§3-2 一维双原子链的晶格振动
- 格式:ppt
- 大小:136.50 KB
- 文档页数:38
位势的一维双原子链的晶格振动色散曲线一维双原子链是研究晶格振动的常见模型之一,其可用于解释晶体的声学和光学性质。
在研究晶格振动的过程中,色散曲线是一个重要的参考内容,它描述了晶格振动的频率与波矢之间的关系。
本文将介绍一维双原子链的晶格振动色散曲线的相关内容。
一维双原子链是由两种原子按照ABAB...的周期性排列形成的周期性结构。
为了便于分析,我们假设这两种原子的质量分别为m1和m2,弹性常数分别为k1和k2。
通过应用牛顿定律和胡克定律,可以得到一维双原子链中晶格振动的运动方程。
在固体物理学中,将波的传播方向为x轴,位置为x的原子质点振动的位移为u(x, t),根据牛顿定律和胡克定律,可以得到一维双原子链的晶格振动的运动方程为:m1∂²u(x, t)/∂t² = k1[u(x+a, t) - u(x, t)] + k2[u(x-a, t) - u(x, t)]m2∂²u(x, t)/∂t² = k2[u(x+a, t) - u(x, t)] + k1[u(x-a, t) - u(x, t)]其中,a为晶格常数,表示相邻原子之间的距离。
通过将位移u(x, t)展开为平面波的形式,可以将上述两个方程变换为光学模式和声学模式的形式,从而得到晶格振动的色散关系。
对于光学模式,位移u(x, t)可以表示为:u(x, t) = A1exp[i(kx-ωt)] + A2exp[-i(kx-ωt)]其中,A1和A2为振幅,k为波矢,ω为角频率。
将该位移代入运动方程中,可以得到:m1ω² = 2k1 - 2k1cos(ka)m2ω² = 2k2 - 2k2cos(ka)并且,根据周期性边界条件,可以得到波矢k满足的条件为:exp(ika) + exp(-ika) = 2cos(ka) = -m2/m1通过解以上方程组,可以得到光学模式的色散关系,即角频率ω与波矢k之间的关系。
一维双原子链晶格振动光学支与声学支频隙宽度一维双原子链晶格是一个理想模型,用于研究晶体中原子振动的性质。
它由两种原子按特定顺序排列而成,可以看作是一条由不同类型原子组成的链。
在这个模型中,每个原子可以看作是一个质点,它们在平衡位置附近以简谐振动的方式运动。
在一维情况下,原子只能在链的方向上振动,其振动模式有两种:光学模式和声学模式。
对于一维双原子链晶格,振动可以用简谐振动的方程描述:m₁x₁''(t) + k₁(x₁(t) - x₀(t)) + k₂(x₂(t) - x₁(t)) = 0,m₂x₂''(t) + k₂(x₂(t) - x₁(t)) + k₃(x₃(t) - x₂(t)) = 0,...mₙxₙ''(t) + kₙ(xₙ(t) - xₙ₋₁(t)) + kₙ₊₁(xₙ₊₁(t) - xₙ(t)) = 0,其中,m₁、m₂、...、mₙ分别为原子的质量,k₁、k₂、...、kₙ分别为原子之间的弹性系数,x₁(t)、x₂(t)、...、xₙ(t)分别为原子的位移。
这个方程组可以通过求解本征频率和模位移来描述晶格的振动性质。
根据以上方程,可以得到一维双原子链晶格的频率-波矢关系,即声学支和光学支的频率分布。
在这个关系中,频率由波矢 k 决定,光学支频率通常高于声学支频率。
对于声学支,原子振动是同相的,在低频区域可以近似看作是一组刚性振动模式。
在一维双原子链晶格中,声学支的频率在特定波矢区间内存在频隙,即不存在振动模式。
这个频隙的宽度取决于原子质量、弹性系数和晶格常数等因素。
频隙宽度越大,声学支频率范围限制的越小。
对于光学支,原子振动是异相的,在低频区域振动模式不存在。
光学支的频率范围从声学支频率频隙起始位置开始,直至无穷大。
这个频率范围内存在多个振动模式,频率越高,振动模式的数量越多。
一维双原子链晶格的声学支和光学支频隙宽度是研究材料的重要参数,能够提供有关晶体性质的信息。