高中数学《立体几何》高考专题复习
- 格式:docx
- 大小:331.08 KB
- 文档页数:5
可编辑修改精选全文完整版高考数学立体几何专项知识点高中数学平面几何不时是数学的一大难点,下面是小编整理的数学平面几何专项知识点,对提高数学效果会有很大的协助。
(1)空间几何体① 看法柱、锥、台、球及其复杂组合体的结构特征.② 能画出复杂空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的平面模型,会用斜二侧法画出它们的直观图.③ 了解球、棱柱、棱锥、台的外表积和体积的计算公式(不要求记忆公式).(2)点、直线、平面之间的位置关系① 了解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:假设一条直线上的两点在一个平面内,那么这条直线上一切的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只要一个平面.◆公理3:假设两个不重合的平面有一个公共点,那么它们有且只要一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线相互平行◆定理:空间中假设一个角的两边与另一个角的两边区分平行,那么这两个角相等或互补.② 以平面几何的上述定义、公理和定理为动身点,看法和了解空间中线面平行、垂直的有关性质与判定.了解以下判定定理:◆假设平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆假设一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆假设一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆假设一个平面经过另一个平面的垂线,那么这两个平面相互垂直.了解以下性质定理,并可以证明:◆假设一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.◆假设两个平行平面同时和第三个平面相交,那么它们的交线相互平行◆垂直于同一个平面的两条直线平行◆假设两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③ 能运用公理、定理和已取得的结论证明一些空间位置关系的复杂命题.温习关注:平面几何试题着重考察空间点、线、面的位置关系的判别及几何体的外表积与体积的计算,关注画图、识图、用图的才干,关注对平行、垂直的探求,关注对条件或结论不完备情形下的开放性效果的探求小编为大家提供的2021-2021高考数学平面几何专项知识点大家细心阅读了吗?最后祝考生们学习提高。
2024年高考数学立体几何知识点总结立体几何是数学中的一个重要分支,也是高考数学中的重要内容之一。
在高考中,立体几何的知识点主要包括空间几何、立体图形的面积与体积等方面。
下面是对2024年高考数学立体几何知识点的总结,供考生参考。
一、空间几何1. 空间几何中的点、线、面的概念和性质。
点是没有长度、宽度和高度的,只有位置的大小,用字母表示。
线是由一组无限多个点构成的集合,用两个点的字母表示。
面是由无限多条线构成的,这些线共面且没有相交或平行关系。
2. 空间几何中的垂直、平行等概念和性质。
两条线在同一平面内,如果相交角为90°,则称两线垂直。
两条线没有相交关系,称两线平行。
3. 点到直线的距离的计算。
点到直线的距离等于该点在直线上的正交投影点的距离。
二、立体图形的面积与体积1. 立体图形的分类和性质。
立体图形包括球体、圆柱体、圆锥体、棱柱体、棱锥体等。
各种立体图形具有不同的性质,如球体表面上每一点到球心的距离都相等。
2. 立体图形的面积计算。
(1)球体的表面积计算公式:S = 4πr²,其中r为球的半径。
(2)圆柱体的侧面积计算公式:S = 2πrh。
(3)圆柱体的全面积计算公式:S = 2πrh + 2πr²。
(4)圆锥体的侧面积计算公式:S = πrl,其中r为圆锥底面半径,l为斜高。
(5)棱柱体的侧面积计算公式:S = ph,其中p为棱柱底面周长,h为高。
3. 立体图形的体积计算。
(1)球体的体积计算公式:V = 4/3πr³,其中r为球的半径。
(2)圆柱体的体积计算公式:V = πr²h。
(3)圆锥体的体积计算公式:V = 1/3πr²h。
(4)棱柱体的体积计算公式:V = ph。
(5)棱锥体的体积计算公式:V = 1/3Bh,其中B为底面积,h 为高。
三、立体几何的一般理论1. 点、线、面的位置关系。
在空间中,点、线、面可以相互相交、平行、垂直等。
高考数学总复习试卷立体几何综合训练第I卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题正确的是()A.直线a,b与直线l所成角相等,则a//bB.直线a,b与平面α成相等角,则a//bC.平面α,β与平面γ所成角均为直二面角,则α//βD.直线a,b在平面α外,且a⊥α,a⊥b,则b//α2.空间四边形ABCD,M,N分别是AB、CD的中点,且AC=4,BD=6,则()A.1<MN<5 B.2<MN<10C.1≤MN≤5 D.2〈MN<53.已知AO为平面α的一条斜线,O为斜足,OB为OA在α内的射影,直线OC在平面α内,且∠AOB=∠BOC=45°,则∠AOC等于()A.30°B.45°C.60°D.不确定4.甲烷分子结构是:中心一个碳原子,外围四个氢原子构成四面体,中心碳原子与四个氢原子等距离,且连成四线段,两两所成角为θ,则cosθ值为()A.B.C.D.5.对已知直线a,有直线b同时满足下面三个条件:①与a异面;②与a成定角;③与a距离为定值d,则这样的直线b有()A.1条B.2条C.4条D.无数条6.α,β是不重合两平面,l,m是两条不重合直线,α//β的一个充分不必要条件是()A.,且l//β,m//βB.,且l//mC.l⊥α,m⊥β,且l//m D.l//α,m//β,且l//m7.如图正方体中,E,F分别为AB,的中点,则异面直线与EF所成角的余弦值为( )A.B.C.D.8.对于任一个长方体,都一定存在一点:①这点到长方体的各顶点距离相等;②这点到长方体的各条棱距离相等;③这点到长方体的各面距离相等,以上三个结论中正确的是()A.①②B.①C.②D.①③9.在斜棱柱的侧面中,矩形最多有几个?A.2 B.3 C.4 D.610.正六棱柱的底面边长为2,最长的一条对角线长为,则它的侧面积为()A.24 B.12 C.D.11.异面直线a,b成80°角,P为a,b外的一个定点,若过P有且仅有2条直线与a,b所成的角相等且等于α,则角α属于集合()A.{α|0°〈α〈40°} B.{α|40°<α〈50°}C.{α|40°〈α<90°}D.{α|50°<α〈90°}12.从水平放置的球体容器的顶部的一个孔向球内以相同的速度注水,容器中水面的高度与注水时间t之间的关系用图象表示应为()第II卷(非选择题共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把答案填在题中横线上)13.正四棱锥S—ABCD侧棱长与底面边长相等,E为SC中点,BE与SA所成角的余弦值为_____________。
高三数学专题立体几何复习教案
一、教学目标
1、掌握以三视图为命题载体,熟悉一些典型的几何体模型,如长(正)方体、三棱柱、三棱锥等几何体的三视图,与学生共同研究空间几何体的结构特征(数量关系、位置关系).
2、外接球问题关键是找到球与多面体的联系元素,如球心与截面圆心的关系即“心心相映法”,线面垂直的多面体可补成直棱柱再找外接球球心即“补体法”,进而构建球半径R 、截面圆半径r 、球心到截面距离d 三者之间的勾股定理。
3、在三视图与直观图的互换过程中,培养学生养成构建长方体为“母体”的解题意识,通过寻找外接球球心问题,引导学生更好地理解球与多面体的关系,培养学生的分割与补形的解题意识,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力、计算能力和动手操作能力,体现化归与转化的基本思想.. 二、学情分析
立体几何是培养学生空间想象力的数学分支,根据学生实际学情,依据考纲依靠课本,在立体几何的复习过程中要想办法让学生建立起完整的知识网络,要突出这门学科的主干,让学生多一点思考,少一点计算。
高考立体几何试题一般是两小题一大题, 其中三视图与直观图、多面体与球相关的外接与内切问题是高考命题的热点,要注意重视空间想象,会识图会画图会想图,提高识图、理解图、应用图的能力,解题时应多画、多看、多想,这样才能提高空间想象能力和解决问题的能力,突出转化、化归的基本思想. 三、重点: 三视图与直观图的数量、位置的转化;多面体与球相关的外接与内切问题;
难点:化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法; 四、教学方法: 问题引导式 五、教学过程
专题:立体几何
问题1:三视图
1.一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )
2.某几何体的三视图如图所示,则该几何体的体积是
3.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )
D. 3
问题2:球与多面体
4.(2016厦门3月质检15)已知四棱锥P ABCD
-的底面ABCD是边长为a的正方形,其外接球的表面积为28π,△PAB是等边三角形,平面PAB⊥平面ABCD,则a=▲.
延伸1:已知四棱锥P ABCD
-的底面ABCD是边长为a的正方形,其外接球的表面积为π
24,平面PAB⊥平面ABCD,△PAB是等腰直角三角形,PA⊥AB,则a=▲.
延伸2:已知四棱锥P ABCD
-的底面ABCD是边长为a的正方形,其外接球的表面积为π
24,平面PAB⊥平面ABCD,△PAB是等腰直角三角形,PA⊥PB,则a=▲.
延伸3:已知四棱锥P ABCD
-的底面ABCD是边长为a的正方形,其外接球的表面积为240π,△PAB 是等腰三角形,PA=PB=2a,平面PAB⊥平面ABCD,则a=▲.
延伸4:已知四棱锥P ABCD
-的底面ABCD是边长为a的正方形,其外接球的表面积为π
24,平面PAB⊥平面ABCD,△PAB中,PA = 2a,PB= a2,则a=▲.
延伸5::已知四棱锥P ABCD
-,底面ABCD是AB=a,BC=2a的矩形,其外接球的表面积为28π,△PAB 是等边三角形,平面PAB⊥平面ABCD,则a=▲.
延伸6:在三棱锥P ABC -
中,PA =2PC =
,AB =,3BC =,2
ABC π
∠=
,则三棱锥P ABC -外接球的表面积为()
问题3:立体几何与空间向量
1.平行垂直的证明主要利用线面关系的转化 线∥线线∥面面∥面
判定线⊥线线⊥面面⊥面性质线∥线线⊥面面∥面
←→−←→−−→−−←→−←→
−←−−−←→−←→−
2.空间向量在几何中的应用
1.线线角:设直线a ,b 的方向向量为a ,b ,其夹角为θ,则
22
22
22
21
21
2
1
2
12121cos cos z
y x z y x z z y y x x a ++∙++++
=
=
<=θ
2.线面角:设直线
l 的方向向量为, 平面α的法向量为n ,直线l 与平面a 所成的角为θ,则有
22
22
22
21
21
21
2
12121cos sin z
y x z y x z z y y x x AB ++∙++++=
=
<=θ
3.面面角:平面α的法向量为1
n ,平面β的法向量为2n ,平面α与平面β的夹角为θ,则有
2
2
2222212121
2
121211cos cos z y x z y x z z y y x x
n ++∙++++=
=
<=θ
4.点面距离:
22
22
22
2
12121cos z
y x z z y y x x d ++++=
=
<∙=
5.如图,四棱锥
P-ABCD 中,底面ABCD 是边长为2的菱形,且︒=∠60DAB ,侧面
PAD 为等边三角形,且与底面ABCD 垂直,M 为PC 的中点. (1)求证:PA||平面BDM (2)求证:AD ⊥PB ;
(3)求直线AB 与平面BDM 所成角的正弦值. (4)求二面角A -BD -M 的余弦值
题目背景变换为以下几种,如何建立坐标系?
延伸1: 如图,四棱锥P-ABCD 中,底面ABCD 是梯形,AB||CD,AB=4,CD=2,︒=∠60DAB ,侧面PAD 为边长为2的等边三角形,且与底面ABCD 垂直.
延伸2: 如图,四棱锥P-ABCD 中,底面ABCD 是平行四边形,AB=4,AD=2,且︒=∠60DAB ,侧面PAD 为等边三角形,且与底面ABCD 垂直.
限时训练
1.某几何体三视图如图一所示,则该几何体的体积为( )
A .8-2π
B .8-π
C .8-π2
D .8-π
4
2.已知三棱锥P ABC -的四个顶点都在半径为2的球面上,且PA ⊥平面ABC ,若2AB =
,AC 2
BAC π
∠=,则棱PA 的长为( )
A .
3
2
B
C .3
D .9 3.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则
能得到的最大球的半径等于( ) A .1 B .2 C .3 D .4 4.若三棱锥S A B C 的底面是以AB 为斜边的等腰直角三角形,2AB SA SB SC ====,则该三棱锥的外接球的表面积为( ) A .
83π B
C .43π
D .163
π
A
图一
5.已知某几何体的三视图如图所示,则该几何体的体积为________.
6.如图,长方体ABCD —A 1B 1C 1D 1中,AB = 16,BC = 10,AA 1 = 8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E = D 1F = 4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形。
(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值。
D
D 1
C 1
A 1 E
F
A B
C
B 1。