风机叶轮振动测试系统设计 (2)
- 格式:ppt
- 大小:1.05 MB
- 文档页数:36
引风机的振动故障分析及处理引风机是工业生产中常见的设备,其主要作用是吸入空气并将其加速送入燃烧炉中,以维持燃烧的正常进行。
在使用过程中,引风机有可能会出现振动故障,这不仅会影响设备的正常运行,还会对生产造成不利影响。
对引风机的振动故障进行分析并及时处理,对于保障生产的顺利进行具有重要意义。
一、振动故障的原因分析(一)不平衡引风机叶轮不平衡是引起引风机振动的主要原因之一。
由于生产过程中的磨损和不平衡的装配,叶轮的不平衡会引起在高速旋转时的振动。
如果叶轮上积聚了灰尘或者其他杂物,也会造成不平衡,导致引风机产生振动。
(二)轴承故障在使用过程中,引风机轴承的润滑油可能会老化或者耗尽,导致轴承的摩擦增大,进而引起振动。
长时间的高速旋转会使轴承受到较大的压力,轴承零部件出现磨损也会引起振动。
(三)安装不当引风机的安装不当也是引起振动故障的原因之一。
比如机座安装不稳固、叶轮与外壳摩擦等都会引起不必要的振动。
(四)进风口设计不当引风机的进风口设计不当也可能引起振动故障。
如果进风口设计不当,可能会造成进风阻力过大,引风机的工作状态不稳定,从而引起振动。
二、振动故障的处理方法引风机叶轮不平衡是引起振动的主要原因之一,因此平衡校正是解决振动故障的主要手段。
在进行平衡校正时,首先需要对叶轮进行动平衡测试,确定不平衡的位置和程度,然后采用添加铅块或者切削方法进行校正。
对于因为轴承老化或者损坏导致的振动故障,需要及时更换轴承。
在更换轴承时,需要注意选用合适的轴承型号,并保证安装时周围环境干净、安静,以免对新轴承造成污染或损坏。
对于安装不当引起的振动故障,需要重新进行安装调整。
检查机座的稳固性,确保其与地面接触牢固,叶轮与外壳之间不发生摩擦。
三、振动故障的预防措施(一)定期检查为了及时发现引风机的振动故障,经常性的定期检查是很有必要的。
通过定期检查可以发现引风机的潜在问题,及时进行处理,避免振动故障对生产造成不利影响。
(二)保持清洁定期清洁引风机的叶轮和轴承是预防振动故障的有效手段。
机械工业部石化通用机械工业局企业标准通风机振动精度JB/TQ334—84本标准适用于离心式,轴流式通风机(以下简称风机)振动的评价与测量。
1 风机的振动速度(均方根速度)应符合表1的规定。
表1振动速度等级良好合格数值mm/s≤5.0≤6.32 风机振动速度的测量部位如下:a. 对叶轮直接装在电动机轴上的风机,应在电机定子两端轴承部位测量其垂直,水平,与轴向三个方向(见图1)的振动速度并取其中最大读数作为度量值,当电动机带有风扇罩时则轴向振动不予测量。
图1b. 对于双支撑轴承的风机或有两个轴承体的风机,按图2所示三个方向的要求测量原动机一端的轴承体的振动速度并取其中最大的读数作为度量值。
图2c. 当两个轴承都装在同一个轴承箱内时,按图3所示三个方向的要求在轴承箱壳体轴承部位测量其振动速度并取其中最大读数作为度量值。
d. 当被测的轴承箱在风机内部时,按b或c的要求,可预先装置振动传感器,然后引出至风机外以指示器读数为测量依据,传感器安装的方向与测量方向的偏差不得大于±5°。
3 测振仪器应采用频率f范围为10~500Hz其速度范围为1~10mm/s的接触式测振仪表。
4 测振仪表须经计量部门鉴定合格后才能使用。
图35 被测的风机须装在大于10倍风机质量的底座或试车台上,装置的自振频率不得大于电机和风机转速的0.3倍。
6 在测试振动速度时,外部或周围环境对底座或试车台的影响,应符合下列规定:风机运转时的振动速度与风机静止时的振动速度的差须大于3倍以上,当差数小于此值时风机需采用避免外界影响措施。
7 风机振动速度与振幅(位移)可按下式进行换算式中:V —振动速度mm/sS —振幅(位移)ω—角速度rad/s石化通用机械工业局1984—01—13发布 1984—03—01实施附录A振动速度与振幅对照表(补充件)表A1 振动速度与振幅对照表转速r/min 300 375 500 600 750 1000 1500 3000振幅(位移)振动速度mm/s5.0 450 361 270 225 180 134 91 456.3 566 453 339 283 226 170 113 57附加说明:本标准由沈阳鼓风机研究所提出。
系统综合调试方案系统调试工作是机电安装施工的重点工作,也是检验前期各系统施工是否达到设计要求及使用功能要求的重要阶段,而且机电安装系统调试是包含多系统、多专业的综合性的工作。
1、通风空调工程联合调试(1)调试内容①设备单体试运转排烟、排风风机及送风风机单机试运转;②系统测试、调整a.系统与风口的风量测定、调整b.通风机风量、风压及转速的测定;c.防排烟系统正压送风前室静压的检测。
(2)调试要求①风机试运转a.叶轮应无卡阻和碰擦现象,旋转方向必须正确;b.在额定转速下试运转时间不得少于2h.c.轴承最高温度不得超过80度;②系统与风口的风量测定与调整,实测与设计风量的偏差不应大于10%;③通风机的风量、风压及转速符合设计要求;空调设备的风量、余压与风机转速符合设计要求;风机前后的风量差不应大于5%。
④测定系统总风量、风压及风机转数,将实测总风量值与设计值偏差不应10%;⑤系统与风口的风量必须经过调整达到平衡,各风口风量实测值与设计值偏差不应大于15%;⑥风管系统的漏风率应符合设计要求或不大于10%,风机风量为吸入端风量和压出端风量的平均值,且风机前后的风量之差不应大于5%;⑦无负荷联合运转调整后,应使空气的各项参数维持在设计给定的范围内。
(3)调试方法①风机单体试运转a.风机运转前必须加上适度的润滑油,并检查各项安全措施b.盘动叶轮,观察有无卡阻及碰擦现象。
c.观察叶轮旋转方向是否正确,有无异常振动及声响。
d.轴承温升是否正常。
e.用转速表测试风机主轴的转速,重复测量三次取其平均值,是否与铭牌相符。
f.测试电机电流、功率是否与铭牌相符。
g.风机在额定转速下试运转2h以上。
②系统风量测试a.依据设计图纸,结合现场实际情况,绘制单线系统图,标明风管尺寸,测点位置,风口位置,以及截面积大小。
b.开风机之前,将风道和风口本身的调节阀门,放在全开位置。
c.开启风机进行风量测定与调整,先粗测风量是否满足设计要求,做到心中有数,有利于下部调试工作。
主通风机在线监测及故障诊断系统方案一、系统概述主通风机在线监测及故障诊断系统主要由YHZ18矿用本安型振动监测分析仪和KGS18矿用本安型振动加速度传感器构成,可以智能地诊断出设备可能存在的不对中、不平衡、配合松动、装配不当以及轴承疲劳损伤等潜在故障。
可以正确有效地揭示潜在故障的发生、发展和转移,智能地诊断出设备故障原因及故障严重程度,为应急控制和维修管理提供准确、可靠的依据,从而节约维修费用,避免重大事故发生。
振动状态监测部分参照GB/T 19873.1-2005/ISO 13373-1:2002 《机器状态监测及诊断振动状态监测》有关电气装置的实施参照GB50255-96 《电气装置安装工程施工及验收规范》有关自动化仪表实施参照GB50093-2002 《自动化仪表工程施工及验收规范》及DLJ 279-90《电力建设施工及验收技术规范》(热工仪表及控制装置篇);风机性能测试满足GB/T1236-2000《工业通风机用标准化风道进行性能试验》和MT421(煤炭行业标准)“煤矿用主通风机现场性能参数测定方法”。
其余部分参照企业标准。
二、系统功能及特点1、系统功能系统主要由在线监测、轴承实时诊断及状态预报、离线数据分析三部分组成。
(1)在线监测功能①在线监测通风机所在地点的环境大气参数,包括大气压力、大气温度、和大气湿度。
②在线监测通风机的流量、风压、轴功率、效率、振动等工况状态参数。
③在线监测电气设备的电气参数,包括电流、电压、功率因数,开关状态及系统保护信息。
④当运行中的通风机设备性能出现异常时,系统按照不同的故障类型,依据用户设定的模式进行提示、报警。
系统能够对于温度、振动等关键参数给出预警。
系统对各种故障点具有记忆功能,以对故障的分析提供帮助。
⑤系统具有运行状态实时数据显示、历史纪录查询、特性曲线或工况参数列表显示、报表打印及网络通讯传输等功能。
⑥系统及矿集中控制系统留有通讯接口,可接入矿局域网,在中央控制室内可实施对通风机设备的远程监测。
ISO14694和ISO14695内容介绍0、引言《JB/T9101-1999通风机转子平衡》和《JB/T 8689-1998通风机振动检测及其限值》标准分别规定了通风机的转子平衡和通风机振动的要求及其检测方法。
国际标准《ISO14694:2003一般通风棚――平衡精度和振动等级规范》和《ISO14695:2003一般通风机――风机振动测量方法》分别规定了平衡和振动的要求及振动的检测方法。
本文对两份国际标准的内容进行了介绍,并与我国机械行业标准进行了一定的比较。
1、标准介绍与对比1.1 平衡精度和风机振动的限值1.1.1 ISO14694对平衡精度和风机振动限值的要求ISO14694:2003根据风机设计/结构及其应用的情况,并考虑驱动功率大小,对风机进行了分类,分类的基础是可接受的平衡精度和振动等级,标准将分类的种类命名为BV种类(Balance and Vibration application categories),如表1所示。
根据表1所给的分类,标准ISO14694将平衡精度的要求列出如表2,将风机振动等级的要求列出如表3和表4,表3的要求为在制造车间进行控制的,而表4为风机在现场测试时需控制的。
表4中振动等级是各种安装种类可接受的风机运行指标。
新制风机的振动等级应当在或低于“开始”等级。
随着风机运行时间的增加,因为磨损和其他积累效应一般振动等级也上升。
只要等级没有达到“警告”,通常振动的加大是正常的和安全的。
如果振动烈度上升到“警告”等级,应当马上组织调查上升的原因并采取措施纠正。
这种状态的运行应当进行小心监视并限定制定出解决振动上升问题的程序所需的时间。
如果振动等级上升到“停机”等级,纠正行动需要立即进行或者停止风机运行。
1.1.2 JB/T9101和JB/T8689对平衡精度和风机振动限值的要求我国标准JB/T9101根据转子的结构和风机的转速,列出了单面(静)平衡和双面(动)平衡两种平衡方法。
风机叶轮动均衡实验(实例)
以2017年8月28日实验数据为例(变频开度以85%为准):
一.实验步调
1.原始振动值为7丝
2.启动风机迁移转变后自由迁移转变至叶轮静止,将自由停滞后的顶端定为B点(大体为配重块的装配地位),将叶轮三等分后,顺时针定出A.B.C点.
3.依据送风机叶轮直径.转速.振动值,肯定初步配重150克.(雷同的振幅,叶轮越大.转速越高,那么增长的配重就越重)
4.分离将配重装配在A.B.C三个地位,自变频开度50%-100%
每隔10%测试振动并记载(本次以85%为基准).
A点——15丝 B点——7.6丝 C点——15.5丝
5.A.C两个点的振幅应比较接近,解释第2步选择的B点比较精确.(参照图例)
1)A.C两个点的振幅若相差很大,解释第一步停的地位不精确,
2)若完整一致,解释B点就是增长配重的地位,
3)若A点振幅<C点振幅,且B点振幅更小,如本次实验7.6
<15<15.5,有可能是两种情形:一是单纯剖析以上3个数据,配
重过小,再增长雷同的配重使三个点的振幅基底细等,地位在B点
邻近,偏向指向逆时针偏向(原因是A点振幅<C点振幅);二是
分解斟酌以上三个数据及原始振动值,配重过大,须要削减配重,也就是说本来B点邻近因较轻而振动7丝,如今增长配重后因较重而振动7.6丝,须要削减新增长配重150克的一半,即削减75克.
本次实验起首斟酌了第二个计划,一次削减75克成功.并且地位由本来的5又1/3处调剂至5,振动得以解决.更多办法参考
《三圆幅值法找动均衡道理》.
实验人员:
2017年8月28日。
浅谈双级动叶可调轴流风机振动分析及解决措施发表时间:2016-06-19T15:29:44.563Z 来源:《电力设备》2016年第6期作者:陈欣[导读] 双级动叶可调轴流风机广泛用于电厂火电燃煤机组一次风机和引风机,其通过液压调节系统来改变叶轮动叶片的工作角度。
(成都电力机械厂 610045)摘要:双级动叶可调轴流风机广泛用于电厂火电燃煤机组一次风机和引风机,其通过液压调节系统来改变叶轮动叶片的工作角度,以满足烟风系统流量和压力的变化需求。
本文从引起风机振动的各种因素出发,逐步分析,找出引起风机振动的原因,并采取相应的预防措施。
关键词:动叶可调轴流风机;振动;原因分析.一、引言动叶可调轴流风机一般由转子(叶轮、叶片、主轴承装配和液压调节系统)、供油装置、测量仪表、钢结构件(风机机壳、进气箱、扩压器)、消声器和隔声装置等组成,是电站风机的常用选择之一。
双级动叶可调轴流风机因采用两级叶轮,压力一般是单级动叶可调轴承风机的2倍,其主轴内置一根芯轴连接两级叶轮,通过油站驱动液压调节系统,保持两级叶轮开度的同步性,广泛应用于电厂火电燃煤机组一次风机和引风机,具有流量大、压力高,高效区宽的特点。
二、引风机工作原理引风机主要用来维持炉膛压力,形成流动烟气,将烟气排除。
一般布置在锅炉后部,电除尘出口,脱硫系统入口。
随着国家节能减排政策实施,多数电厂取消增压风机,实现引、增合一的联合引风机,联合引风机的工作特点是流量大、压力高,一般采用单级静叶可调风机或双级动叶可调轴流风机。
某电厂采用成都电力机械厂生产的双级动叶可调轴流风机作为引风机.风机的组成部分为:进气箱、集流器、导叶、叶轮、一级叶片、二级叶片、主轴承装配、扩压器、密封冷却风机等。
当风机叶轮旋转时,气体被叶轮轴向吸入和压出,在叶片的推挤作用下而获得能量,然后经后导叶整流后沿轴向流出,再经过扩压器使大量动压转换成静压以克服系统阻力。
三,问题提出2013年7月12日,某电厂3号炉检修后运行,振动一直保持在水平1.8m/s,垂直0.8mm/s左右,运行情况良好。
叶片振动测量实验报告1. 引言叶片振动是在流体中运动的叶片由于受到流体作用力而发生的振动现象。
叶片振动对于风力发电机、水力发电机等工程应用中的叶片运动控制具有重要意义。
本实验旨在通过测量叶片振动的位移、速度和加速度,探究叶片振动的基本特性和规律。
2. 实验方法2.1 实验装置本实验使用的实验装置包括:振动测量系统、电磁感应位移传感器、信号调理电路和数据采集设备。
2.2 实验步骤1. 将叶片固定在安装架上,确保叶片在安装架上自由振动;2. 在叶片上固定电磁感应位移传感器,并连接到信号调理电路;3. 打开振动测量系统和数据采集设备;4. 开始测量,并记录数据,包括叶片振动的位移、速度和加速度。
3. 实验结果与分析3.1 叶片振动的位移、速度和加速度测量结果使用数据采集设备记录并处理实验数据,得到了叶片振动的位移、速度和加速度曲线。
下图为测得的实验结果示意图。
3.2 基于实验结果的分析根据实验结果,我们可以观察到叶片振动的周期性特征。
叶片振动的周期由外部作用力和叶片的固有特性共同决定。
通过分析位移、速度和加速度曲线,可以得出以下结论:1. 位移曲线呈现正弦波形,表明叶片振动是一个简谐振动过程;2. 速度曲线呈现谐波形,速度的变化与位移变化相位差90度,速度峰值落在位移波峰或波谷;3. 加速度曲线为谐波的导数形式,加速度的变化与位移变化相位差180度,加速度峰值落在位移波谷或波峰。
叶片振动的位移、速度和加速度特性对于优化叶片运动控制和减小振动引起的能量损失具有重要意义。
4. 实验总结通过本实验,我们成功测量了叶片振动的位移、速度和加速度曲线,并分析了其特性和规律。
实验结果表明,叶片振动呈现周期性变化,具有简谐振动的特点。
这对于工程应用中的叶片运动控制具有重要意义。
同时,本实验还展示了使用振动测量系统进行叶片振动测量的方法和步骤,为后续的研究和应用提供了基础数据和方法。
通风工程检测、调试技术方案(1)调试用仪器仪表要求1)通风与空调系统调试所使用的仪器仪表应有出厂合格证明书并通过合法计量检验部门的检定。
2)严格执行计量法,不准在调试工作岗位上使用无检定合格印、证或超过检定周期以及经检定不合格的计量仪器仪表。
3)系统调试所使用的测试仪器和仪表,性能应稳定可靠,其精度等级及最小分度值应能满足测定的要求,并应符合国家有关计量法规及检定规程的规定。
综合效果测定时,所使用的仪表精度级别应高于被检对象的级别。
4)搬运和使用仪器仪表要轻拿轻放,防止震动和撞击,不使用仪表时应放在专用工具仪表箱内,防潮、防污秽等。
(2)主要施工机具1)常用仪表:测量温度的仪表(如温度计);测量湿度的仪表(如干湿球计);测量风速的仪表(如转子风速仪、热球风速仪);测量风压的仪表(如毕托管、微压计);其他常用的电工仪表、转数表、粒子计数器、声级仪等。
2)常用工具:钢卷尺、手电钻、活扳子、改锥、克丝钳子、电筒、木梯、对讲机、计算器、长杆等。
(3)作业条件1)系统调试应包括:设备单机试运转及调试;系统无生产负荷下的联合试运转及调试。
2)通风空调系统安装完毕,并经监理单位、设计单位与建设单位等相关人员进行全面检查,全部符合设计、工程质量验收标准及合同的要求,才能进行运转和调试。
3)通风空调系统运转所需用的水、电、汽及压缩空气等,应具备使用条件,现场清理干净。
4)通风与空调工程的系统调试由施工单位负责,监理单位监督,设计单位与建设单位参与和配合。
系统调试前做好下列工作准备:经监理单位审批同意运转调试方案,内容包括调试目的要求、时间进度计划、调试项目、程序和采取的方法等。
按运转调试方案,备好仪表和工具及调配记录表格。
(4)操作工艺1)准备工作熟悉空调系统设计图纸和有关技术文件,室内、外空气计算参数,风量、冷热负荷、恒温精度要求,各风口风量、风速等,弄清送(回)风系统、供冷和供热系统、自动控制系统的全过程。
调试人员会同设计、施工和建设单位深入现场,查清空调系统安装质量不合格的地方,清查施工与设计不符的地方,记录在缺陷明细表内,限期修改完。