电力系统继电保护-第2章-继电保护的硬件构成
- 格式:ppt
- 大小:18.57 MB
- 文档页数:94
电力系统继电保护原理(第四版)第二章继电保护的硬件构成第一节继电器的类别和发展历程继电器能反应一个弱信号(电、磁、声、光、热)的变化而突然动作,闭合或断开其接点以控制一个较大功率的电路或设备的器件。
继电器的分类按输入信号性质分:非电量继电器和电量继电器按功能分量度继电器在继电保护和自动装置中作为主要元件,与辅助元件有或无继电器配套电流、电压、频率、功率继电器等有或无继电器在保护装置中作为辅助元件中间、时间、信号继电器等电磁式继电器衔铁弹簧电磁铁工作回路电磁继电器触点信号电源一、电磁型继电器(Relay)继电特性:无论起动和返回,继电器的动作都是明确干脆的,它不可能停留在某一个中间位置动作电流:使继电器动作的最小电流值最小短路电流返回电流:使继电器返回原位的最大电流值最大负荷电流返回系数(恒小于1) I K re= K re= 0.85~ 0.9 I K act 触发特性曲线返回动作旋转衔铁式电流继电器结构6二、感应型继电器用电磁铁在一铝制圆盘中或圆筒中感应产生电流,电流产生转矩使圆盘或圆筒转动,使接点闭合的继电器。
四极感应圆筒式感应继电器工作原理与鼠笼式感应电机相似相当于两相式的电动机,垂直方向两磁极的线圈和水平两级的绕组磁通在空间上相差900,如果两磁通在时间上也相差900则可产生最大的旋转磁场圆筒上的转矩:M= KΦ1Φ 2 sinθ动作条件:电流大于定值(转矩大于弹簧反作用转矩),且θ为正(900时转矩最大)可反应两个电气量,如电压、电流,可实现方向继电器、阻抗继电器、差动继电器等电磁式电流继电器侧面正面电磁式中间继电器正面侧面五、微机保护将反应故障量变化的数字式元件和保护中需要的逻辑元件、时间元件、执行元件等和在一起用一个微机实现,成为微机保护,是继电器发展的最高形式。
20世纪70年代初、中期开始了微机保护研究的热潮源于计算机技术重大突破:价格大幅度下降、可靠性提高70年代中后期,国外已有少量样机试运行。
继电保护的基本原理和保护装置的组成CONTENTS 目录继电保护的基本原理1继电保护装置的组成2电力系统的发电机、变压器、母线、输电线路和用电设备通常处于正常运行状态,但也可能出状态。
一、继电保护的基本原理继电保护基本原理是利用被保护线路或设备故障前后某些变化的物理量为信息量,当信息量达到一定值时,起动逻辑环节,发出相应的命令。
图1 输电线路图2 水轮发电机图3 变压器(1)利用基本电气参数量的区别发生短路故障后,利用电流、电压、线路测量阻抗、电压电流间相位、负序和零序分量的出现等的变化,构成相应的保护。
1)过电流保护反应电流增大而动作的保护称为过电流保护。
如图在BC 线路上发生三相短路故障,则从电源到短路点之间将流过短路电流。
Kk I kZ 保护1和保护2都能反应(测量)到这个电流,保护2首先动作于断路器QF2跳闸。
2)低电压保护低电压保护是反应电压降低而动作的保护。
此时A 、B 母线上的电压将降低,保护1、2都能反应到电压降低,从选择性要求,保护2应首先动作。
K0=kU3)距离保护距离保护也称低阻抗保护,是反应保护安装处到短路点之间的阻抗下降而动作的保护。
Kk I kZ B 母线上电压为:kk res Z I U =保护2测量阻抗为:kk k res m L Z Z I U Z 1/=== 其大小等于保护安装处到短路点间的阻抗,正比于短路点到保护2之间的距离。
(2)利用比较两侧的电流相位L I LI 正常运行时,线路AB 两侧的电流大小相等,相位差为 180外部发生短路故障时:k I kI 显然外部短路时,结论与正常运行相同。
保护区内部短路时:k I ' kI ''从分析可知,若两侧电流相位相同,则判为内部故障;若两侧电流相位相反,则判为外部故障。
利用被保护线路两侧电流相位,可构成纵差保护、相差高频保护、方向保护等。
(3)反应序分量或突变量是否出现不对称短路时,将出现负序分量发生短路时,正序分量将出现突变接地短路时,将出现零序分量(4)反应非电量保护非电量保护过负荷保护反应绕组温度升高而构成过负荷保护;瓦斯保护反应变压器内部故障时所产生的瓦斯气体,构成瓦斯保护;二、继电保护装置的组成执行部分测量部分整定值逻辑部分输出信号输入信号(1)测量部分:测量被保护对象的有关物理量,与给定量进行比较,给出“是”或“非”信号。
继电保护的组成及要求第一篇:继电保护的组成及要求继电保护的组成及要求继电保护一般由输入部分、测量部分、逻辑判断部分和输出执行部分组成。
现场信号输入部分一般是要进行必要的前置处理,如隔离、电平转换、低通滤波等,使继电器能有效地检查各现场物理量。
测量信号要转换为逻辑信号,根据测量部分各输出量的大小、性质、逻辑状态、输出顺序等信息,按照一定的逻辑关系组合运算最后确定执行动作,由输出执行部分完成最终任务。
继电保护的基本要求应当满足选择性、速动性、灵敏性和可靠性的要求。
选择性指保护装置动作时,仅将故障器件从电力系统中当独切除,使停电的范围尽量地缩小,保证系统中无故障的部分正常运行;速动性是指保护装置应尽快切除短路故障,它的目的就是提高系统的稳定性,从而减轻故障设备和线路的损坏程度,缩小受故障所影响范围,提高自动重合闸和备用设备自动投入的效果。
灵敏性是指对于保护的范围内,发生故障或不正常运行状态的反应能力。
可靠性是指继电保护装置在保护范围内发生动作时的可靠程度。
继电保护常见的故障分析电流互感饱和故障。
电流互感器的饱和对电力系统继电保护的影响是非常之大。
随着配电系统设备终端负荷的不断增容,如果发生短路,则短路电流会很大。
如果是系统在靠近终端设备区的位置发生短路时,电流可能会达到或者接近电流互感器单次额定电流的100倍以上。
在常态短路情况下,越大电流互感器误差是随着一次短路电流倍数增大而增大,当电流速断保护使灵敏度降低时就可能阻止动作。
在线路短路时,由于电流互感器的电流出现了饱和,而再次感应的二次电流小或者接近于零,也会导致定时限过流保护装置无法展开动作。
当在配电系统的出口线过流保护拒绝动作时而导致配电所进口线保护动作了,则会使整个配电系统出现断电的状况。
开关保护设备的选择不当。
开关保护设备的选择是非常重要的一项工作,现在的多数配电都在高负荷密集的地区建立起开关站,也就是采用变电所—开关站—配电变压器的供电输电的模式。
第二节继电保护的基本原理及其组成参看图1-1至图1-6及其讲解,了解本章对继电保护装置对正常与故障或不正常状态的区分以及继电保护基本原理,并且通过对继电保护装置基本组成的学习深入了解各部分工作内容。
一、继电保护装置对正常与故障或不正常状态的区分通过对继电保护装置正常运行状态与故障或不正常状态的学习,初步理解继电保护装置的原理。
1. 为完成继电保护所担负的任务,应该要求它能够正确区分系统正常运行与发生故障或不正常运行状态之间的差别,以实现保护。
图1-1 正常运行情况在电力系统正常运行时,每条线路上都流过由它供电的负荷电流,越靠近电源端的线路上的负荷电流越大。
同时,各变电站母线上的电压,一般都在额定电压±5%-10%的范围内变化,且靠近于电源端母线上的电压较高。
线路始端电压与电流之间的相位角决定于由它供电的负荷的功率因数角和线路的参数。
由电压与电流之间所代表的“测量阻抗”是在线路始端所感受到的、由负荷所反应出来的一个等效阻抗,其值一般很大。
图1-2 d点三相短路情况当系统发生故障时(如上图所示),假定在线路B-C上发生了三相短路,则短路点的电压降低到零,从电源到短路点之间均将流过很大的短路电流,各变电站母线上的电压也将在不同程度上有很大的降低,距短路点越近时降低得越多。
设以表示短路点到变电站B母线之间的阻抗,则母线上的残余电压应为此时与之间的相位角就是的阻抗角,在线路始端的测量阻抗就是,此测量阻抗的大小正比于短路点到变电站B母线之间的距离。
2. 一般情况下,发生短路之后,总是伴随着电流的增大、电压降低、线路始端测量阻抗减小,以及电压与电流之间相位角的变化。
故利用正常运行与故障时这些基本参数的区别,便可以构成各种不同原理的继电保护:(1)反应于电流增大而动作的过电流保护;(2)反应于电压降低而动作的低电压保护;(3)反应于短路点到保护安装地点之间的距离(或测量阻抗的减小)而动作的距离保护(或低阻抗保护)等。
继电保护的基本原理和继电保护装置的组成绪论继电保护在电力系统中扮演着至关重要的角色,它是保障电力系统安全运行的关键组成部分。
本文将探讨继电保护的基本原理以及继电保护装置的组成,以便更好地理解其在电力系统中的作用和重要性。
第一部分:继电保护的基本原理继电保护是电力系统中用于检测异常情况并采取措施来保护电力设备和系统不受损害的技术。
其基本原理包括以下几个关键要素:1. 电流和电压测量:继电保护装置通过监测电流和电压的变化来识别电力系统中的异常情况。
这些测量值提供了关于电流负载、电压水平和频率等信息。
2. 比较与判据:继电保护装置将测量值与预设的标准或判据进行比较。
如果测量值超出了允许的范围,继电保护系统将判定系统存在故障或异常情况。
3. 快速反应:一旦继电保护系统检测到异常情况,它会立即采取行动,例如切断电源或发出警报信号,以防止电力设备受到损害或电力系统发生故障。
4. 信号传输:继电保护系统需要将检测到的异常情况信息传输给相关设备或操作人员,以便采取适当的措施。
5. 稳定性和可靠性:继电保护系统必须具备高度的稳定性和可靠性,以确保不会误判正常操作并及时响应真正的故障情况。
第二部分:继电保护装置的组成继电保护装置是实现继电保护功能的关键工具,其组成部分通常包括以下要素:1. 传感器:传感器用于测量电流、电压、频率和其他电力参数。
电流变压器(CT)和电压变压器(VT)是常用的传感器类型,用于将高电压和电流降低到安全水平进行测量。
2. 保护继电器:保护继电器是继电保护系统的核心组件。
它们根据传感器提供的输入信号进行逻辑运算,并根据事先设定的保护方案判断是否需要采取措施。
3. 控制单元:控制单元负责继电保护系统的操作和控制。
它通常包括微处理器或微控制器,用于处理输入信号、执行保护逻辑和与其他系统通信。
4. 输出设备:输出设备包括断路器、接触器和报警器等,用于根据继电保护装置的决策来切断电源、分离故障设备或发出警报。
电力系统继电保护原理课目录绪论0.1 继电保护的作用0.2 对电力系统继电保护的基本要求0.3 继电保护的基本原理及保护装置的组成第1章电网的电流电压保护1.2 电网相间短路的方向性电流保护1.3 大接地电流系统的零序电流保护2.1 距离保护的基本原理2.2 阻抗继电器2.3 影响距离保护 确工作的因素及防 方法第3章输电线路的纵联保护3.1 概述3.2 输电线的纵联差 保护3.3输电线路的高频保护3.4 高频闭锁方向保护3.5 高频闭锁负序方向保护3.6 高频闭锁距离保护和零序保护3.7 高频相差 保护3.8 光纤差 保护第4章输电线路的自 重合闸4.1 自 重合闸概述4.2 相自 重合闸4.3 综合自 重合闸第5章电力 压器的保护5.1 电力 压器的故障异常 行状态及 保护方式5.2 压器内部故障的差 保护5.3 压器零序保护5.5 高压厂用 压器保护第6章发电机保护6.2 相间短路的纵联差 保护6.3 发电机定子绕组匝间短路保护6.5 发电机 励失磁保护6.6 励磁回路一点接地保护6.8 转子表层过热(负序电流)保护6.9 发电机的逆功率保护6.10 发电机失步异常 行保护6.11 定子绕组对称过负荷保护6.12 发电机 压器组公用继电保护7.2 带制 特性的母线差 保护7.3 JMH—1型母线差 保护装置的基本原理7.4 电流相 比较式母线保护第8章异步电 机和电容器的保护8.1 异步电 机的保护8.2 电力电容器的保护第9章继电保护装置的整定计算9.1 概述9.3 110~220 kV中性点直接接地电网线路保护的配置 整定计算9.4 330~550 kV中性点直接接地电网线路保护的配置 整定计算9.5 发电机保护的配置 整定计算9.6 压器保护的配置 整定计算9.7 母线保护及断路器失灵保护的配置 整定第10章继电保护装置的基本元 电路10.2 换器10.3 对称分量滤过器10.4 综合器第11章模拟型继电保护装置11.1 模拟型继电保护装置总论第12章微机保护装置原理12.2 微机保护的硬 构成原理12.3 数字滤波器12.4 微机保护的算法12.5 微机保护的抗干扰措施第13章 电站综合自 化技术13.3 电站综合自 化系统的结构参考文献0.1 继电保护的作用电力系统的 行要求安全可靠 电能质量高 经济性好 自然条 设备及人 因素的影响,可能出现各种故障和 常 行状态 故障中最常见 危害最大的是各种形式的短路•0.2 对电力系统继电保护的基本要求0.2.1 选择性图0-1 电网保护选择性 作(1) 保护(2)后备保护1)远后备图0-2 后备保护的构成方式(a)远后备保护(b) 后备保护2) 后备(3)辅 保护0.2.2 速 性0.2.3 灵敏性0.3 继电保护的基本原理及保护装置的组成图0-3 应一端电气量的保护及 行工况(a) 常 行状态(b)故障状态0.3.2 应两端电气量的保护0.3.3 应非电气量的保护图0-4 应两端电气量的保护的 行工况图0-5 继电保护装置组成方框图第1章电网的电流电压保护1.1 单侧电源网 的相间短路的电流电压保护1.1.1 电流继电器返回系数:即继电器的返回电流 作电流的比值1.1.2 无时限电流速断保护(电流 段)图1-1 电流速断保护 作特性的分析相短路电流可表示图1-2 无时限电流速断保护的单相原理接线图图1-3 系统 行方式的 化对电流续断保护的影响图1-4 被保护线路长短 同对电流速断保护的影响图1-5 线路- 压器组的电流速断保护图1-6 电流电压联锁速断保护的单相原理接线图图1-7 电流电压联锁速断保护的 作特性分析电流继电器的 作电流• 电压继电器的 作电压应• 1.1.3 限时电流速断保护(电流 段)•(1)工作原理和整定计算的基本原则图1-8 单侧电源线路限时电流速断保护的配合整定图(3)保护装置灵敏性的校验•(4)限时电流速断保护的单相原理接线图图1-9 限时电流速断保护的单相原理接线图1.1.4 定时限过电流保护(电流 段) (1)工作原理和整定计算的基本原则图1-10 定时限过电流保护起 电流和 作时限的配合图1-11 最大负荷说明图(2)按选择性的要求整定定时限过电流保护的 作时限图1-12 单侧电源串联线路中各过电流保护 作时限的确定•(3)过电流保护灵敏系数的校验• 1.1.5 段式电流保护的应用图1-13 阶段式电流保护的配合和实际 作时间的示意图图1-14 有电流速断 限时电流速断和过电流保护的单相原理接线图•1.2 电网相间短路的方向性电流保护1.2.1 方向性电流保护的基本原理图1-15 侧电源供电网 (a) f 1点短路时的电流分布(b) f 2点短路时的电流分布(c)各保护 作方向的规定(d)方向过电流保护的阶梯形时限特性1-15.tif图1-16 方向过电流保护的单相原理接线图1.2.2 功率方向继电器的工作原理图1-17 方向继电器工作原理的分析(a)系统网 接线图(b) f 1点短路(c) f 2点短路图1-18 功率方向继电器的工作原理图1-19 相短路的相量图• 1.2.3 对方向性电流保护的评图1-20 侧电源线路 电流速断保护的整定(1) 增电流的影响图1-21 有 增电流时,限时电流速断保护的整定•(2)外汲电流的影响图1-22 有外汲电流时,限时电流速断保护的整定。
继电保护的基本原理和继电保护装置的组成继电保护装置的主要组成部分有输入电路、判断逻辑电路、输出电路、电源和操纵装置。
输入电路主要作用是采集被保护系统的电流、电压等信号,并将其转化为继电保护装置能够处理的模拟量信号。
输入电路通常由互感器、电流互感器和电压互感器等组成。
判断逻辑电路是继电保护装置的核心部分,它根据输入信号的大小和特征,采用相应的电路和算法进行信号处理和判断。
判断逻辑电路通常包括电流、电压、功率、频率和相位等各种保护量的比较、计算和判别电路。
输出电路是继电保护装置的反馈和控制部分,它将判断逻辑电路的输出信号转化为动作电流或动作电压,通过控制开关或触发器实现对保护设备的动作。
电源为继电保护装置提供所需的电能,一般需要直流电源或交流电源。
电源还可以具备电压稳定、过压过流保护和断电记录等功能。
操纵装置是继电保护装置的人机交互部分,一般包括控制按钮、指示灯、双点按钮、微调旋钮等。
通过操纵装置,操作人员可以对继电保护装置进行选择、设定、复位和监控等操作。
继电保护装置还可以根据需要配置额外的功能模块,如通信模块、数据记录模块、故障指示模块和远程调试模块等,以满足不同的保护需求。
继电保护装置的运行过程通常分为三个阶段:监测阶段、判断阶段和动作阶段。
在监测阶段,继电保护装置通过输入电路获取被保护系统的工作量信号,并进行实时监测。
在判断阶段,判断逻辑电路对输入信号进行处理和判别,并根据预设的保护规则,判断是否需要进行动作。
在动作阶段,输出电路控制开关或触发器,并根据判断结果对被保护系统采取相应的保护措施。
总之,继电保护的基本原理是实时监测、判断和动作,通过合理配置输入电路、判断逻辑电路、输出电路、电源和操纵装置等组成部分,能够有效保护被保护系统的正常运行,提高电力系统的可靠性和安全性。