱锥顶点.在Oz上截取点P,使等于正六棱锥的高.成图.连接PA′,PB′,PC′,PD′,′,BB′,CC′,DD′,EE′,FF理得到三视图表示的几何体的直观图如图3注意:图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y轴的线段,长度为原来..某长方体的一条对角线长为7,在该长方体的正视图中,这条对角线的投影长为6,在该长方体的侧视图与俯视图中,这条对角线的投影长分和b,求ab的最大值.解:如图,则有1=7,DC1=6,1=a,AC=b,AB=x,AD=y,AA1=z,有图如图所示,其中与题中容器对应的水的高度解:由三视图知其直观图为两个圆台的组合体,水是匀速注入的,所以水面高度随时间变化的变化率先逐渐减小后逐渐增大,又因为容器的对称性,所以函数图象关于一点中心对称.故选C.§8.2 空间几何体的表面积与体积1.柱体、锥体、台体的表面积(1)直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=__________,S 正棱锥侧=__________, S 正棱台侧=__________(其中C ,C ′为底面周长,h 为高,h ′为斜高).(2)圆柱、圆锥、圆台的侧面积S 圆柱侧=________,S 圆锥侧=________,S 圆台侧=________(其中r ,r ′为底面半径,l 为母线长). (3)柱或台的表面积等于________与__________的和,锥体的表面积等于________与__________的和. 2.柱体、锥体、台体的体积 (1)棱柱、棱锥、棱台的体积 V 棱柱=__________,V 棱锥=__________,V 棱台=__________ (其中S ,S ′为底面积,h 为高). (2)圆柱、圆锥、圆台的体积V 圆柱=__________,V 圆锥=__________,V 圆台=__________(其中r ,r ′为底面圆的半径,h 为高). 3.球的表面积与体积(1)半径为R 的球的表面积S 球=________. (2)半径为R 的球的体积V 球=________,________).自查自纠:1.(1)Ch 12Ch ′ 12()C +C ′h ′(2)2πrl πrl π(r +r ′)l (3)侧面积 两个底面积 侧面积 一个底面积2.(1)Sh 13Sh 13h ()S +SS ′+S ′(2)πr 2h 13πr 2h 13πh ()r 2+rr ′+r ′23.(1)4πR 2 (2)43πR 3圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为( ) A.6π(4π+3)B.8π(3π+1)C.6π(4π+3)或8π(3π+1)D.6π(4π+1)或8π(3π+2) 解:分两种情况:①以边长为6π的边为高时,4π为圆柱底面周长,则2πr =4π,r =2,∴S 底=πr 2=4π,S 侧=6π×4π=24π2,S 表=2S 底+S 侧=8π+24π2=8π(3π+1);②以边长为4π的边为高时,6π为圆柱底面周长,则2πr =6π,r =3.∴S 底=πr 2=9π,S 表=2S 底+S 侧=18π+24π2=6π(4π+3).故选C. 正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( ) A.23 2 B. 2 C.23 D.43 2解:∵正三棱锥的侧面均为直角三角形,故侧面为等腰直角三角形,且直角顶点为棱锥的顶点,∴侧棱长为2,V =13×12×(2)2×2=23.故选C.(2014·安徽)一个多面体的三视图如图所示,则该多面体的体积是( )A.233B.476C.6D.7 解:如图示,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其体积V =8-2×13×12×1×1×1=233.故选A. 长方体ABCD A 1B 1C 1D 1的8个顶点在同一个球面上,且AB =2,AD =3,AA 1=1,则球面面积为________.单位:解:由三视图可知,该几何体为圆柱与圆锥的其体积V =π×12×4+13π×22×.类型一 空间几何体的面积问题 如图,在△ABC 中,∠ABC =45°,AD 是BC 边上的高,沿AD 把△ABD BDC =90°.若BD =1,求三棱锥D ABC解:∵折起前AD 是BC 边上的高,∴沿AD 把△ABD 折起后,AD ⊥DC ,AD ⊥又∠BDC =90°.=DA =DC =1,∴AB =BC =CA =2.从而S △DAB =S △DBC =S △DCA =12×1×1=12,ABC =12×2×2×sin60°=32. ∴三棱锥D ABC 的表面积S =12×3+. 的矩形,正视图高为4的等腰三角形,侧视图底边长为6,面积S.解:由已知可得该几何体是一个底面为矩形,,顶点在底面的射影是矩形中心的四棱锥PAD ,PBC 是全等的等腰三角形,边上的高为h 1=42+⎝ ⎛2PAB ,PCD 也是全等的等腰三角形,h 2=42+⎝ ⎛⎭⎪⎫622⎝ ⎛12×6×42+12×8×5空间旋转体的面积问题如图,半径为4的球O 柱,当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.设球的一条半径与圆柱相应的母线的夹角为=2π×4sin α=π4时,S 取最大值球的表面积与该圆柱的侧面积之差为32π.点拨:根据球的性质,内接圆柱上、下底面中心连线的中点为球心,且圆柱的上、下底面圆周均在球面上,球心和圆柱的上、下底面圆上的点的连线与母线的夹角相等,这些为我们建立圆柱的侧面积与上述夹角之间的函数关系提供了依据.圆台的上、下底面半径分别是10 cm和20 cm ,它的侧面展开图的扇环的圆心角是180°,那么圆台的侧面积是____________cm 2.解:如图示,设上底面周长为c.∵扇环的圆心角是180°,∴c =π·S A. 又∵c =2π×10=20π, ∴SA =20.同理SB =40. ∴AB =SB -SA =20,∴S 圆台侧=π(10+20)·AB=600π(cm 2).故填600π.类型三 空间多面体的体积问题如图,在多面体ABCDEF 中,已知ABCD是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23 B.33 C.43 D.32 解:如图,过A ,B 两点分别作AM ,BN 垂直于EF ,垂足分别为M ,N ,连接DM ,CN ,可证得DM ⊥EF ,CN ⊥EF ,则多面体ABCDEF 分为三部分,即多面体的体积V ABCDEF =V AMD BNC +V E AMD +V F BN C.依题意知AEFB 为等腰梯形.易知Rt △DME Rt △CNF ,∴EM =NF =12.又BF =1,∴BN =32. 作NH 垂直于BC ,则H 为BC 的中点,∴NH =22. ∴S △BNC =12·BC ·NH =24.∴V F BNC =13·S △BNC ·NF =224,V E AMD =V F BNC =224,V AMD BNC =S △BNC ·MN =24.∴V ABCDEF =23,故选A.点拨:求空间几何体体积的常用方法为割补法和等积变换法:①割补法:将这个几何体分割成几个柱体、锥体,分别求出柱体和锥体的体积,从而得出要求的几何体的体积;②等积变换法:特别的,对于三棱锥,由于其任意一个面均可作为棱锥的底面,从而可选择更容易计算的方式来求体积;利用“等积性”还可求“点到面的距离”.(2014·重庆)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.30解:由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥得到的.所以该几何体的体积为V =12×3×4×5-13×12×3×4×3=24.故选C. 类型四 空间旋转体的体积问题已知某几何体的三视图如图所示,其中,正(主)视图、侧(左)视图均是由三角形与半圆构成,俯视图由圆与其内接三角形构成,根据图中的数据可得此几何体的体积为( )A.2π3+12B.4π3+16C.2π6+16 D.2π3+12解:由三视图可得该几何体的上部是一个三棱锥,下部是半球,根据三视图中的数据可得V =12×43π×⎝ ⎛⎭⎪⎫223+13×⎝ ⎛⎭⎪⎫12×1×1×1=2π6+16.故选C.点拨:根据已知三视图想象出该几何体的直观图,然后分析该几何体的组成,再用对应的体积公式进行计算.(2014·课标Ⅱ)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727 B.59 C.1027 D.13解:原来毛坯体积为:π·32·6=54π(cm 3),由三视图知该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,故该零件的体积为:π·22·4+π·32·2=34π(cm 3),切削掉部分的体积为54π-34π=20π(cm 3),故切削掉部分的体积与原来毛坯体积的比值为20π54π=1027 .故选C.1.几何体的展开与折叠 (1)几何体的表面积,除球以外,都是利用展开图求得的,利用空间问题平面化的思想,把一个平面图形折叠成一个几何体,再研究其性质,是考查空间想象能力的常用方法.(2)多面体的展开图①直棱柱的侧面展开图是矩形;②正棱锥的侧面展开图是由一些全等的等腰三角形拼成的,底面是正多边形;③正棱台的侧面展开图是由一些全等的等腰梯形拼成的,底面是正多边形.(3)旋转体的展开图①圆柱的侧面展开图是矩形,矩形的长(或宽)是底面圆周长,宽(或长)是圆柱的母线长;②圆锥的侧面展开图是扇形,扇形的半径长是圆锥的母线长,弧长是圆锥的底面周长;③圆台的侧面展开图是扇环,扇环的上、下弧长分别为圆台的上、下底面周长.注:①圆锥中母线长l 与底面半径r 和展开图扇形中半径和弧长间的关系及符号容易混淆,同学们应多动手推导,加深理解.②圆锥和圆台的侧面积公式S 圆锥侧=12cl 和S 圆台侧=12(c ′+c )l 与三角形和梯形的面积公式在形式上相同,可将二者联系起来记忆.2.空间几何体的表面积的计算方法有关空间几何体的表面积的计算通常是将空间图形问题转化为平面图形问题,这是解决立体几何问题常用的基本方法.(1)棱柱、棱锥、棱台等多面体的表面积可以分别求各面面积,再求和,对于直棱柱、正棱锥、正棱台也可直接利用公式;(2)圆柱、圆锥、圆台的侧面是曲面,计算其侧面积时需将曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和;(3)组合体的表面积应注意重合部分的处理. 3.空间几何体的体积的计算方法(1)计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面特别是轴截面,将空间问题转化为平面问题求解.(2)注意求体积的一些特殊方法:分割法、补体法、还台为锥法等,它们是计算一些不规则几何体体积常用的方法,应熟练掌握.(3)利用三棱锥的“等体积性”可以解决一些点到平面的距离问题,即将点到平面的距离视为一个三棱锥的高,通过将其顶点和底面进行转化,借助体积的不变性解决问题.1.已知圆锥的正视图是边长为2的等边三角π B.8-π2 D.8-π4解:直观图为棱长为2的正方体割去两个底面14圆柱,其体积V =23-2×14×π×故选B.将长、宽分别为4和3的长方形ABCD 折成直二面角,得到四面体A BCD ,则四面体的外接球的表面积为( )B.50πC.5πD.10π解:由题设知AC 为外接球的直径,∴,S 表=4πR 2=4π×⎝ ⎛⎭⎪⎫522=25π.故选,N 是球O 半径OP 上的两点,且分别过N ,M ,O 作垂直于OP 的平面,得三个圆,则这三个圆的面积之比为( )∶6 B.3∶6∶8 ∶9 D.5∶8∶9解:设球的半径为R ,以N ,M 为圆心的圆的半,r 2.由题知M ,N 是OP 的三等分点,三个圆的面积之比即为半径的平方比,在球的轴截面的外接圆的半径R 2-r 2=63,的距离为2d =2d =13×34×23ABC ×2R =36,排除)一个六棱锥的体积为的正六边形,侧棱长都相等,则该________.设该六棱锥的高是h ,则V ,解得h =1.∴侧面三角形的高为,∴侧面积S =12×由题意可设直角梯形上底、下底和高为,它们分别为圆台的上、下底半径和高BC ⊥OA 于C ,则Rt ′B =4x -2x =2x ,+BC 2=(2x )2侧=[π(2x )2∶[π=2∶8∶9.·上海)底面边长为,其表面展开图是三角形P 1的边长及三棱锥的体积V.解:由正三棱锥P ABC 的性质及其表面展开图,B ,C 分别是△P 1P 2P .依三角形中位线定理可得4.易判断正三棱锥P 的正四面体,其体积为V =212×四面体体积公式可见8.1名师点津4)一个圆锥的底面半径为R =2,高为在这个圆锥内部有一个高为x 的内接圆柱值时,圆柱的表面积最大?最大值是多少?解:如图是圆锥的轴截面,设圆柱的底面半径,解得r =R -R H x =2- (图所示,该几何体从上到下由四个简单几何体组成,4<V 3 B.V 1<V 3<V 2<V 4 3<V 4 D.V 2<V 3<V 1<V 4解:由已知条件及三视图可知,该几何体从上到下依次是圆台,圆柱,正方体,棱台,则·π+4π)=7π3,V 2=π×8,V 4=13×1×(4+4×16+<V 1<V 3<V 4.故选C.§8.3 空间点、线、面之间的位置关系1.平面的基本性质 (1)公理1:如果一条直线上的______在一个平面内,那么这条直线在此平面内.它的作用是可用来证明点在平面内或__________________.(2)公理2:过____________上的三点,有且只有一个平面.公理2的推论如下:①经过一条直线和直线外一点,有且只有一个平面;②经过两条相交直线,有且只有一个平面; ③经过两条平行直线,有且只有一个平面. 公理2及其推论的作用是可用来确定一个平面,或用来证明点、线共面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们____________过该点的公共直线.它的作用是可用来确定两个平面的交线,或证明三点共线、三线共点等问题.2.空间两条直线的位置关系 (1)位置关系的分类 错误!(2)异面直线①定义:不同在任何一个平面内的两条直线叫做异面直线.注:异面直线定义中“不同在任何一个平面内的两条直线”是指“不可能找到一个平面能同时经过这两条直线”,也可以理解为“既不平行也不相交的两条直线”,但是不能理解为“分别在两个平面内的两条直线”.②异面直线的画法:画异面直线时,为了充分显示出它们既不平行又不相交,也不共面的特点,常常需要以辅助平面作为衬托,以加强直观性.③异面直线所成的角:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).异面直线所成角的范围是____________.若两条异面直线所成的角是直角,则称两条异面直线__________,所以空间两条直线垂直分为相交垂直和__________.3.平行公理公理4:平行于____________的两条直线互相平行(空间平行线的传递性).它给出了判断空间两条直线平行的依据.4.等角定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角____________.自查自纠:1.(1)两点 直线在平面内 (2)不在一条直线 (3)有且只有一条2.(1)一个公共点 没有公共点 没有公共点(2)③⎝⎛⎦⎥⎤0,π2 互相垂直 异面垂直3.同一条直线4.相等或互补(2013·安徽)在下列命题中,不是..公理的是( )A.平行于同一个平面的两个平面相互平行B.过不在同一直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线解:公理是不需要证明的原始命题,而选项A 是面面平行的性质定理,故选A.若∠AOB =∠A 1O 1B 1,且OA ∥O 1A 1,OA 与O 1A 1的方向相同,则下列结论中正确的是( )A.OB ∥O 1B 1且方向相同B.OB ∥O 1B 1C.OB 与O 1B 1不平行D.OB 与O 1B 1不一定平行解:两角相等,角的一边平行且方向相同,另一边不一定平行,如圆锥的母线与轴的夹角.故选D.若点P ∈α,Q ∈α,R ∈β,α∩β=m ,且R ∉m ,PQ ∩m =M ,过P ,Q ,R 三点确定一个平面γ,则β∩γ是( )A.直线Q RB.直线P RC.直线R MD.以上均不正确 解:∵PQ ∩m =M ,m ⊂β,∴M ∈β.又M ∈平面PQ R ,即M ∈γ,故M 是β与γ的公共点.又R∈β,R ∈平面PQ R ,即R∈γ,∴R 是β与γ的公共点.∴β∩γ=M R .故选C.给出下列命题:①空间四点共面,则其中必有三点共线; ②空间四点不共面,则其中任何三点不共线; ③空间四点中有三点共线,则此四点必共面; ④空间四点中任何三点不共线,则此四点不共。
高考一轮复习高中数学立体几何知识点汇编 Revised at 2 pm on December 25, 2020.高中课程复习专题——数学立体几何一空间几何体㈠空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
㈡几种空间几何体的结构特征1 棱柱的结构特征棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
棱柱的分类棱柱的性质⑴侧棱都相等,侧面是平行四边形;⑵两个底面与平行于底面的截面是全等的多边形;⑶过不相邻的两条侧棱的截面是平行四边形;⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。
长方体的性质⑴ 长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC 12 = AB 2 + AC 2 + AA 12⑵ 长方体的一条对角线AC 1与过定点A 的三条棱所成 的角分别是α、β、γ,那么:cos 2α + cos 2β + cos 2γ = 1 sin 2α + sin 2β + sin 2γ = 2⑶ 长方体的一条对角线AC 1与过定点A 的相邻三个面所组成的角分别为α、β、γ,则:cos 2α + cos 2β + cos 2γ = 2 sin 2α + sin 2β + sin 2γ = 1棱柱的侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱为邻边的矩形。
棱柱的面积和体积公式S 直棱柱侧面 = c ·h (c 为底面周长,h 为棱柱的高) S 直棱柱全 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 圆柱的结构特征2-1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。
高三数学理第一轮复习:立体几何复习人教实验B 版【本讲教育信息】一. 教学内容:立体几何复习:1、空间几何体的结构及其三视图和直观图2、空间几何体的表面积和体积【知识梳理】1、构成空间几何体的基本元素点、线、面是构成几何体的基本元素,线有直线(段)和曲线(段)之分,面有平面(部分)和曲面(部分)之分.在立体几何中,平面是无限延展的.通常画一个平行四边形表示一个平面,用希腊字母α、β、γ、命名,也可用表示它的平行四边形的对角顶点的字母来命名,如平面ABCD 或平面AC 等. 2、棱柱、棱锥、棱台的结构特征(1)多面体是由若干个平面多边形所围成的几何体,多边形叫做多面体的面;相邻两面公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.不共面两顶点的连线叫做多面体的对角线;(2)棱柱:两个面(底面)互相平行,其余每两个相邻面(侧面)的交线(侧棱)平行.分类:⎩⎨⎧棱柱、斜棱柱侧棱与底面的关系:直直棱柱、斜棱柱底面多边形:三棱柱、(3)棱锥:有一个面(底面)是多边形,其余各面(侧面)都是有一个公共点(顶点)的三角形.分类:底面多边形:三棱锥、四棱锥、五棱锥…… 特别地,正棱锥指底面为正多边形,水平放置时,顶点在底面投影为底面多边形的中心;(4)棱台:底面水平放置的棱锥被平行于底面的平面所截,截面(上底面)与圆锥底面(下底面)之间的部分.正棱台:正棱锥截得的棱台. 3、圆柱、圆锥、圆台、球球:空间中到一个定点距离等于定长的点的集合. 大圆:球面被经过球心的平面截得的圆. 小圆:球面被不经过球心的平面截得的圆.球面距离:经过两点的大圆在这两点间的一段劣弧的长度.4、平行投影与直观图平行投影:(如图),图形F ,直线L 与a 相连,过F 上任一点M 作直线/MM 平行FF'交平面α于点/M ,则/M 称为M 在α内的关于直线L 的平行投影.平行投影性质:(1)直线或线段的平行投影仍是直线或线段; (2)平行直线的平行投影是平行或重合的直线;(3)平行于投射面的线段,它的投影与这条线段平行且等长; (4)平行于投射面的平面图形,它的投影与这个图形全等;(5)在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比. 直观图:用来表示空间图形的平面图形(斜二测画法). 5、三视图(1)正投影:平行投影中,投射线与投射面垂直.性质:①垂直于投射面的直线或线段的正投影是点. ②垂直于投射面的平面图形的正投影是直线或直线的一部分.(2)三视图6、圆柱、圆锥、圆台的侧面积分别是它们侧面展开图的面积,因此弄清侧面展开图的形状及侧面展开图中各线段与原旋转体的关系,是掌握它们的侧面积公式及解有关问题的关键.7、圆柱、圆锥、圆台的表面积公式见下表,其中S 表示面积,c 'c 、分别表示上、下底面周长,h 表示高,r ’和r 分别表示名称 侧面积表面积 圆柱 rl 2cl π或 底侧S 2S +圆锥 rl cl 21π或 底侧S S +圆台l )'r r (l )'c c (21+π+或下底上底侧S S S ++ 8、棱柱或棱台的表面积等于侧面积与两个底面积的和,棱锥的表面积是侧面积与一个底面积的面积的和.棱柱、棱锥和棱台的面积公式:见下表,其中S 表示面积,c ’、c 分别表示上、下底面周长,h 表示高度,h ’表示斜高,l 表示侧棱长。
2025年高考数学一轮复习-立体几何中的动点及其轨迹问题-专项训练一、基本技能练1.如图,在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹为()A.直线B.圆C.双曲线D.抛物线2.如图,正方体ABCD -A 1B 1C 1D 1中,P 为底面ABCD 上的动点.PE ⊥A 1C 于E ,且PA =PE ,则点P 的轨迹是()A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分3.如图,圆锥的底面直径AB =2,母线VA =3,点C 在母线VB 上,且VC =1,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是()A.13B.7C.433D.3324.如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 中点轨迹的面积为()A.4πB.2πC.πD.π25.已知MN 是长方体外接球的一条直径,点P 在长方体表面上运动,长方体的棱长分别是1,1,2,则PM →·PN →的取值范围为()A.-12,0 B.-34,0C.-12,1 D.-34,16.点P 为棱长是25的正方体ABCD -A 1B 1C 1D 1的内切球O 球面上的动点,点M 为B 1C 1的中点,若满足DP ⊥BM ,则动点P 的轨迹的长度为()A.πB.2πC.4πD.25π7.已知正三棱锥P -ABC 的六条棱长均为6,S 是△ABC 及其内部的点构成的集合.设集合T ={Q ∈S |PQ ≤5},则T 表示的区域的面积为()A.3π4 B.πC.2πD.3π8.如图,三角形PAB 所在的平面α和四边形ABCD 所在的平面β垂直,且AD ⊥α,BC ⊥α,AD =4,BC =8,AB =6,∠APD =∠CPB ,则点P 在平面α内的轨迹是()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分9.已知正方体ABCD -A ′B ′C ′D ′的棱长为1,点M ,N 分别为线段AB ′,AC 上的动点,点T 在平面BCC ′B ′内,则MT +NT 的最小值是()A.2 B.233C.62 D.110.如图,长方体ABCD -A ′B ′C ′D ′中,AB =BC =2,AA ′=3,上底面A ′B ′C ′D ′的中心为O ′,当点E 在线段CC ′上从C 移动到C ′时,点O ′在平面BDE 上的射影G 的轨迹长度为()A.2π3B.3π3C.π3D.3π611.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为是正确的条件即可).12.如图,P 是棱长为1的正方体ABCD -A 1B 1C 1D 1表面上的动点,且AP =2,则动点P 的轨迹的长度为________.二、创新拓展练13.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,E 是AA 1的中点,P 是底面ABCD 所在平面内一动点,设PD 1,PE 与底面ABCD 所成的角分别为θ1,θ2(θ1,θ2均不为0),若θ1=θ2,则三棱锥P -BB 1C 1体积的最小值是()A.92B.52C.32D.5414.(多选)如图,设正方体ABCD -A 1B 1C 1D 1的棱长为2,E 为A 1D 1的中点,F 为CC 1上的一个动点,设由点A ,E ,F 构成的平面为α,则()A.平面α截正方体的截面可能是三角形B.当点F 与点C 1重合时,平面α截正方体的截面面积为26C.当点D 到平面α的距离的最大值为263D.当F 为CC 1的中点时,平面α截正方体的截面为五边形15.已知面积为23的菱形ABCD 如图①所示,其中AC =2,E 是线段AD 的中点.现沿AC 折起,使得点D 到达点S 的位置,此时二面角S -AC -B 的大小为120°,连接SB ,得到三棱锥S -ABC 如图②所示,则三棱锥S -ABC 的体积为________;若点F 在三棱锥的表面运动,且始终保持EF ⊥AC ,则点F 的轨迹长度为________.16.如图,三棱锥S-ABC的所有棱长均为1,SH⊥底面ABC,点M,N在直线SH上,且MN=33,若动点P在底面ABC内,且△PMN的面积为212,则动点P的轨迹长度为________.参考答案与解析一、基本技能练1.答案D解析点P到直线C1D1的距离即为点P到点C1的距离,所以在平面BB1C1C中,点P到定点C1的距离与到定直线BC的距离相等,由抛物线的定义可知,动点P的轨迹为抛物线,故选D.2.答案A解析由题意知,△A1AP≌△A1EP,则点P 为在线段AE 的中垂面上运动,从而与底面ABCD 的交线为线段.3.答案B 解析在圆锥侧面的展开图中,AA ′=2π,所以∠AVA ′=AA ′︵VA =23,所以∠AVB =12∠AVA ′=π3,由余弦定理得AC 2=VA 2+VC 2-2VA ·VC ·cos ∠AVB =32+12-2×3×1×12=7,所以AC =7.所以这只蚂蚁爬行的最短距离是7,故选B.4.答案D 解析易知DD 1⊥平面ABCD ,∠MDN =90°,取线段MN 的中点P ,则DP =12MN =1,所以点P 的轨迹是以D 为球心,1为半径的18球面,故S =18×4π×12=π2.5.答案B 解析根据题意,以D 为坐标原点,DA →为x 轴正方向,DC →为y 轴正方向,DD 1→为z 轴正方向,建立空间直角坐标系,如图所示.设长方体外接球球心为O ,则DB 1为外接球的一条直径,设O 为DB 1的中点,不妨设M 与D 重合,N 与B 1重合.则外接球的直径长为12+12+(2)2=2,所以半径r =1,所以PM →·PN →=(PO →+OM →)·(PO →+ON →)=(PO →+OM →)·(PO →-OM →)=|PO →|2-|OM →|2=|PO →|2-1,由P 在长方体表面上运动,所以|PO →|∈12,1,即|PO →|2∈14,1,所以|PO →|2-1∈-34,0,即PM →·PN →∈-34,0.6.答案C 解析根据题意知,该正方体的内切球半径为r =5,如图,取BB 1的中点N ,连接CN ,则CN ⊥BM ,在正方体ABCD -A 1B 1C 1D 1中,CN 为DP 在平面B 1C 1CB 中的射影,∴点P 的轨迹为过D ,C ,N 的平面与内切球的交线,∵正方体ABCD -A 1B 1C 1D 1的棱长为25,∴O 到过D ,C ,N 的平面的距离为1,∴截面圆的半径为(5)2-1=2,∴点P 的轨迹的长度为2π×2=4π.7.答案B 解析设顶点P 在底面上的投影为O ,连接BO ,则O 为△ABC 的中心,且BO =23×6×32=23,故PO =36-12=2 6.因为PQ =5,故OQ =1,故Q 的轨迹为以O 为圆心,1为半径的圆,而△ABC 内切圆的圆心为O ,半径为2×34×363×6=3>1,故Q 的轨迹圆在△ABC 内部,故其面积为π.8.答案A 解析由条件易得AD ∥BC ,且∠APD =∠CPB ,AD =4,BC =8,可得tan ∠APD =AD PA =CB PB =tan ∠CPB ,即PB P A =CB AD=2,在平面P AB 内以AB 所在的直线为x 轴,AB 的中点O 为坐标原点,建立直角坐标系(图略),则A (-3,0),B (3,0),设P (x ,y ),则有PB PA =(x -3)2+y 2(x +3)2+y 2=2,整理可得x 2+y 2+10x +9=0(x ≠0).由于点P 不在直线AB 上,故此轨迹为圆的一部分,故答案选A.9.答案B 解析A 点关于BC 的对称点为E ,M 关于BB ′的对称点为M ′,记d 为直线EB ′与AC 之间的距离,则MT +NT =M ′T +NT ≥M ′N ≥d ,由B ′E ∥D ′C ,d 为E 到平面ACD ′的距离,因为V D ′-ACE =13×1×S △ACE =13×1×1=13,而V D ′-ACE =V E -ACD ′=13×d ×34×(2)2=36d =13,故d =233.10.答案B 解析如图,以CA ,CC ′分别为x 轴,y 轴正方向建立平面直角坐标系,则有C (0,0),O (1,0),O ′(1,3),设G (x ,y ),由O ′G ⊥OG ,可得y x -1·y -3x -1=-1,+(x -1)2=34,所以点O ′在平面BDE 上的射影G 的轨迹是以F半径为32的OG ︵.因为tan ∠GOF =O ′C ′OO ′=33,所以O ′G =O ′O ·sin ∠GOF =32,所以△O ′GF 是等边三角形,即∠GFO =2π3,所以圆弧OG 的长l =2π3×32=3π3.11.答案DM ⊥PC (或BM ⊥PC )解析连接AC ,BD ,则AC ⊥BD ,因为PA ⊥底面ABCD ,BD ⊂平面ABCD ,所以PA ⊥BD .又PA ∩AC =A ,所以BD ⊥平面PAC ,PC ⊂平面PAC ,所以BD ⊥PC ,所以当DM ⊥PC (或BM ⊥PC )时,有PC ⊥平面MBD ,PC ⊂平面PCD ,所以平面MBD ⊥平面PCD .12.答案3π2解析由已知AC =AB 1=AD 1=2,在平面BC 1,平面A 1C 1中,BP =A 1P =DP =1,所以动点P 的轨迹是在平面BC 1,平面A 1C 1,平面DC 1内分别以B ,D ,A 1为圆心,1为半径的三段圆弧,且长度相等,故轨迹长度和为π2×3=3π2.二、创新拓展练13.答案C 解析以D 为坐标原点建立如图所示空间直角坐标系,因为正方体的棱长为3,则3,0,32D 1(0,0,3),设P (x ,y ,0)(x ≥0,y ≥0),则PE →3-x ,-y ,32,PD 1→=(-x ,-y ,3).因为θ1=θ2,平面ABCD 的一个法向量z =(0,0,1),所以|PE →·z ||PE →|·|z |=|PD 1→·z ||PD 1→|·|z |,得32(3-x )2+y 2+94=3x 2+y 2+9,整理得x 2+y 2-8x +12=0,即(x -4)2+y 2=4(0≤y ≤2),则动点P 的轨迹为圆的一部分,所以点P 到平面BB 1C 1的最小距离为1,所以三棱锥P -BB 1C 1体积的最小值是13×12×3×3×1=32.14.答案BCD 解析如图,建立空间直角坐标系,延长AE 与z 轴交于点P ,连接PF 并延长与y 轴交于点M ,则平面α由平面AEF 扩展为平面APM .由此模型可知A 错误.当点F 与点C 1重合时,截面是一个边长为5的菱形,该菱形的两条对角线长度分别AC 1=22+22+22=23和22+22=22,则此时截面的面积为12×23×22=2 6.当F 为CC 1的中点时,平面α截正方体的截面为五边形,B ,D 正确.D (0,0,0),A (2,0,0),P (0,0,4),设点M 的坐标为(0,t ,0)(t ∈[2,4]),DA →=(2,0,0),AM →=(-2,t ,0),PA →=(2,0,-4),则可知点P 到直线AM 的距离为d =|P A →|2-|PA →·AM →|AM →||2=20t 2+644+t 2,S △APM =12t 2+4·d =5t 2+16.S △P AD =12×2×4=4,设点D 到平面α的距离为h ,利用等体积法V D -APM =V M -P AD ,即13·S △APM ·h =13·S △P AD ·t ,可得h =4t 5t 2+16,则h =45+16t 2,由h =45+16t 2在t ∈[2,4]上单调递增,所以当t =4时,h 取到最大值为263.故选BCD.15.答案323+32解析依题意,12AC ·BD =BD =23,点S 到平面ABC 的距离为3sin 60°=32,△ABC 的面积为12×23=3,则三棱锥S -ABC 的体积为13×3×32=32.如图,取AC 边上靠近点A 的四等分点G ,取BA 的中点为H ,连接EH ,EG ,GH ,故点F 的轨迹长度即为△EHG 的周长,又EG =GH =32,EH =12SB =32,故点F 的轨迹长度为3+32.16.答案6π12解析设P 到直线MN 的距离为d ,由题易得d =66,易知H 为△ABC 的中心,又MN ⊥平面ABC ,当点P 在平面ABC 内时,其轨迹是以H 为圆心,66.∵△ABC 内切圆的半径为36,∴圆H 的一部分位于△ABC 外,结合题意得,点P 的轨迹为圆H 位于底面△ABC 内的三段相等的圆弧(利用正三角形的性质判断出圆H 有一部分在△ABC 外,才能正确得到点P 的轨迹),如图,过点H 作HO ⊥AC ,垂足为O ,则HO =36,记圆H 与线段OC 的交点为K ,连接HK ,可得HK =66,∴cos∠OHK=OHHK=3666=22,∴∠OHK=π4,∴点P的轨迹长度为圆H周长的14(利用圆及正三角形的对称性分析求解),∴点P的轨迹长度为14×2π×66=6π12.。
高三数学第一轮复习:立体几何的综合问题【本讲主要内容】立体几何的综合问题立体几何知识的综合应用及立体几何与其它知识点的综合问题【知识掌握】【知识点精析】1. 立体几何的综合问题融直线和平面的位置关系于平面与几何体中,有计算也有论证。
解决这类问题需要系统地掌握线线、线面、面面的位置关系,特别是平行与垂直的判定与性质.深刻理解异面直线所成的角、斜线与平面所成的角、二面角的平面角的概念,理解点到面的距离、异面直线的距离的概念.2. 立体几何横向可与向量、代数、三角、解析几何等综合.3. 应用性问题、探索性问题需综合运用所学知识去分析解决.【解题方法指导】例1. 如图所示,在正方体ABCD—A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为()解析:P到直线BC的距离等于P到B的距离,动点P的轨迹满足抛物线定义.故选C.例2. 如图,四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD,(Ⅰ)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;(Ⅱ)证明不论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°.(Ⅰ)解:∵PB⊥面ABCD,∴BA是PA在面ABCD上的射影,又DA⊥AB ∴PA⊥DA∴∠PAB是面PAD与面ABCD所成的二面角的平面角∴∠PAB=60°,PB=AB·tan60°=3a ,∴ V 锥=3233·3·31a a a =(Ⅱ)证明:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为等腰三角形,作AE ⊥PD ,垂足为E ,连结CE ,则△ADE ≌△CDE ,因为AE =CE ,∠CED =90o,故∠CEA 是面PAD 与面PCD 所成的二面角的平面角. 设AC 与BD 交于点O ,连结EO ,则EO ⊥AC ,所以a AD AE OA a =<<=22,22a AE <, 在△AEC 中,02222cos 222222222<-=-=∙-+=∠AE a AE AE a AE EC AE AC EC AE CEA 所以面PAD 与面PCD 所成的二面角恒大于90o。