线性规划最优解的几种可能情况
- 格式:doc
- 大小:22.50 KB
- 文档页数:1
线性规划的解与最优解知识点总结在现实生活和工作中,我们经常会遇到需要最优化某个目标函数的问题。
线性规划作为一种常见的数学优化方法,在各个领域中得到了广泛应用。
它能够帮助我们在一定的约束条件下,找到目标函数的最佳解。
本文将对线性规划的解与最优解的相关知识点进行总结。
1. 基本概念线性规划问题由目标函数和一组线性约束条件组成。
目标函数的形式通常是最大化或最小化一些变量的线性组合,而约束条件则给出了这些变量的取值范围。
线性规划问题的一般形式如下:```max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0```其中,Z表示目标函数的值,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件中的系数,b₁, b₂, ..., bₙ为约束条件的右边常数,x₁,x₂, ..., xₙ为决策变量。
2. 解的存在性线性规划问题存在三种解的情况:无解、有界解和无界解。
如果约束条件与目标函数之间存在矛盾,例如出现一个约束条件为 a₁₁x₁ +a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,而目标函数的系数为 c₁ > a₁₁,那么这个线性规划问题就没有解。
有界解指的是线性规划问题在满足所有约束条件的情况下,能够找到目标函数的最大值或最小值。
无界解意味着目标函数可以无限制地增大或减小。
3. 最优解的性质线性规划问题的最优解具有以下性质:- 最优解必然出现在可行域的顶点上。
可行域是指所有满足约束条件的解的集合,而顶点则指可行域的边界上的点。
- 如果最优解存在,那么至少存在一个顶点是最优解。
- 如果可行域是有限的,则一定存在一个顶点是最优解。
- 如果最优解存在,那么一定有一条或多条约束条件在最优解上取等号。
线性规划问题的最优解引言线性规划是运筹学的一个基本分支,其应用极其广泛,其作用以为越来越多的人所重视。
线性规划主要就实际问题抽象成数学形式,即求一组变量的值,在满足一定的约束条件下,是某个目标达到最小或最大,而这些约束条件用可以用一组线性不等式或线性方程来表示。
而求得目标函数的最优解尤为重要,本文就线性规划问题的最优解求解方法作出阐述,并举出实例加以强化,同时也指出了线性规划问题应用于生产与运作管理的重要性。
1.线性规划问题的最优解探讨1.1线性规划问题的提出考虑下面的线性规划问题的标准型: 目标函数:CX Z =min (1)约束条件:⎩⎨⎧≥=0X b AX (2)其中,),,,(21n c c c C =,T n x x x X ),,,(21 =,T m b b b b ),,,(21 =,n m ij a A ⨯=)(阶矩阵。
设B 是A 中m 个线性无关的列向量构成的一个基,m m ij a B ⨯=)( 阶矩阵,这样将矩阵A 分成两个部分,即A=),(N B ,X=),(N B X X ,C=()N B C C ,,B X ,B C 为基B 对应的非基变量和系数,N X ,N X 为N 对应的非基变量和系数,这样将线性规划问题改写为:minZ ()N B C C ,=⎥⎦⎤⎢⎣⎡B B X X (3)约束条件:⎪⎩⎪⎨⎧≥=⎥⎦⎤⎢⎣⎡0),(NB N B X X bX X N B (4)经过矩阵变换,得出关于基B 的标准型如下:1min -=B C Z B +(N C -1-B C B N)N X (5)约束条件:⎩⎨⎧≥=+--0,11NB N B X X bB NX B X (6)T m b b b b B ),,,(''21'1 =-⎪⎪⎪⎪⎪⎭⎫⎝⎛=++++++-mnmm mm nm m n m m a a a a a a a a a N B2122212121111 将(5)(6)展开为:=Z min '1i mi i b c ∑=+∑+=nm j 1('1ij mi i j a c c ∑=-)j x (7)约束条件:i nm j j iji b x ax '1'=+∑+= ,m i ,,2,1 = (8)0≥j x ,n j ,,2,1 = (9)令 '10i mi i b c Z ∑== , =j σ'1ij mi i j a c c ∑=- ,n m m j ,,2,1 ++= ,称j σ为检验数。
线性规划中的最优解问题教案:线性规划中的最优解问题引言:线性规划是一种优化方法,用于解决一系列约束条件下的最优决策问题。
通过数学模型的构建和数学方法的运用,可以找到问题的最佳解。
本教案将介绍线性规划中的最优解问题,并帮助学生理解和应用这一概念。
一、最优解问题的定义与举例在线性规划中,最优解是指在满足一组约束条件下使目标函数取得最大(或最小)值的决策变量取值。
最优解问题的一般形式为:Maximize(或Minimize)目标函数Subject to 约束条件例如:假设一个公司生产两种产品A和产品B,在资源有限的情况下,公司想要最大化利润。
产品A的利润为3万元/单位,产品B的利润为4万元/单位。
产品A每单位需要消耗2小时的人工时间和1千克的原材料,产品B每单位需要消耗1小时的人工时间和2千克的原材料。
公司每天的人工时间和原材料都有限,分别为8小时和10千克。
现在我们要决定生产多少单位的产品A和产品B,以实现最大利润。
二、线性规划模型的建立1.确定决策变量:设产品A的产量为x单位,产品B的产量为y单位。
2.目标函数的建立:最大化利润Maximize Z = 3x + 4y3.约束条件的建立:2x + y ≤ 8x + 2y ≤ 10(x,y ≥ 0)三、图像表示与解的求解我们可以将约束条件绘制在坐标系中,形成一个可行域。
然后,通过目标函数的等高线绘制,找到该函数在可行域上的最大(或最小)值。
四、解的分析与最优解求解经过分析,我们可以发现:当x=2,y=3时,目标函数取得最大值 Z = 18 万元。
五、应用实例此节可以选取一个实际的应用例子,引导学生将所学知识应用于实际情境中,并讨论如何优化问题的操作。
六、总结与拓展通过本教案,学生初步了解了线性规划中的最优解问题及其求解方法。
线性规划在许多实际问题中都有广泛的应用,例如生产计划、资源分配等。
而在实际问题中,有些约束条件可能是非线性的,这时需要使用非线性规划等其他方法进行求解。
复习题一、问答题1、线性规划最优解的存在有哪几种情况?简述各种情况在单纯形法求解过程中的表现?1(1)、在遇到退化的基可行解时、单纯形法求解出现循环时如何处理? 2、什么是影子价格?影子价格有什么作用?3、什么是平衡运输问题?该类问题数学模型上有什么样的特征?4、分支定界法包含两个重要概念,即“分支”和“定界”。
试述这两个概念的基本含义!5、什么是增广链?如何确定调整量?如何确定新的流?6、试阐述具有不同等级目标规划求解的基本过程。
7、试述目标规划问题的解决思路。
8、在图论中什么是最小生成树,试述破圈法求最小生成树的方法。
9、图论中的图的涵义是什么? 10、在图论中什么是生成子图? 11、在图论中网络的含义是什么?12、如何识别线性规划问题有多重最优解? 13、如何识别运输问题有多重最优解? 一、问答题1、答:线性规划问题的最优解主要存在四种情况:1)唯一最优解。
判断条件:单纯形最终表中所有非基变量的检验数均小于零 2)多重最优解:判断条件:单纯形最终表中存在至少一个非基变量的检验数等于零。
3)无界解。
判断条件:单纯形法迭代中某一变量的检验数大于零,同时它所在系数矩阵列中的所有元素均小于等于零4)无可行解。
判断条件:在辅助问题的最优解中,至少有一个人工变量大于零2、答:把在一定条件下的最优生产方案中,某种资源增加或减少一个单位给总收益带来的改变量,称为此种资源在一定条件的影子价格。
作用:a.能为经理的经营决策提供重要的指导(可举例说明)b.为重新分配一个组织内的资源提供依据。
3、答:平衡运输问题指的是总供给等于总需求的运输问题。
其特点如下: 1)系数矩阵全部由0和1两种元素值组成,前m 行每行有n 个1,后n 行每行有m 个1。
每列又且只有2个1,P ij 向量的1分别在第i 行和第m+j 行。
2)共有m*n 个决策变量,m+n 个约束方程,基变量却只有m+n-1个。
3)任何一个平衡运输问题至少有一个最优解4、答:“分支”:若x k 不为整数,将对应的线性规划问题分别加入两个不等式,即[]k k b x ≤和[]1+≥k k b x 。
97二.求解线性规划问题时可能出现哪几种结果?哪些结果反映建模时有错误? 如何改正这些错误? 1.唯一最优解 、2.无穷多最优解3.无界解4.无可行解;在应用上,当线性规划问题出现无界解和无可行解两种情形时,说明线性规划问题的模型有问题。
a 、出现无界解,是由于线性规划模型中缺乏必要的约束条件,因此,增加恰当的约束条件,使出现有界的可行域,即可解决问题; b 、出现无可行解,是因为线性规划模型中的约束条件相互冲突, 需要修改模型后再进行求解。
二、在确定初始可行解时,什么情况下要在约束条件中增添人工变量?在目标函数中人工变量前的系数为(-M )的经济意义是什么? 如果线性规划的标准形式中无现成的的初始可解B=I 时,可采用人工变量法获得的初始可行解 ;(-M )称为“罚因子”,既只要人工变量取值大于零,目标函数就不能实现最优。
三.什么事线性规划问题的标准形式?如何讲一个非标准型的线性规划问题转化为标准形式? a) 约束条件都是等式; b) 等式约束的右端项为非负的常数; c) 每个变量都要求取非负数值。
目标函数的转化(最大值) 约束条件的转化(等式约束)变量约束的转化(全正)资源常量的转化(b )=0) 定义可行解 基解 基可行解 最优解 关系? 可行解:凡满足约束条件的解,均可称为可行解。
基解:当X1=0,X2=0时K1=80,K2=60,这也是个特解,(0,0,80,60),因所有的非基变量都等于0,又叫基解。
基可行解:基解满足非负极为基可行解。
最优解:使某线性规划的目标函数达到最优值(最大值或最小值)的任一可行解,都称为该线性规划的一个最优解。
五、试述线性规划的数学模型的结构及各要素的特征? 答:结构包括决策变量,约束条件和目标函数。
特征:(1)方案都用一组决策变量表示,具体方案由决策变量的一组取值决定,且决策变量一般是非负连续的。
(2)模型都用一个决策变量的线性函数衡量决策方案的优略,该函数称为目标函数。
线性规划问题的解法与最优解分析线性规划是一种数学建模方法,用于解决最优化问题。
它在工程、经济学、管理学等领域有着广泛的应用。
本文将介绍线性规划问题的解法和最优解分析。
一、线性规划问题的定义线性规划问题是指在一定的约束条件下,求解一个线性目标函数的最大值或最小值的问题。
线性规划问题的数学模型可以表示为:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject toa₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数的值,c₁, c₂, ..., cₙ为目标函数中的系数,a₁₁,a₁₂, ..., aₙₙ为约束条件中的系数,b₁, b₂, ..., bₙ为约束条件中的常数,x₁,x₂, ..., xₙ为决策变量。
二、线性规划问题的解法线性规划问题的解法主要有两种:图形法和单纯形法。
1. 图形法图形法适用于二维或三维的线性规划问题。
它通过绘制约束条件的直线或平面以及目标函数的等高线或等高面,来确定最优解。
首先,将约束条件转化为不等式,并将其绘制在坐标系上。
然后,确定目标函数的等高线或等高面,并绘制在坐标系上。
最后,通过观察等高线或等高面与约束条件的交点,找到最优解。
图形法简单直观,但只适用于低维的线性规划问题。
2. 单纯形法单纯形法是一种迭代的求解方法,适用于高维的线性规划问题。
它通过在可行域内不断移动,直到找到最优解。
单纯形法的基本思想是从初始可行解开始,每次通过找到一个更优的可行解来逼近最优解。
它通过选择一个基本变量和非基本变量,来构造一个新的可行解。
然后,通过计算目标函数的值来判断是否找到了最优解。
如果没有找到最优解,则继续迭代,直到找到最优解为止。
单纯形法是一种高效的求解线性规划问题的方法,但对于大规模的问题,计算量会很大。
线性规划最优解的几种可能情况:
1.有唯一的最优解(可行域为封闭的有界区域、可行域为非封闭的无界区域)
2.有一个以上的最优解(可行域为封闭的有界区域、可行域为非封闭的无界区域)
3.无界解(目标函数无界,即虽有可行解,但在可行域中,目标函数可以无限增大或无限
减小)
4.无可行解(可行域为空集)
Min型与Max型单纯形表的唯一区别:
检验数反号
Min型单纯形表中
-当检验数均大于等于零时为最优;
-令负检验数中最小的对应变量为换入变量。
Max型单纯形表中
-当检验数均小于等于零时为最优;
-令正的检验数中最大的对应变量为换入变量。
①②②③④⑤⑤⑥⑴⑵⑵⑶
解的几种情况在单纯形表上的体现(Max型):
1)唯一最优解判别:最优表中所有非基变量的检验数非零,则线性规划具有唯一最优解。
2)多重最优解判别:最优表中存在非基变量的检验数为零,则线则性规划具有多重最优解(或无穷多最优解)。
3)无界解判别:某个检验数大于零且换入变量对应的列中所有的分量皆非正,则线性规划具有无界解。
4)无可行解的判断:当用大M单纯形法计算得到最优解并基变量中还存在非零人工变量时,则表明原问题无可行解。
5)退化解的判别:存在某个基变量为零的基本可行解。
4.2 对偶问题的基本性质
1.对称性对偶问题的对偶是原问题。
2.弱对偶性若X是原问题的可行解,Y是对偶问题的可行解,则存在
求目标函数最大化时,在单纯形表中:
①如果检验数均非正,而b列中有负值,这时使用
对偶单纯形法;
②如果所有bi ≥0, 检验数有正值,使用
单纯形法:
③如果b列中有负值,且检验数中有正值,这时必须引入
人工变量,建立新的单纯形表,重新计算。