Gaussian软件应用——高精度能量模型
- 格式:doc
- 大小:29.50 KB
- 文档页数:4
Gaussian03软件在有机化学教学中的应用-精选教育文档有机化学是化学、药学等专业一门重要的基础课。
由于原子、分子的电子结构或几何结构为微观结构,无法通过肉眼进行直接的观察,并且微观结构难以用宏观结构进行科学的描述,所以学生很难通过抽象思维对微观结构有一个准确无误的刻画。
如何使学生将抽象的化学知识简单化、形象化,帮助学生理解复杂的有机反应机理,提高学习积极性,这对教师的教学方法和手段有很高的要求。
随着计算机技术的迅猛发展,计算机辅助教学已逐步深入到各化学课程的教学中,部分量子化学软件也逐步开始走进了化学课堂。
这对突破教学难点、提高课堂教学效率有积极的作用。
Gaussian03是目前计算化学领域内最流行、应用范围最广的商业化量子化学计算程序包,最早是由美国卡内基梅隆大学的约翰?波普(John A Pople,1998年诺贝尔化学奖)在上世纪60年代末、70年代初主导开发的。
它是一个量子化学综合软件包,可以进行各种类型的从头算、半经验和密度泛函计算。
它可以预测气相和液相条件下,分子和化学反应的许多性质,包括:分子的能量和结构、过渡态的能量和结构、振动频率、红外和拉曼光谱、热化学性质、成键和化学反应能量、化学反应路径、分子轨道、原子电荷、电多极矩,等等。
面友好(有GaussianView图形界面显示窗口),便于操作。
目前,该软件不仅在科学研究方面发挥了重要的作用,同时也成为有机化学教学中重要的工具。
与传统教学手段相比较,它将抽象的化学知识简单化、形象化,帮助学生理解复杂的有机反应机理,使教学过程变得明了、清晰,提高了学生学习的积极性。
本文根据有机化学的教学特点,介绍Gaussian03软件在教学方面的一些应用。
一、显示分子立体模型在有机化学教学中,让学生掌握的基本思想是“结构决定性质,性质决定用途”。
首先要对分子的结构有充分的认识和理解,这部分既是重点又是难点。
在教学中,通过GaussianView,可以建立显示化合物的3D分子结构,且演示模型有球棍模型、Stuart模型、Sticks模型及金属线模型,使学生既充分地、直观生动地认识了分子结构,又加强了对空间思维、形象思维的培养。
2014年下学期城南中学人防应急疏散演练方案为增强中学生人民防空意识和国防观念,进一步加强师生安全教育,提高广大师生应对突发事件的能力,保障战时人民防空和平时应急救灾的组织指挥能力,避免在火灾、地震等突发事件来临时学生惊慌失措、盲目逃生。
由市人防办统一部署,结合10月31日防空警报试鸣,组织我校师生应急疏散演练。
一、指导思想为提高学校师生安全应急能力,增强师生安全防范意识,提高师生自我保护能力,确保师生人身安全,避免安全事故的发生,同时检验学校应急疏散意外事故处置能力,特制定本演练方案。
二、演练目的(一)、使师生进一步掌握在应急突发事件中疏散撤离的基本常识。
(二)、使师生熟悉疏散撤离的路线、方法,通过演练缩短疏散时间。
(三)、检验学校制定的“应急疏散预案”是否科学合理、具备可行性;检验学校在应急突发事件中的指挥、疏散、安保、救护工作是否及时迅速,准确到位。
三、演练时间:2014年10月31日上午10时,开始疏散, 10时20分演练结束。
四、演练集结地点:学校大操场五、组织机构和职责(一)、疏散安全工作领导小组组长:林庆根副组长:兰志雄成员:凌运秀钟竹年程国贵丁红来张志辉杨华辉成波勇张雄勇刘劲松各班班主任(二)、各疏散点指挥责任人:1、大操场:林庆根钟竹年成波勇张雄勇2、教学楼各楼层:各班班主任各下班老师(如教师在他班上课,可就地指挥学生疏散)各班主任和各下班老师应控制班级与班级之间撤离的时间,维持秩序,,防拥挤、防踩踏。
4、楼梯口:各楼梯口负责人需要控制学生通过速度,维持秩序,,防拥挤、防踩踏。
5、总协调:林庆根6、有关机构负责人(1)、指挥员(负责现场指挥并计时):成波勇(指挥)、张雄勇(计时,协助指挥)(2)、与有关部门紧急联系或寻求救援负责人:张志辉(3)、临时救护负责人:刘劲松(4)、人数清点负责人:钟竹年六、疏散方案(一)、疏散具体步骤10时,预先警报信号响起,全体师生紧急疏散到操场等空旷地带;10时8分,空袭警报信号响起,全体师生隐蔽在操场等场所;10时21分,解除警报信号响起,演练结束,全体师生结束隐蔽恢复正常教学秩序。
Gaussian简介Gaussian简介Gaussian是做半经验计算和从头计算使用最广泛的量子化学软件,可以研究:分子能量和结构,过渡态的能量和结构化学键以及反应能量,分子轨道,偶极矩和多极矩,原子电荷和电势,振动频率,红外和拉曼光谱,NMR,极化率和超极化率,热力学性质,反应路径。
计算可以模拟在气相和溶液中的体系,模拟基态和激发态。
Gaussian 03还可以对周期边界体系进行计算。
Gaussian是研究诸如取代效应,反应机理,势能面和激发态能量的有力工具。
功能①基本算法②能量③分子特性④溶剂模型Gaussian03新增加的内容①新的量子化学方法②新的分子特性③新增加的基本算法④新增功能(1)基本算法可对任何一般的收缩gaussian函数进行单电子和双电子积分。
这些基函数可以是笛卡尔高斯函数或纯角动量函数多种基组存储于程序中,通过名称调用。
积分可储存在内存,外接存储器上,或用到时重新计算对于某些类型的计算,计算的花费可以使用快速多极方法(FMM)和稀疏矩阵技术线性化。
将原子轨(AO)积分转换成分子轨道基的计算,可用的方法有in-core(将AO积分全部存在内存里),直接(不需储存积分),半直接(储存部分积分),和传统方法(所有AO 积分储存在硬盘上)。
(2)能量使用AMBER,DREIDING和UFF力场的分子力学计算。
使用CNDO, INDO, MINDO/3, MNDO, AM1,和PM3模型哈密顿量的半经验方法计算。
使用闭壳层(RHF),自旋非限制开壳层(UHF),自旋限制开壳层(ROHF) Hartree-Fock 波函数的自洽场SCF)计算。
使用二级,三级,四级和五级Moller-Plesset微扰理论计算相关能。
MP2计算可用直接和半直接方法,有效地使用可用的内存和硬盘空间用组态相互作用(CI)计算相关能,使用全部双激发(CID)或全部单激发和双激发(CISD)。
双取代的耦合簇理论(CCD),单双取代耦合簇理论(CCSD),单双取代的二次组态相互作用(QCISD), 和Brueckner Doubles理论。
Gaussian反应过程能量计算一、概述Gaussian计算是一种常用的计算化学方法,通过计算分子结构和反应能量,可以帮助化学研究人员理解分子的结构和性质,以及预测反应的速率和产物。
其中,Gaussian反应过程能量计算是指利用Gaussian软件来计算反应的过渡态能量、反应能垒以及反应热等参数。
本文将介绍Gaussian反应过程能量计算的基本原理和方法。
二、原理1. 反应过渡态在化学反应中,反应过渡态是反应物转变为产物的临时结构,其能量高于反应物和产物。
Gaussian软件可以通过计算反应物、产物和过渡态的能量,来判断反应的稳定性和速率。
2. 能量计算方法Gaussian软件使用量子化学方法来计算分子和反应的能量。
常用的方法包括DFT(密度泛函理论)、HF(Hartree-Fock方法)和MP2(二阶摄动方法)等。
这些方法可以通过数值计算,求得分子的电子结构和能量。
三、计算步骤1. 绘制反应势能面在进行反应过程能量计算之前,需要首先绘制反应势能面图。
通过对反应物、产物和过渡态的几何结构进行优化,可以得到它们的稳定构型和能量。
2. 选择计算方法根据反应的性质和分子的大小,选择合适的计算方法。
一般情况下,DFT方法适用于大分子和复杂体系的能量计算,而HF方法则适用于小分子和简单体系。
3. 进行能量计算利用Gaussian软件进行能量计算,得到反应物、产物和反应过渡态的能量值。
通过对比能量值的大小,可以确定反应的稳定性和能垒大小。
四、实例分析以SN2反应为例,假设反应物为溴甲烷(CH3Br),产物为溴乙烷(CH3CH2Br),过渡态为CH3-Br-C2H5。
通过Gaussian软件优化得到这三种分子的几何结构和能量分布。
选择合适的计算方法,进行能量计算。
最终得到反应过渡态的能量高于反应物和产物,证明该反应是一个SN2反应。
五、结论通过Gaussian反应过程能量计算,可以得到反应的能量参数,帮助化学研究人员理解反应的机理和动力学。
Gaussian软件应用——高精度能量模型第七章高精度能量模型前两章中,我们讨论了不同理论方法和基组的计算精度,也讨论了各自的优缺点,本章讨论得到非常精确结果的方法.高精度模型的建立,能够是关于能量的计算精度达到2kcal/mol的差距.一般的, 达到这样的精度需要一个庞大的QCISD(T)计算,甚至对于小分子的处理,其运算量也是惊人的.G2,CBS-4,CBS-Q方法是包括了一系列采用特别方法处理的计算的组合,可以提供更为精确的结果.7.1 预测热化学我们主要讨论的是原子化能,电子亲和势,离子化能和质子亲和能.原子化能原子化能是分子与组成分子的原子的能量差,如对于PH2,其原子化能为E(P)+2(EH())-R(PH2)例7.1 文件e7_01 PH2的原子化能采用B3LYP/6-31G(d)优化几何构型,计算零点能(矫正因子0.9804),用B3LYP/6-31+G(d,p)计算能量.得到的原子化能为148,3kcal/mol,实验值为144,7,误差3.6kcal/mol电子亲和势电子亲和势电子亲和势指体系增加一个电子后能量的变化,计算方法为中性分子和其阴离子的能量差.同上例中计算方法得到的PH2电子亲和势为1.24eV,实验值1.26eV, 误差0.02eV,大约0.5kcal/mol离子化能离子化能指体系减少一个电子的能量的变化,计算方法为中性分子和其阳离子的能量差距.同上两例计算方法得到的离子化能为9.95eV,实验值9,82eV,误差-0.13eV 约-2.9kcal/mol.质子亲和能质子亲和能为体系增加一个质子后的能量变化,计算方法为分子与在其基础上增加一个质子的体系的能量差距.同上例计算方法得到的质子亲和能为185.9kcal/mol,实验值为187.1kcal/mol,差距1.2kcal/mol.7.2 理论模型的评价理论模型一般采用上面的热力学数据来评价7.3 G2分子基(Molecule Set)以及缺陷及对缺陷的解释G2分子基是在55个原子化能,38个离子化能,25个电子亲和势和7和质子亲和能的基础上发展的.这个分子基有很多优点,使得其能够得到精确的热力学结果* 热力学数据一般是很难模拟的,误差产生于模型假设中的缺陷.* 实验值也是有误差的* 该分子基包含了大量的原子* 该分子基包含了大量的特殊体系,如离子,开壳层体系等其缺点是,* 其所处理的分子体系小,推广到大的体系是必须要小心* 不是所有的键型都支持的,比如不包括环状分子,没有C-F键* 只能研究前两周期原子,推广到其他原子,如过渡金属可能会有问题* 由于其产生于非常精确的热力学数据,其本身是武断的,甚至对于一些一二周期原子的双原子分子不能全部得到精确结果这一点本身很重要,因为从一小部分分子的某个热力学数据得到的理论模型在应用上必须小心.7.4 理论模型的相对精确性通过对半经验(AM1),HF方法,MP(MP2),DFT(B3LYP, SVWN)等理论方法的比较,统计,有如下结论* 最精确的方法是B3LYP/6-311+G(3df,2df,2p)//B3LYP/6-31G(d),注意其表示用后一种方法优化结构,用前一种方法计算能量及性质.这不是最昂贵的计算方法.* 一般的,由中等级理论进行优化,再进行高等级计算的方法比完全采用高等级方法的结果要好.采用高等级的计算,不能够为几何优化带来更为精确的结果.* 基组大小的增加对于几何优化是不必须的,只是对能量的精确描述上有必要* 半经验方法与Hartree-Fock方法比较,其绝对平均误差要小,但最大误差要大, 说明其经验值中包含了一些电子相关,但对于一些体系的处理明显不好,比如离子化能和质子化能的计算* 在B3LYP水平上进行的计算结果,在几何优化上有明显的优势.这些结论显示,* 如果可能,使用B3LYP/6-31G(d)进行几何构型和零点能计算,使用B3LYP的最大基组进行能量计算* 一些研究者推荐使用HF/6-31G(d)零点能和热力学矫正,对于一些大的体系,进行,HF优化和频率分析,然后进行B3LYP/6-31G(d)能量计算比使用B3LYP/6-31G(d)要有效率* 当B3LYP/6-31G(d)太昂贵而无法进行优化和频率分析时,可以使用HF/3-21G进行优化和单点能及矫正 * 使用AM1进行优化的体系,进行B3LYP的单点能计算也能明显提高最终结果的精度.7.5 组合方法一些组合方法用于得到更为精确的结果.这里讨论Gaussian-n方法和完全基组方法(CBS)Gaussian-1 和Gaussian-2理论Gaussian-1和Gaussian-2方法是在优化好的结构上对能量进行修正.下面是Gaussian-1 (G1)方法的处理步骤第一步: 采用HF/6-31G(d)产生初始的几何构型和频率分析得到零点能ZPE, 矫正因子0.8929第二步: 从上一步的优化结果开始,采用MP2(Full)/6-31G(d)进行几何优化.所得几何构型用于后面的计算第三步: 计算基态能量Ebase,在上一步得到的几何结构上采用MP4/6-311G(d,p) 计算.得到的数值在后面进一步矫正第四步: 增加弥散函数,采用MP4/6-311G+(d,p)计算基态能量,与上一个数值比较得到dE+第五步: 增加高级极化函数,采用MP4/6-311G(2df,p)计算基态能量,与第三步的数值比较得到dE2df.如果该数值为正,则设该项为零第六步: 采用QCISD(T)/6-311G(d,p)计算基态能量,差值为dEQCI第七步: 矫正第六步的结果,dEHLC=-0.00019na + -0.00595nb,其中na,nb是处于alpha和beta自旋状态的电子的数目,这样,就得到的G1能量EG1 = Ebase + dE+ + dE2df + dEQCI + dEHLC + ZPE这样得到的EG1和QCISD(T)/6-311+G(2df,p)得到的结果近似,但速度要快的多.G2方法在G1的基础上,增加处理步骤第八步: 运行MP2/6-311+G(3df,2p)能量计算,dEG2 = dE+2df - dE+ - dE2df + dE3d2p将G1方法中的2df项进行修正,由于所需要的MP2计算可以在前面找到,最终的dEG2的计算可以表示为 dEG2 = E(8) - E(5,MP2) - E(4,MP2) + E(3,MP2)其中数字代表进行的步骤,后面的方法为该步骤中该理论的能量值.第九步:将G1中的dEHLC修正,增加0.00114nb,记为dHLCG2能量为EG2 = EG1 + dEG2 + dHLC例7.5 文件e7_05 PH3质子化能(PA)的G2计算结果如下方法G1 G2 G2(MP2) 实验PA 186.10 186.14 186.80 187.1CPU 682.4 829.1 607.5其中G2(MP2)方法是在G2基础上的更为廉价的方法.差距均在2kcal/mol以下.下面是对三种方法的统计结果方法平均绝对误差最大误差G1 1.53 7.4G2 1.21 4.4G2(MP2) 1.58 6.3G2方法是最精确的,也是最昂贵的方法,G2(MP2)在三种方法中是较为经济而且结果也较好的.注意随体系的增加,G2方法的特点就更为明显完全基组方法(Complete Basis Set Motheds, CBS)这个名字本身代表了对从热力学头算方法的最大误差来源-对基组的切断的修正.和G2理论一样,该方法的能量也是有一系列的修正得到的.计算方法基于如下的原理* 对总能量的连续的贡献随着微扰的等级升高而降低,比如对于氧分子体系解离能的计算,精确到0.001Hartree,用SCF方法需要6个描述,而MP2方法需要3个,更高等级的微扰只需要2个.CBS方法基于此而随着计算理论等级的增加采用较小的基组.* CBS方法采用成对中性轨道扩张的渐进收敛,从有限元基组外推建立完全基组 CBS方法一般包括大基组的HF计算,中等基组的MP2计算,以及一个中等略低等级基组的高精度计算,见下表CBS-4 CBS-Q几何优化HF/3-21G(d) MP2/6-31G(d)ZPE(校正因子) HF/3-21G(d) (0.91671) HF/6-31G (0.91844)SCF能量HF/6-311+G(3d2f,2df,p) HF/6-311+G(3d2f,2df,2p)二级修正MP2/6-31+G MP2/6-311+G(3d2f,2df,2p)CBS外推>=5个构造>=10高等级校正MP4(SDQ)/6-31G MP4(SDQ)/6-31+G(d(f),d,f)QCISD(T)/6-31+G经验校正单或双电子高等级校正双电子高阶校正自旋校正自旋校正,对钠的核校正CBS-4比其他两个方法要便宜,另外的CBS方法是CBS-APNO,更加精确也更加昂贵例7.6 文件e7_06 PH3质子化能的CBS计算结果如下方法CBS-4 CBS-Q 实验PA 189.25 186.24 187.1CPU 256.7 708.7两个方法都得到很好的结果.当得到同样精度结果时,当然便宜的方法是好的.下面是CBS和G2方法的统计结果方法绝对平均误差最大误差相对CPU时间PH3 F2CO SiF4CBS-4 1.98 7.0 1.0 1.0 1.0G2(MP2) 1.58 6.3 2.4 10.3 11.5CBS-Q 1.01 3.8 2.8 8.4 12.7G2 1.21 4.4 3.2 25.9 59.1能够达到误差小于2kcal/mol的精确标准,CBS-4是最便宜的.CBS-Q有比G2好的结果,同时也便宜很多练习练习7.1 文件7_01a~d CBS-4的热力学数据计算水的四个热力学数据,在原子化能和电子亲和势方面有很精确的结果,其他两项也符合很好练习7.2 文件7_02a~c 臭氧的氯化解离练习6.9中讨论过该反应,当时没有得到好的结果,下面是高精度计算的结果dH CPUG2 -33.1 6172.3CBS-4 -41.4 1109.4CBS-Q -38.4 3384.4实验-39.1很显然CBS-Q方法得到了很好的结果。