山东省威海市环翠区2018-2019学年七年级第一学期期末统考测试卷
- 格式:docx
- 大小:1.16 MB
- 文档页数:11
威海市七年级上册数学期末试卷(含答案)一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =2.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=-D .()2121826x x ⨯=-3.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或734.下列分式中,与2x yx y ---的值相等的是()A .2x y y x+-B .2x y x y+-C .2x y x y--D .2x y y x-+5.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4abc﹣23 …A .4B .3C .0D .﹣26.﹣2020的倒数是( ) A .﹣2020B .﹣12020C .2020D .120207.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .8.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣19.﹣3的相反数是( ) A .13-B .13C .3-D .310.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚 B .赚了9元 C .赚了18元 D .赔了18元 11.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒B .75︒C .115︒D .95︒12.如图的几何体,从上向下看,看到的是( )A .B .C .D .13.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1-14.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离15.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1二、填空题16.若|x |=3,|y |=2,则|x +y |=_____.17.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.18.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.19.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.20.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.21.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 22.若∠1=35°21′,则∠1的余角是__.23.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 24.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米. 25.计算:3+2×(﹣4)=_____.26.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____. 27.钟表显示10点30分时,时针与分针的夹角为________. 28.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________. 29.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .30.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、压轴题31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.32.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.33.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.34.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.35.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)36.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
山东省威海市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共17题;共31分)1. (2分)(2018·秀洲模拟) 实数,在数轴上的位置如图所示,下列式子错误的是()A . a>bB . <C . ab>0D . a+b>02. (2分)﹣11的相反数是()A . 11B . -11C .D . -3. (2分) (2017七上·乐昌期末) 下列结论中,正确的是()A . 把一个角分成两个角的射线叫角平分线B . 两点确定一条直线C . 若AB=BC,则点B是线段AC的中点D . 两点之间,直线最短4. (2分) (2016七上·博白期中) 实数x,y在数轴上的位置如图所示,则()A . 0<x<yB . x<y<0C . x<0<yD . y<0<x5. (2分)下列去括号中,正确的是()A . a2﹣(1﹣2a)=a2﹣1﹣2aB . a﹣[5b﹣(2c﹣1)]=a﹣5b+2c﹣1C . a2+(﹣1﹣2a)=a2﹣l+2aD . ﹣(a+b)+(c﹣d)=﹣a﹣b﹣c+d6. (2分)为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A . 300条B . 380条C . 400条D . 420条7. (2分)某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是()A . (1+50%)x•80%﹣x=8B . 50%x•80%﹣x=8C . (1+50%)x•80%=8D . (1+50%)x﹣x=88. (2分) ||的值是()A .B .C . -2D . 29. (2分)(2016·兖州模拟) 某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是()A . 800B . 600C . 400D . 20010. (2分) (2016七上·肇庆期末) 小明准备为希望工程捐款,他现在有20元,以后每月打算存10元.若设x月后他能捐出100元,则下列方程中能正确计算出x的是:()A . 10x+20=100B . 10x-20=100C . 20-10x=100D . 20x+10=10011. (2分)在关系式y=3x+4中,当自变量x=7时,因变量y的值是()A . 1B . 7C . 25D . 3112. (2分)已知,那么下列式子中一定成立的是()A . 2x=3yB . 3x=2yC . x=6yD . xy=613. (1分)(2019·凤庆模拟) 2018年春节期间,云南接待游客约2882万人,旅游收入约193亿元,其中2882万用科学记数法表示为________.14. (1分) (2016七上·昌邑期末) 漳州市某校在开展庆“六•一”活动前夕,从该校七年级共400名学生中,随机抽取40名学生进行“你最喜欢的活动”问卷调查,调查结果如下表:你最喜欢的活动猜谜唱歌投篮跳绳其它人数681682请你估计该校七年级学生中,最喜欢“投篮”这项活动的约有________人.15. (1分) (2018八上·兴义期末) 已知a、b都是不为零的常数,如果多项式(x+a)(x+b)的乘积中不含x 项,则a+b=________16. (2分)(2018·绍兴) 我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托。
环翠区九年义务教育七年级上册英语期末试题亲爱的同学:你好!答题前,请仔细阅读以下说明:1.本试卷分第卷和第Ⅱ卷两部分。
考试时间90分钟。
2.请将1卷答案填写在Ⅱ卷指定位置上,将卷答案蓝色黑色钢笔、圆珠笔填写在试卷上。
希望你能愉快地度过这90分钟,祝你成功!第Ⅰ卷一、选择填空(请将答案填写到答题卷指定位置)1. We had_____school trip last weekend. _____trip was really exciting.A. a; AB. a; TheC. the; A2. --__________? --He's really tall.A. with; fromB. Where's he fromC. What does he look like3. My watch is the same_____ his, but my computer is different_____ his.A. with; fromB. as; fromC. to; as4. __________ hours do you exercise every day?A. How longB. How oftenC. How many5. Yao Ming is_____famous _____ all the basketball fans in China know him.A. too; toB. enough; toC. so; that6. The TV play was very_____, and I felt very_____.A. boring; boredB. bored; boringC. bored; bored7.--What about_____at the party? --No,I'd like_____.A. to sing; to danceB. to sing: dancingC. singing; to dance8. Although they feel tired, they still go on working.A.butB. /C. and9. --What are the children doing? --They are _____ the tent.A. getting upB. staying upC. putting up10.--Mom, can you teach me how _____ noodles? --Sure It's easy.A. CookB. cooksC. to cook11. In our school library,there_____a number of books on science, and these years the number of them_____ growing larger and larger.A. are; isB. is; areC. have; are12. Mrs Brown is nice, every day she tries to cook_____ during my stay in Canada.A. as something differentB. different anythingC. nothing different七年级英语第1页(共8页)13.--Look at the sign! It says “No smoking!” --Oh, sorry. I_____ it.A.don’t seeB. wasn’t seenC. didn’t see14.Jack spent_____ money on CDs of all, but he had_____ CDs.A.the least; the mostB. the most; the mostC. the fewest; the least15.I think_____ is very important_____ English well.A. it; learningB. it; to learnC. that; learning二、阅读理解(共四篇短文。
山东省威海市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共30分) (共10题;共30分)1. (3分)一运动员某次跳水的最高点离跳台2m,记作+2m,则水面离跳台10m可以记作()A . -10mB . -12mC . +10mD . +12m2. (3分) (2019七下·香坊期末) 下列说法:①两点之间,线段最短;②正数和负数统称为有理数;③多项式3x2-5x2y2-6y4-2是四次四项式;④一个容量为80的样本最大值是123,最小值是50,取组距为10,则可以分成7组;⑤一个锐角的补角与这个角的余角的差是直角,其中正确的有()A . 2个B . 3个C . 4个D . 5个3. (3分) (2018七上·东莞月考) 有理数在数轴上对应的点如图所示,则,,的大小关系正确的是()A . -a<a<1B . a<-a<1C . 1<-a<aD . a<1<-a4. (3分) (2019八上·江岸期末) 如图,有一张边长为b的正方形纸板,在它的四角各剪去边长为a的正方形,然后将四周突出的部分折起,制成一个无盖的长方体纸盒,则这个纸盒的容积为()A .B .C .D .5. (3分) (2019九上·阳新期末) 若把x﹣y看成一项,合并2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x)得()A . 7(x﹣y)2B . ﹣3(x﹣y)2C . ﹣3(x+y)2+6(x﹣y)D . (y﹣x)26. (3分) (2016七上·岑溪期末) 如图,C是线段AB上的一点,M是线段AC的中点,若AB=8cm,MC=3cm,则BC的长是()A . 2cmB . 3cmC . 4cmD . 6cm7. (3分) |﹣5+3|=()A . -8B . 8C . -2D . 28. (3分) (2019七下·湖州期中) ①两点之间线段最短;②同旁内角互补;③若 AC=BC,则点 C 是线段AB 的中点;④经过一点有且只有一条直线与这条直线平行,其中正确的说法有()A . 1 个B . 2 个C . 3 个D . 4 个9. (3分) (2020七上·兰州期末) 解方程-3x+4=x-8,下列移项正确的是()A . -3x-x=8-4B . -3x-x=-8+4C . -3x-x=-8-4D . -3x+x=-8+410. (3分) (2016七上·罗山期末) 下列关于单项式的说法中,正确的是()A . 系数是3,次数是2B . 系数是,次数是2C . 系数是,次数是3D . 系数是,次数是3二、填空题(共24分) (共6题;共24分)11. (4分)有理数加法法则:(1)同号的两数相加,取________ 的符号,并把________ 相加.(2)绝对值不相等的异号两数相加,取________ 的加数的符号,并用较大的绝对值________ 较小的绝对值. 互为相反数的两个数相加得________ .(3)一个数同0相加,仍得________ .12. (4分) (2019七下·海港开学考) 计算:(1)62.56°的余角等于________°________′________″;(2)140°11′24″的补角等于________°.13. (4分)(2020·泰兴模拟) 《战狼2》中“犯我中华者,虽远必诛”,令人动容、热血沸腾.其票房突破5600000000元,将5600000000用科学记数法表示为________.14. (4分)一元二次方程(x-1)(x-2)=0的两个根为x1 , x2 ,且x1>x2 ,则x1-2x2=________。
山东省威海市七年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)有理数a、b在数轴上的位置如图所示,则化简|a+b|﹣|a﹣b|的结果为()A . 2aB . ﹣2bC . ﹣2aD . 2b【考点】2. (2分)(2018·黄石) 太阳半径约696000千米,则696000千米用科学记数法可表示为()A . 0.696×106B . 6.96×108C . 0.696×107D . 6.96×105【考点】3. (2分)右图是某个几何体的三视图,则这个几何体是()A . 圆锥B . 圆柱C . 长方体D . 三棱锥【考点】4. (2分) (2018七上·河南期中) 下列语句正确的有()( 1 )线段 AB 就是 A、B 两点间的距离;(2)画射线 AB=10cm;(3)A,B 两点之间的所有连线中,最短的是 A,B 两点间的距离;(4)在直线上取 A,B,C 三点,使得 AB=5cm,BC=2cm,则 AC=7cm。
A . 1 个B . 2 个C . 3 个D . 4 个【考点】5. (2分) (2019七上·北海期末) 下列说法正确的是()A . 多项式x2+2x2y+1是二次三项式B . 单项式2x2y的次数是2C . 0是单项式D . 单项式﹣3πx2y的系数是﹣3【考点】6. (2分) (2020七上·青铜峡期末) 如图,∠AOC为直角,OC是∠BOD的平分线,且∠AOB=38°,则∠AOD 的度数是()A . 52°B . 90°C . 104°D . 142°【考点】7. (2分)下列变形中,属于移项的是()A . 由5x=3x﹣2,得5x﹣3x=﹣2C . 由y﹣(1﹣2y)=5得y﹣1+2y=5D . 由8x=7得x=【考点】8. (2分)下列正确的是()A . ﹣(﹣21)<+(﹣21)B .C .D .【考点】9. (2分) (2020七上·市南期末) 在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四,问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,还差4元,问人数是多少?若设人数为人,则下列关于的方程正确的是()A .B .C .D .【考点】10. (2分)在1~45的45个正整数中,先将45的因子全部删除,再将剩下的整数由小到大排列,求第10个数为何()A . 13B . 14C . 16D . 17【考点】二、填空题 (共6题;共6分)11. (1分)﹣1 的倒数是________;﹣的绝对值是________.【考点】12. (1分) (2019七上·荣昌期中) 若是关于x的一元一次方程,则 ________.【考点】13. (1分) (2020八上·新疆期末) 如图,在△ABC中,AB=AC,DE垂直平分AB于点E,交AC于点D,若△ABC 的周长为26cm,BC=6cm,则△BCD的周长是________cm.【考点】14. (1分)一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,那么∠ABC等于________ 度【考点】15. (1分)如图,∠AOC=30°35′15″,∠BOC=80°15′28″,OC平分∠AOD,那么∠BOD等于________.16. (1分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第63个三角形数是________【考点】三、解答题 (共7题;共39分)17. (5分) (2020七上·椒江期中) 计算:(1) -(-20)-|-3|+5-(+6)(2) -14-(1-0.5)× ×[5-(-3)2]【考点】18. (5分) (2018七上·殷都期中) 先化简再求值:3x2y﹣[2xy2﹣2(xy﹣ x2y)+xy]+3xy2 ,其中x =,y=﹣5.【考点】19. (5分) (2020七上·石景山期末) 解方程:.【考点】20. (5分) (2019八下·中山期中) 如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段AB ,使AB=;(2)在图②中画一个以格点为顶点,面积为2的正方形ABCD .21. (2分) (2019七下·河池期中) 如图所示,直线,交于点,平分,于点,,求的度数【考点】22. (11分) (2015七上·和平期末) 列一元一次方程解应用题.某校七年级(1)班数学老师为做好期末复习,事先录制了一节复习课,准备刻成电脑光盘给每个学生回家观看.如果到电脑公司刻录光盘每张需9元;如果在学校自己刻录,除租用一台刻录机需要140元外,每张光盘还需要成本费5元.(1)问刻录多少张光盘时,到电脑公司刻录与学校自己刻录所需费用一样?(2)如果七年级(1)班共有学生36人,每人一张,那么到电脑公司刻录合算,还是在学校自己刻录合算.【考点】23. (6分) (2019七上·达州期中) 阅读下面材料:点A、B在数轴上分别表示实数a、b,A,B两点之间的距离表示为│AB│.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a−b|;当A、B两点都不在原点时,①如图2,点A、B都在原点的右边,|AB|=|OB|−|OA|=|b|−|a|=b−a=|a−b|;②如图3,点A、B都在原点的左边,|AB|=|OB|−|OA|=|b|−|a|=−b−(−a)=a−b=│a-b│;③如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|b|+|a|=-b+a=|a−b|;综上,数轴上A、B两点之间的距离|AB|=|a−b|.(1)回答下列问题:①数轴上表示3和9的两点之间的距离是________,数轴上表示−5和−9的两点之间的距离是________,数轴②数轴上表示x和−4的两点A和B之间的距离为________,如果|AB|=6,那么x为________;③当代数式|x+2|+|x−3|取最小值________时,相应的x的取值范围是________.(2) a、b在数轴上位置如图所示,请化简式子│a+1│-│2b-2│-│a+b│【考点】参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共7题;共39分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:。
2019学年山东威海市七年级(上)数学期末试卷一、选择题(本大题共12小题,每小题3分,共36分.下列各题所给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选,均不得分.)1.下列图形中,是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】P3:轴对称图形.【分析】直接利用轴对称图形的定义进而判断得出答案.【解答】解:根据题意可得:从左起第2,3,4个图形,沿某条直线折叠后直线两旁的部分能够完全重合,都是轴对称图形,第1个图形不能重合,故选:C.2.如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.8【考点】K6:三角形三边关系.【分析】已知三角形的两边长分别为2和4,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围.【解答】解:设第三边长为x,则由三角形三边关系定理得4﹣2<x<4+2,即2<x<6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.故选:B.3.若=3,则a的值为()A.3 B.±3 C.D.﹣3【考点】21:平方根;22:算术平方根.【专题】1:常规题型.【分析】直接利用算术平方根的定义计算得出答案.【解答】解:∵=3,∴a=±3.故选:B.4.下列各组数,互为相反数的是()A.﹣2与B.|﹣|与C.﹣2与(﹣)2 D.2与【考点】14:相反数;15:绝对值;22:算术平方根;24:立方根;28:实数的性质.【专题】11:计算题;511:实数.【分析】利用相反数定义判断即可.【解答】解:﹣2与(﹣)2互为相反数,故选:C.5.将△ABC各顶点的横坐标都乘以﹣1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项正确的是()A.B.C.D.【考点】P5:关于x轴、y轴对称的点的坐标.【专题】1:常规题型.【分析】根据将△ABC各顶点的横坐标都乘以﹣1,纵坐标不变,可得出对应点关于y轴对称,进而得出答案.【解答】解:∵将△ABC各顶点的横坐标都乘以﹣1,纵坐标不变,顺次连接这三个点,得到另一个三角形,∴对应点的坐标关于y轴对称,只有选项A符合题意.故选:A.6.若点A(x1,y1)和B(x2,y2)是直线y=﹣x+1上的两点,且x1>x2,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定【考点】F8:一次函数图象上点的坐标特征.【专题】1:常规题型.【分析】根据k=﹣<0,y将随x的增大而减小,然后根据一次函数的性质得出y1与y2的大小关系.【解答】解:∵k=﹣<0,∴y将随x的增大而减小,∵x1>x2,∴y1<y2.故选:A.7.△ABC的三边分别为a、b、c,其对角分别为∠A、∠B、∠C.下列条件不能判定△ABC是直角三角形的是()A.∠B=∠A﹣∠C B.a:b:c=5:12:13C.b2﹣a2=c2D.∠A:∠B:∠C=3:4:5【考点】K7:三角形内角和定理;KS:勾股定理的逆定理.【专题】11:计算题.【分析】根据三角形内角和定理判断A、D即可;根据勾股定理的逆定理判断B、C即可.【解答】解:A、∵∠B=∠A﹣∠C,∴∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,即△ABC是直角三角形,故本选项错误;B、∵52+122=132,∴△ABC是直角三角形,故本选项错误;C、∵b2﹣a2=c2,∴b2=a2+c2,∴△ABC是直角三角形,故本选项错误;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故本选项正确;故选:D.8.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19 cm,△ABD的周长为13 cm,则AE的长为()A.3 cm B.6 cm C.12 cm D.16 cm【考点】KG:线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到DA=DC,根据三角形的周长公式计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,∵△ABC的周长为19 cm,△ABD的周长为13 cm,∴AB+BC+AC=19cm,AB+BD+AD=AB+BC+DC=AB+BC=13 cm,∴AC=6cm,∵DE是AC的垂直平分线,∴AE=AC=3cm,故选:A.9.如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()A.6cm B.7cm C.8cm D.9cm【考点】KU:勾股定理的应用.【专题】554:等腰三角形与直角三角形.【分析】两次运用勾股定理:两直角边的平方和等于斜边的平方即可解决.【解答】解:本题需先求出长和宽组成的长方形的对角线长为=3cm.这根最长的棍子和矩形的高,以及长和宽组成的长方形的对角线组成了直角三角形.盒内可放木棒最长的长度是=7cm.故选:B.10.已知A,B两点的坐标是A(5,a),B(b,4),若AB平行于x轴,且AB=3,则a+b的值为()A.﹣1 B.9 C.12 D.6或12【考点】D6:两点间的距离公式.【专题】55:几何图形.【分析】根据平行于x轴的直线上的点的纵坐标相等求出a的值,再根据A、B为不同的两点确定b的值.【解答】解:∵AB∥x轴,∴a=4,∵AB=3,∴b=5+3=8或b=5﹣3=2.则a+b=4+8=12,或a+b=2+4=6,故选:D.11.如图,△ABC中,点D是边AB上一点,点E是边AC的中点,过点C作CF∥AB与DE的延长线相交于点F.下列结论不一定成立的是()A.DE=EF B.AD=CF C.DF=AC D.∠A=∠ACF 【考点】KD:全等三角形的判定与性质.【专题】55:几何图形.【分析】根据平行线性质得出∠1=∠F,∠2=∠A,求出AE=EC,根据AAS证△ADE ≌△CFE,根据全等三角形的性质推出即可.【解答】解:∵CF∥AB,∴∠1=∠F,∠2=∠A,∵点E为AC的中点,∴AE=EC,在△ADE和△CFE中,∴△ADE≌△CFE(AAS),∴DE=EF,AD=CF,∠A=∠ACF,故选:C.12.A,B两地相距80km,甲、乙两人骑车分别从A,B两地同时相向而行,他们都保持匀速行驶.如图,l1,l2分别表示甲、乙两人离B地的距离y(km)与骑车时间x(h)的函数关系.根据图象得出的下列结论,正确的个数是()①甲骑车速度为30km/小时,乙的速度为20km/小时;②l1的函数表达式为y=80﹣30x;③l2的函数表达式为y=20x;④小时后两人相遇.A.1个B.2个C.3个D.4个【考点】FH:一次函数的应用.【专题】533:一次函数及其应用.【分析】根据速度=,即可求出两人的速度,利用待定系数法求出一次函数和正比例函数解析式即可判定②③正确,利用方程组求出交点的横坐标即可判断④即可.【解答】解:甲骑车速度为=30km/小时,乙的速度为=20km/小时,故①正确,设l1的表达式为y=kx+b,把(0,80),(1,50)代入得到:,解得,∴直线l1的解析式为y=﹣30x+80,故②正确,设直线l2的解析式为y=k′x,把(3,60)代入得到k′=20,∴直线l2的解析式为y=20x,故③正确,由,解得x=,∴小时后两人相遇,故④正确,故选:D.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)13.的平方根是±2.【考点】21:平方根;22:算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±214.如果点P在第四象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为(3,﹣4).【考点】D1:点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P在第四象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P 的坐标为(3,﹣4),故答案为:(3,﹣4).15.如图,已知△ABC≌△DEF,∠A=50°,∠ACB=30°,则∠E=100°【考点】KA:全等三角形的性质.【专题】55:几何图形.【分析】根据全等三角形的性质可得∠A=∠EDC=50°,∠ACB=∠F=30°,然后利用三角形内角和定理可得答案.【解答】解:∵△ABC≌△DEF,∴∠A=∠EDC=50°,∠ACB=∠F=30°,∴∠E=180°﹣30°﹣50°=100°.故答案为:100°.16.把直线y=2x﹣1向上平移三个单位,则平移后直线与x轴的交点坐标是(﹣1,0).【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式,再求出图象与坐标轴交点即可.【解答】解:直线y=2x﹣1沿y轴向上平移3个单位,则平移后直线解析式为:y=2x﹣1+3=2x+2,当y=0时,则x=﹣1,故平移后直线与x轴的交点坐标为:(﹣1,0).故答案为:(﹣1,0).17.如图,有一块直角三角形纸片,两直角边AC=12,BC=16,现将直角边AC沿AD折叠,使它落在斜边AB上,且与AE重合,则△ADB的面积为60【考点】PB:翻折变换(折叠问题).【专题】55:几何图形.【分析】先根据勾股定理求得AB的长,再根据折叠的性质求得AE,BE的长,从而利用勾股定理可求得DE的长,进而利用三角形面积解答.【解答】解:∵AC=12,BC=16,∴AB=20,∵AE=12(折叠的性质),∴BE=8,设CD=DE=x,则在Rt△DEB中,82+x2=(16﹣x)2,解得x=6,即DE等于6,所以△ADB的面积=,故答案为:6018.已知一次函数y=kx+2(k≠0)与两坐标轴围成的三角形面积为2,则一次函数的表达式为y=x+2或y=﹣x+2.【考点】F8:一次函数图象上点的坐标特征;FA:待定系数法求一次函数解析式.【专题】53:函数及其图象.【分析】先求出一次函数y=kx+b与x轴和y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.【解答】解:可得一次函数y=kx+2(k≠0)图象过点(0,2),令y=0,则x=﹣,∵函数图象与两坐标轴围成的三角形面积为2,∴×2×|﹣|=2,即||=2,解得:k=±1,则函数的解析式是y=x+2或y=﹣x+2.故答案为:y=x+2或y=﹣x+2三、解答题(本大题共7小题,共66分)19.计算:(1)﹣﹣;(2)+|﹣3|+(2﹣)0;(3)已知2x+1的平方根是±3,3x+y﹣2的立方根是﹣3,求x﹣y的平方根.【考点】21:平方根;24:立方根;2C:实数的运算;6E:零指数幂.【专题】11:计算题;511:实数.【分析】(1)原式利用平方根,立方根定义计算即可求出值;(2)原式利用绝对值的代数意义,以及零指数幂法则计算即可求出值;(3)利用平方根,立方根定义求出x与y的值,即可求出所求.【解答】解:(1)原式=﹣3﹣﹣9=﹣12;(2)原式=+3﹣+1=4;(3)根据题意得:2x+1=9,3x+y﹣2=﹣27,解得:x=4,y=﹣37,则x﹣y=4﹣(﹣37)=41,即41的平方根是±.20.尺规作图:(不要求写作法,只保留作图痕迹)如图,工厂A和工厂B,位于两条公路OC、OD之间的地带,现要建一座货物中转站P.若要求中转站P到两条公路OC、OD的距离相等,且到工厂A和工厂B的距离之和最短,请用尺规作出P的位置.【考点】KF:角平分线的性质;N4:作图—应用与设计作图;PA:轴对称﹣最短路线问题.【专题】1:常规题型.【分析】结合角平分线的作法以及利用轴对称求最短路线的方法分析得出答案.【解答】解:如图所示:点P即为所求.21.如图,某港口P位于东西方向的海岸线上,A、B两艘轮船同时从港口P出发,各自沿一固定方向航行,A轮船每小时航行12海里,B轮船每小时航行16海里.它们离开港口一个半小时后分别位于点R、Q处,且相距30海里.已知B轮船沿北偏东60°方向航行.(1)A轮船沿哪个方向航行?请说明理由;(2)请求出此时A轮船到海岸线的距离.【考点】KU:勾股定理的应用;TB:解直角三角形的应用﹣方向角问题.【专题】554:等腰三角形与直角三角形.【分析】(1)直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角得出答案;(2)直接利用sin60°=,得出答案.【解答】解:(1)由题意可得:RP=18海里,PQ=24海里,QR=30海里,∵182+242=302,∴△RPQ是直角三角形,∴∠RPQ=90°,∵B轮船沿北偏东60°方向航行,∴∠RPS=30°,∴A轮船沿北偏西30°方向航行;(2)过点R作RM⊥PE于点M,则∠RPM=60°,则sin60°=,解得:RM=9.答:此时A轮船到海岸线的距离为9海里.22.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是在一、三象限的角平分线上;若x+y=0,则点P在坐标平面内的位置是在二、四象限的角平分线上;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.【考点】F3:一次函数的图象;F4:正比例函数的图象.【专题】533:一次函数及其应用;66:运算能力;67:推理能力.【分析】(1)根据互为相反数的两个数的和等于0判断出x、y互为相反数,然后解答.(2)根据点Q到两坐标轴的距离相等列出方程,然后求解得到a的值,再求解即可.【解答】解:(1)∵点P的坐标为(x,y),若x=y,∴点P在一、三象限内两坐标轴夹角的平分线上.∵x+y=0,∴x、y互为相反数,∴P点在二、四象限内两坐标轴夹角的平分线上.故答案为:在一、三象限的角平分线上.在二、四象限的角平分线上.(2)∵点Q到两坐标轴的距离相等,∴|2﹣2a|=|8+a|,∴2﹣2a=8+a或2﹣2a=﹣8﹣a,解得a=﹣2或a=10,当a=﹣2时,2﹣2a=2﹣2×(﹣2)=6,8+a=8﹣2=6,当a=10时,2﹣2a=2﹣20=﹣18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(﹣18,18).23.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】(1)欲证明CE=BF,只需证得△BCE≌△ABF;(2)利用(1)中的全等三角形的性质得到∠BCE=∠ABF,则由图示知∠PBC+∠PCB =∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,所以根据三角形内角和定理求得∠BPC=120°.【解答】(1)证明:如图,∵△ABC是等边三角形,∴BC=AB,∠A=∠EBC=60°,∴在△BCE与△ABF中,,∴△BCE≌△ABF(SAS),∴CE=BF;(2)解:∵由(1)知△BCE≌△ABF,∴∠BCE=∠ABF,∴∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,∴∠BPC=180°﹣60°=120°.即:∠BPC=120°.24.如图,点A的坐标为(﹣,0),点B的坐标为(0,3).(1)求过A,B两点直线的函数表达式;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.【考点】F8:一次函数图象上点的坐标特征;FA:待定系数法求一次函数解析式.【专题】1:常规题型.【分析】(1)设直线l的解析式为y=ax+b,把A、B的坐标代入求出即可;(2)分为两种情况:①当P在x轴的负半轴上时,②当P在x轴的正半轴上时,求出AP和OB,根据三角形面积公式求出即可.【解答】解:(1)设过A,B两点的直线解析式为y=ax+b(a≠0),则根据题意,得,解得,,则过A,B两点的直线解析式为y=2x+3;(2)设P点坐标为(x,0),依题意得x=±3,所以P点坐标分别为P1(3,0),P2(﹣3,0).==,=×(3﹣)×3=,所以,△ABP的面积为或.25.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M,交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.(1)判断直线BE与线段AD之间的关系,并说明理由;(2)若∠C=30°,图中是否存在等边三角形?若存在,请写出来并证明;若不存在,请说明理由.【考点】K7:三角形内角和定理;KL:等边三角形的判定.【专题】552:三角形.【分析】(1)根据余角的性质即可得到∠5=∠C;由AD平分∠MAC,得到∠3=∠4,根据三角形的外角的性质得到∠BAD=∠ADB,推出△BAD是等腰三角形,于是得到结论.(2)根据∠5=∠C=30°,AM⊥BC,可得∠ABD=60°,∠CAM=60°,进而得到∠ADB=∠3+∠C=60°,∠BAD=60°,依据∠ABD=∠BDA=∠BAD,可得△ABD是等边三角形;依据∠AEG=∠AGE=∠GAE,即可得到△AEG是等边三角形.【解答】解:(1)BE垂直平分AD,理由:∵AM⊥BC,∴∠ABC+∠5=90°,∵∠BAC=90°,∴∠ABC+∠C=90°,∴∠5=∠C;∵AD平分∠MAC,∴∠3=∠4,∵∠BAD=∠5+∠3,∠ADB=∠C+∠4,∠5=∠C,∴∠BAD=∠ADB,∴△BAD是等腰三角形,又∵∠1=∠2,∴BE垂直平分AD.(2)△ABD、△GAE是等边三角形.理由:∵∠5=∠C=30°,AM⊥BC,∴∠ABD=60°,∵∠BAC=90°,∴∠CAM=60°,∵AD平分∠CAM,∴∠4=∠CAM=30°,∴∠ADB=∠3+∠C=60°,∴∠BAD=60°,∴∠ABD=∠BDA=∠BAD,∴△ABD是等边三角形.∵Rt△BGM中,∠BGM=60°=∠AGE,又∵Rt△ACM中,∠CAM=60°,∴∠AEG=∠AGE=∠GAE,∴△AEG是等边三角形.。
山东省威海市2019年数学七上期末学业水平测试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图,直线AE 与CD 相交于点B ,60ABC ∠=︒,95FBE ∠=︒,则DBF ∠的度数是( ).A.35︒B.40︒C.45︒D.60︒2.如图,∠1=15°,∠AOC=90°,点B ,O ,D 在同一直线上,则∠2的度数为( )A.75°B.105°C.15°D.165°3.下列命题中:①.有理数和数轴上的点一一对应;②.内错角相等;③.平行于同一条直线的两条直线互相平行;④.邻补角一定互补.其中真命题的个数是( ) A .1个 B .2个C .3个D .4个 4.方程x ﹣4=3x+5移项后正确的是( ) A .x+3x =5+4B .x ﹣3x =﹣4+5C .x ﹣3x =5﹣4D .x ﹣3x =5+45.下列解方程去分母正确的是( ) A.由,得2x ﹣1=3﹣3x B.由,得2x ﹣2﹣x =﹣4 C.由,得2y-15=3yD.由,得3(y+1)=2y+66.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9B .12C .18D .247.多项式8x 2﹣3x+5与3x 3﹣4mx 2﹣5x+7多项式相加后,不含二次项,则m 的值是( ) A .2B .4C .﹣2D .﹣48.下列根据等式的性质变形正确的是( ) A.若3x+2=2x ﹣2,则x =0 B.若12x =2,则x =1 C.若x =3,则x 2=3x D.若213x +﹣1=x ,则2x+1﹣1=3x 9.观察下列等式: 第一层 1+2=3 第二层 4+5+6=7+8第三层 9+10+11+12=13+14+15 第四层 16+17+18+19+20=21+22+23+24 ……在上述的数字宝塔中,从上往下数,2018在( ) A .第42层B .第43层C .第44层D .第45层10.下列计算中正确的是 ( ) A.-3-3=0B.(-2)×(-5)=-10C.5÷15=1 D .-2+2=0 11.若a+b <0,ab <0,则( ) A .a >0,b >0 B .a <0,b <0C .a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D .a ,b 两数一正一负,且负数的绝对值大于正数的绝对值 12.若x 是2的相反数,|y|=4,且x+y<0,则x –y=( ) A .–6 B .6 C .–2 D .2 二、填空题13.一个角的余角比它的补角的13还少20°,则这个角是_____________. 14.如图,直线AB 、CD 相交于点O ,∠COE 为直角,∠AOE=60°,则∠BOD=__________°.15.定义一种新运算“⊕”:a b=2a-b ⊕,比如:1-3=21--3=5⊕⨯()(),若3x-2x+1=2⊕()(),那么x 的值为____. 16.已知关于x 的方程=2的解是x=2,则m=__________.17.有理数a 、b 、c 在数轴上的位置如图,则a c c b a b ++--+=______.18.若4x 3y 5+=,则()()38y x 5x 6y 2--++的值等于______.19.如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,b aa为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是_____.20.将0.66,23,60%按从小到大的顺序排列:_________(用“<”连接).三、解答题21.如图1,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.(1)将图1中的三角板绕点逆时针旋转至图,使一边在的内部,且恰好平分,问:此时直线是否平分?请直接写出结论:直线______(平分或不平分).(2)将图1中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为_______.(直接写出结果)(3)将图1中的三角板绕点顺时针旋转,请探究:当始终在的内部时(如图3),与的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.22.(1)如图1所示,将一副三角尺的直角顶点重合在点O处.①∠AOC与∠BOD相等吗?说明理由;②∠AOD与∠BOC数量上有什么关系吗?说明理由.(2)若将这副三角尺按图2所示摆放,直角顶点重合在点O处,不添加字母,分析图中现有标注字母所表示的角;①找出图中相等关系的角;②找出图中互补关系的角,并说明理由.23.甲乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地沿原路返回.在途中遇到乙,这时距他们出发时间刚好为3小时,求两人的速度.24.已知数轴上三点M,O,N对应的数分别为-1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P 以每分钟1个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动. 设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.25.先化简,再求值:已知|2a +1|+(4b -2)2=0,求3ab 2-[2221522a b ab ab ⎛⎫+-+ ⎪⎝⎭]+6a 2b 的值. 26.先化简,再求值:2(2)()(2)5()a b a b a b a a b +-+---,其中1,2a b =-=.27.计算:(1)225(3)()39⎡⎤-⨯-+-⎢⎥⎣⎦;(2)62311(10.5)2(3)5⎡⎤---⨯⨯+-⎣⎦ 28.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置; (2)小明家与小刚家相距多远?【参考答案】*** 一、选择题 1.A 2.B 3.B 4.D 5.D 6.C 7.A 8.C 9.C 10.D 11.D 12.D 二、填空题13.75° 14.15015. SKIPIF 1 < 0 解析:7516.0 17.18. SKIPIF 1 < 0 解析:20- 19.0420.60%<0.66< SKIPIF 1 < 0解析:60%<0.66<23三、解答题21.(1)平分(2)或49(3)不变,22.(1)①∠AOC 与∠BOD 相等,见解析;②∠AOD+∠BOC=180°,见解析;(2)①∠AOB=∠COD ,∠AOC=∠BOD ;②∠AOB 与∠COD ,∠AOD 与∠BOC ,见解析. 23.甲的速度为12千米/小时,乙的速度是5千米/时. 24.(1)4;(2)1;(3)x 的值是﹣3或5(4)t 的值为23或4. 25.a 2b +1;98. 26.22ab b ,-8 27.(1)-11(2)0.25.28.(1)见解析;(2)9千米.。
环翠区2019年第一学期期末质量检测七年级英语试题第一卷一、选择填空1.---We had ______party last weekend.----Oh,what do you think of it?A. aB.theC.an2.----Our math teacher is similar_______our Chinese teacher.----Yeah they are both outgoing and funny.A.fromB.toC.as3.----How does Paul like the sports program---He enjoys it very much________he doesn’t like exercising.A.becauseB.alsoC.although4.The problem is so difficult,________people can do it.A.fewB.a fewC.many5.----What did Tim do last night?----He ________ a letter to his parents.A.will writeB.writesC.wrote6.---Do you often go camping in winter?---No,I______do that because the weather is too cold.A.alwaysuallyC.hardly ever7.----which cloth shop is _____one in Weihai?----I think The Big World is.A.cheaplyB.the cheapestC.cheaper8.---Is this your dictionary?----Oh,yes.Thank you.Where ______you_______it?A.do,foundB.did,findC.are,finding9.----Who is______,Tom or Jim?----Jim is.And he often gets better grades.A.hard-workingB.less hard-workingC.more hard-working10 ----__________?----I went to Beijing with my parents.A.Where did you go on vacationB.Why did you go to Beijing on vacationC.How was your vacation二、读书破万卷AMr.Black works as a reporter at a TV station.He wants to know what the students usually do in their daily life.He made a survey in a middle school.He interviewed (采访)150 students in the school.Here are the results:1。
山东省威海市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)通过画数轴,下列说法正确的是()A . 有理数集合中没有最小数,也没有最大数;B . 有理数集合中有最小数,也有最大数;C . 有理数集合中有最小数,没有最大数;D . 有理数集合中有最大数,没有最小数;2. (2分) (2017七上·商城期中) 下列各式计算中,正确的是()A . 2a+2=4aB . ﹣2x2+4x2=2x2C . x+x=x2D . 2a+3b=5ab3. (2分) (2016七上·禹州期末) 一个正方体的平面展开图如图所示,折叠后可折成的图形是()A .B .C .D .4. (2分)下列去括号正确的是()A . a-(b-c)=a-b-cB . x2-[-(-x+y)]=x2-x+yC . m-2(p-q)=m-2p+qD . a+(b-c-2d)=a+b-c+2d5. (2分)两平行直线被第三条直线所截,内错角的平分线()A . 互相重合B . 互相平行C . 互相垂直D . 无法确定6. (2分)在、、、、、0中,整式的个数是()。
A . 6B . 3C . 4D . 57. (2分) (2020七上·来宾期末) 把一副三角尺按如图所示拼在一起,则等于()A .B .C .D .8. (2分)(2017·宛城模拟) 如图,半径为2的正六边形ABCDEF的中心在坐标原点O,点P从点B出发,沿正六边形的边按顺时针方向以每秒2个单位长度的速度运动,则第2017秒时,点P的坐标是()A . (1,)B . (﹣1,﹣)C . (1,﹣)D . (﹣1,)二、填空题 (共8题;共9分)9. (1分) (2017七下·江都期中) 计算 2﹣22﹣23﹣24…﹣299+2100=________.10. (1分) (2016七上·微山期中) 由四舍五入法得到的近似数10.560精确到________位.11. (1分)(2019·云南) 如图,若AB∥CD,∠1=40度,则∠2=________度.12. (1分) (2019七上·开州期中) 开州区隶属于重庆市,位于重庆市东北部,三峡库区小江支流回水末端,北依巴山,南近长江,西与四川省接壤。
2018—2019学年度第一学期期末质量检测七年级数学试题 (含答案) 【精品】一、选择题1.下列四组数能作为直角三角形的三边长的是( ) A.2,3,5, B.13,14,15, C.0.2,0.3,0.5 D.4,5,62.将一张四条边都相等的四边形纸片按下图中①②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打铺平,所得图案应是( )A. B. C. D.3.下列实数中,是无理数的是( )A.4B.2C.3216D.734.在平面直角坐标系中,点M 到x 轴的距离是3,到y 轴的距离是2,且在第二象限,则点M 的坐标是( )A.(3,2)-B.(2,3)-C.(3,2)-D.(2,3)--5.如图,将一块直角三角板DEF 放置在锐角ABC ∆上,使得该三角板的两条直角边DE 、DF 恰好分别经过点B 、C ,若40A ∠=︒,求ABD ACD ∠+∠=( )A.30︒B.40︒C.50︒D.60︒6.点(3,1)P m m +-在y 轴上,则点P 的坐标为( )A.(0,4)-B.(3,0)-C.(3,1)-D.(4,0)7.如图,分别以直角三角形的三边为边长向外作等边三角形,面积分别记为1S 、2S 、3S ,则1S 、2S 、3S 之间的关系是( )A.222123S S S +=B.123S S S +>C.123S S S +<D.123S S S +=8.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角(AOM BOM ∠=∠),当点P 第2019次碰到矩形的边时,点P 的坐标为( )A.(0,3)B.(5,0)C.(1,4)D.(8,3)9.有一块直角三角形纸片,两直角边12cm AC =,16cm BC =如图,现将直角边AC 沿AD 折叠,使它落在斜边AB 上,且与AE 重合,则DE 等于( )A.6cmB.8cmC.10cmD.14cm10.在同一平面直角坐标中,关于下列函数:①1y x =+;②21y x =+;③21y x =-;④21y x =-+的图像,说法不正确的是( )A.②和③的图像相互平行B.②的图像可由③的图像平移得到C.①和④的图像关于y 轴对称D.③和④的图像关于x 轴对称11.如图,函数22y x =-+的图象分别与x 轴,y 轴交于A ,B 两点,点C 在第一象限,AC AB ⊥,且AC AB =,则点C 的坐标为( )A.(2,1)B.(1,2)C.(1,3)D.(3,1)12.今年“国庆”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示.下列说法错误的是( )A.小明中途休息用了20分钟B.小明休息前路程与时间的函数关系式70s t =C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度二、填空题 13.16的平方根与-125的立方根的和为______.14.无论a 取什么实数,点(2,61)A a a +都在直线l 上,则直线l 的表达式是______.15.如图,已知AE 是BAC ∠的平分线,40B ∠=︒,70E ∠=︒,则ACE ∠=______°.16.如图,点M 的坐标为(5,2),直线y x b =-+与分别与x 轴、y 轴交于A 、B 两点,若点M 关于直线AB 的对称点N 恰好落在坐标轴上,则b 的值为______.17.如图,在Rt ABC ∆中,∠90BAC =︒,DE BC ⊥,12∠=∠,6AC =,10AB =,则BDE ∆的周长是______.18.如图,在一个长方形草坪ABCD 上,放着一根长方体的木块,已知9AD =米,10AB =米,该木块的较长边与AD 平行,横截面是边长为1米的正方形,一只蚂蚁从点A 爬过木块到达C 处需要走的最短路程 是______米.三、解答题:19.如图,每个小正方形的边长都为1,ABC ∆的顶点都在格点上.(1)判断ABC ∆是什么形状,并说明理由;(2)求ABC ∆的面积.20.如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),ABC ∆的三个顶点都在格点上,且直线m 、n 互相垂直.(1)画出ABC ∆关于直线n 的轴对称图形A B C '''∆;(2)在直线m 上确定一点P ,使APB ∆的周长最小(保留画图痕迹);周长的最小值为_____;(3)试求APB ∆的面积.(画出图示,写出必要的求解过程)21.如图,已知一次函数2y x =-+的图像与y 轴交于点A ,一次函数y kx b =+的图像过点(0,4)B 且与x轴及2y x =-+的图像分别交于点C 、D ,D 点坐标为2,3n ⎛⎫- ⎪⎝⎭.(1)求n 的值及一次函数y kx b =+的解析式;(2)求四边形AOCD 的面积.22.如图,在平面直角坐标系中有一个长方形AOCD ,且D 点坐标为(5,3),现将长方形的一边AD 沿折痕AE 翻折,使点D 落在OC 边上的点F 处.(1)求点E 、F 的坐标;(2)求直线EF 的解析式.23.如图所示,点P 为AOB ∠的平分线上一点,PC OA ⊥于C ,PH OB ⊥于H ,180OAP OBP ∠+∠=︒. 求证:2OA OB OC +=.24.钓鱼岛是我国渤海海峡上的一颗明珠,渔产丰富.一天某渔船离开港口前往该海域捕鱼捕捞一段时间后,发现一外国舰艇进入我国水域向钓鱼岛驶来,渔船向渔政部门报告,并立即返航渔政船接到报告后,立即从该港口出发赶往钓鱼岛.下图是渔船及渔政船与港口的距离s 和渔船离开港口的时间t 之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离港口的距离s 和它离开港口的时间t 的函数关系式;(2)求渔船和渔政船相遇时,两船与钓鱼岛的距离;(3)在渔政船驶往钓鱼岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?25.(1)如图1,在四边形ABCD 中,AB AD =,90B D ∠=∠=︒,E 、F 分别是边BC 、CD 上的点,若12EAF BAD ∠=∠,可求得EF 、BE 、FD 之间的数量关系为______. (只思考解题思路,完成填空即可,不必书写证明过程)(2)如图2,在四边形ABCD 中,AB AD =,180B ADC ∠+∠=︒,E 、F 分别是边BC 、CD 延长线上的点,若12EAF BAD ∠=∠,判断EF 、BE 、FD 之间的数量关系还成立吗,若成立,请完成证明,若不成立,请说明理由.【可借鉴第(1)问的解题经验】七年级上册数学综合训练参考答案及评分意见一、(每题3分,共36分)AABB CDDD ADDC二、(每题3分,共18分)13.-3或-7 14.31y x =+ 15.75 16.5或2 17.2344 18.15三、(本大题共7个小题,满分66分)(1)ABC ∆是直角三角形,理由如下:由勾股定理可得:2221865AC =+=,2224652BC =+=,2223213AB =+=, ∴222AB BC AC +=,∴ABC ∆是直角三角形.(2)∵2224652BC =+=,2223213AB =+=,∴BC =,AB =∴ABC ∆的面积1132=⨯=. 20.(1)略,画出图形,(2)略,有画图痕迹,点P确定;(3)做出辅助线图示;()123ABC S S S S S ∆=-++四边形123(131122)2=⨯-⨯+⨯+⨯ 2=21.(1)∵点2,3D n ⎛⎫- ⎪⎝⎭在直线2y x =-+上, ∴28233n ⎛⎫=--+= ⎪⎝⎭. ∴一次函数经过点(0,4)B 、点28,33D ⎛⎫-⎪⎝⎭, ∴48233b k b =⎧⎪⎨=-+⎪⎩, 解得:42b k =⎧⎨=⎩. 故一次函数的解析式为:24y x =+;(2)直线24y x =+与x 轴交于点C ,∴令0y =,得:240x +=,解得:2x =-,∴2OC =.∵函数2y x =-+的图象与y 轴交于点A ,∴令0x =,得:2y =,∴2OA =. ∵(0,4)B ,∴4OB =,∴2AB =.12442BOC S ∆=⨯⨯=, 1222233BAD S ∆=⨯⨯=, ∴BOC AOCD S S ∆=四边形 210433BAD S ∆=-=. 22.证明:∵P 为AOB ∠的平分线OP 上一点,PH OB ⊥,PC OA ⊥ ∴PC PH =.90PCA ∠=︒.∴PCA PHO ∠=∠在Rt PCO ∆和Rt PHO ∆中,PO PO PC PH =⎧⎨=⎩, ∴Rt Rt (HL)PCO PHO ∆∆≌,∴OC OH =.∵180OBP HBP ∠+∠=︒,且180OAP OBP ∠+∠=︒,∴OAP HBP ∠=∠.在ACP ∆和BHP ∆中,PCO PHO OAP DBP PC PD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ACP BHP AAS ∆∆≌,∴AC BH =.∵AO BO AC OC BO +=++,∴AO BO BD BO OC +=++,∴AO BO HO OC +=+,∴2AO BO OC +=.23.∵D 点坐标为(5,3),∴5AD OC ==,3OA CD ==.由勾股定理得4OF =,∴(4,0)F ,541CF =-=.设CE x =,则3DE EF x ==-.由勾股定理得222(3)1x x --= 解得,43x =,∴45,3E ⎛⎫ ⎪⎝⎭(2)设y kx b =+把(4,0)F ,∴45,3E ⎛⎫ ⎪⎝⎭代入y kx b =+得 04453k b k b =+⎧⎪⎨=+⎪⎩, 解之得16343b k ⎧=-⎪⎪⎨⎪=⎪⎩∴41633y x =- 24.(1)当05t ≤<时,30s t =;当58t <≤时,150s =;当813t <≤时,30390s t =-+;(2)设渔政船的函数解析式是s mt n =+,则80341503m n m n +=⎧⎪⎨+=⎪⎩, 解得:45360m n =⎧⎨=-⎩,则函数的解析式是45360s t =-,根据题意得:4536039030t t -=-,解得:10t =,390301090-⨯=两船与钓鱼岛A 海域的距离是1509060-=海里;(3)当(30390)(45360)30t t -+--=时,解得:9.6t =, 当(45360)(30390)30t t ---+=时,解得:10.4t = 则当9.6或10.4小时时,两船相距30海里.25.(1)线段EF 、BE 、FD 之间的数量关系是EF DF BE +=(2)在BE 上截取BM DF =,连接AM ,180B ADC ∠+∠=︒,180ADC ADE ∠+∠=︒,∴B ADF ∠=∠,在ABM ∆与ADF ∆中BM DF ABM ADF AB AD =∠=∠=⎧⎪⎨⎪⎩,∴()ABM ADF SAS ∆∆≌,∴AM AF =,BAM DAF ∠=∠, ∵12EAF BAD ∠=∠, ∴EAF EAM ∠=∠在AEM ∆与AEF ∆中AM AF EAF EAM AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()AEM AEF SAS ∆∆≌,∴EM EF =,即BE BM EF -=,即BE DF EF -=.可得EF DF BE +=说明:1.请严格按答案评分标准赋分2.对不同方法,可研究、酌情细化赋分.。