3-1一维单原子链振动解析
- 格式:ppt
- 大小:1.76 MB
- 文档页数:18
一维单原子链晶格振动解析步骤一维单原子链模型是固体物理中的经典模型之一,用于描述晶体中原子的振动行为。
在这个模型中,原子由质量为m的核和劲度系数为K的弹性相互作用构成。
通过对一维单原子链的晶格振动进行分析,可以更好地理解固体中的声子模式和声子色散关系。
下面将介绍一维单原子链晶格振动解析步骤:第一步:建立模型首先,我们要建立一维单原子链的模型。
假设晶格常数为a,原子间距为a/2,一维晶格中的每个原子都沿着x轴定位。
原子间的相互作用由弹簧模型描述,即相邻原子间的相互作用劲度系数为K。
这个模型是一个简单的原子链模型,可以通过它来研究晶格振动的基本性质。
第二步:求解运动方程接下来,我们需要求解原子在这个一维单原子链中的运动方程。
假设第n个原子的位移为Un(t),那么根据牛顿第二定律,可以得出该原子的运动方程为:m*Un’’(t) = -K*(Un(t+0) - 2*Un(t) + Un(t-0))上式中,Un’’(t)表示Un对时间的二阶导数,-K*(Un(t+0) -2*Un(t) + Un(t-0))表示受到的弹性相互作用力。
第三步:假设解的形式由于原子在一维单原子链中的振动属于谐振动问题,我们可以假设原子的位移满足解的形式为:Un(t) = An*exp(i*(k*n*a - ω*t))其中,An是振幅,k是波数,ω是角频率,n是原子的编号。
将这个解代入到运动方程中,可以得到关于角频率ω和波数k的关系式,即声子色散关系。
声子色散关系描述了声子的能量随波数变化的关系,是描述晶体中声子性质的重要工具。
第四步:得到声子色散关系将解的形式代入运动方程,我们可以得到关于角频率ω和波数k的关系式。
具体地,我们可以得到一维单原子链中的声子色散关系为:ω(k) = 2*sqrt(K/m)*|sin(ka/2)|声子色散关系描述了一维单原子链中的声子能量随波数变化的规律。
从这个关系式可以看出,一维单原子链中的声子有声学支和光学支两种振动模式,它们的能量随波数的变化方式不同。
第三章晶体振动和晶体的热学性质(12学时)晶体内的原子并非在各自的平衡位置上固定不动,而是围绕其平衡位置作振动,并且由于原子之间存在着相互作用力,因而各个原子的振动是相互联系着的,这样在晶体中就形成了各种模式的机械波。
晶格振动对固体的比热、热膨胀、热导等性质有重要的影响。
本章将向大家介绍晶格振动的一般性质。
基本要求:掌握一维晶体振动模式的色散关系,晶格振动的量子化、声子的概念。
爱因斯坦模型和德拜模型解释固体的比热性质。
了解非谐效应,确定振动谱的实验方法以及晶格的自由能。
基本内容:1、一维原子链的振动,色散关系、格波2、晶格振动的量子化、声子,长波近似3、固体比热,爱因斯坦模型和德拜模型4、非简谐效应5、确定振动谱的实验方法,晶格的自由能重点:一维晶体振动模式的色散关系,晶格振动的量子化、声子的概念,爱因斯坦模型和德拜模型。
难点:晶格振动的量子化、声子的概念。
§3.1 一维原子链的振动晶格振动最简单的情形就是一维晶格的振动,本节将介绍一维原子链的振动情况及其色散关系。
通过简单情形的讨论,把所得的一些主要结论和主要方法加以推广,应用到复杂的三维晶格的振动。
一、一维简单格子的情形1、一维简单格子的振动晶体内的原子围绕其平衡位置在不停地振动,由于原子间存在着相互作用力,各个原子之间的振动相互关联,从而在晶体中形成了各种模式的机械波。
(1)、简谐近似和最近邻近似一维简单格子是最简单的情形,考虑一个一维原子链,每个原子具有相同的质量m,平衡时原子间距为a。
由于热运动各原子离开了平衡位置,用x n代表第n个原子离开平衡位置的位移,第n个和第n+1个原子间的相对位移就为x n+1-x n,和第n-1个原子间的相对位移就为x n-x n-1。
只考虑最近邻原子间的简谐相互作用,其恢复力常数为 。
(2)、运动方程对第n 个原子进行受力分析,列牛顿定律方程可得运动方程为:)()(1122-+---=n n n n nx x x x dtx d m ββ )2(1122n n n nx x x dtx d m -+=-+β(n=1、2、…、N ) 式中β为原子间简谐相互作用的恢复力常数。