圆锥曲线焦点弦的一个性质
- 格式:doc
- 大小:1.02 MB
- 文档页数:3
圆锥曲线焦点弦的一个性质及其应用举例22性质 ⑴过 椭圆 x2 + y2 =1(a >b >0)焦点 F 的直 线交椭圆 于 A 、B 两点 ,设 abAF p, BF =q 。
若 A 、B 两点在双曲线的同一支上(此时称 AB 为双曲线的同支焦点弦)AF p, BF =q , 11 则 + = pq 2a b 2 2 = e 2d 0 ,其中d = b c 2是焦准距,cce= 是离心率。
a⑵过双曲线 22x 2 y 2 122 ab(a > 0,b > 0) 焦点 F 的直线交双曲线于 A 、 B 两点,设1 12 b 2则 + = ,其中 d 0 = 是焦准距; p q ed 0 c若 A 、B 两点分别位于双曲线的左支和右支上 时称 AB 为双曲线的异支焦点弦),则1 - 1pqe 2d 0 ,其中d 0 b 2c 是焦准距, ce= 是离心率。
a(抛物线的类似性质,本文从略) 证明:(只证性质⑴ , 性质⑵的证明从略) 由对称性,不妨取 F 为右焦点。
设右准线 l 与 x 轴交于点 D ,过 A 作 AG ⊥l 于 G ,过 B 作 BH ⊥l 于点 H ,则 AG ∥FD ∥ BH ;且由椭圆的第二定义知, |AG|= AF p,|BH|= BF q。
e e e e令|FE|= m ,|ED|= n ,故由 mq,n = pmnpq p = p+q,q =。
∴e(p q)e e因此, b2 m +n = ? c 2pq b2e(p q) 。
c2∴p q 2c2。
又 ec,从而1 1 p q 2a2= 2 ,其中d0= b就是焦准距。
证毕。
pqeb 2a p q pqb 2ed 0 c[ 说明 ] ①在上述证明过程中出现的“ m = n ”, “即 |FE|=|ED| ”,亦即 E 为线段 FD 的中点(如图 1) 这是椭圆焦点弦的另一条性质。
双曲线与抛物线也则 m +n =|FD|=FEBF,AGBA,BH GB =AB可得:②如图 1,若设∠ AFD =θ,并分别过 A 、F 作 FD 和 BH 的垂线,则可证: p= ba+ ccos θ2ab2; 从 而 得 焦 点 弦 长 公 式 : |AB| = p + q= 2 2 2 q =1 - e cos θa -c cos θ22d0e2,其中d 0 就是焦准距 b。
圆锥曲线与方程 知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF >=+,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF ==+,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF <=+,则点P 的轨迹是 2若P 是椭圆:12222=+by a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为3、点与椭圆、直线与椭圆的位置关系(1)点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:①点P 在椭圆上⇔ ;②点P 在椭圆内部⇔ ; ③点P 在椭圆外部⇔ .(2)直线y =kx +m 与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系判断方法:先联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1.消y 得一个一元二次方程是:(3)弦长公式:设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2, ∴|AB |=(x 1-x 2)2+(kx 1-kx 2)2=1+k 2·(x 1-x 2)2=1+k 2·(x 1+x 2)2-4x 1x 2, 或|AB |=⎝⎛⎭⎫1ky 1-1k y 22+(y 1-y 2)2=1+1k 2·(y 1-y 2)2=1+1k2×(y 1+y 2)2-4y 1y 2. 其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y 或x 后得到关于x 或y 的一元二次方程得到.(4)直线l :y =kx +m 与椭圆:()012222>>=+b a by a x 的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用x 0,y 0表示) 二、双曲线方程. 1、双曲线的定义:平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF <=-,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF >=-,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF ==-,则点P 的轨迹是 2(1)等轴双曲线:双曲线a y x ±=-称为等轴双曲线,其渐近线方程为 ,离心率(2)共渐近线的双曲线系方程:)0(2222≠=-λλby a x 的渐近线方程为如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为 .(3)从双曲线一个焦点到一条渐近线的距离等于 . 3、直线与双曲线的位置关系(1)一般地,设直线l :y =kx +m ……① 双曲线C :x 2a 2-y 2b 2=1(a >0,b >0) ……②把①代入②得关于x 的一元二次方程为 . ①当b 2-a 2k 2=0时,直线l 与双曲线的渐近线 ,直线与双曲线C . ②当b 2-a 2k 2≠0时,Δ>0⇒直线与双曲线有 公共点,此时称直线与双曲线 ; Δ=0⇒直线与双曲线有 公共点,此时称直线与双曲线 ; Δ<0⇒直线与双曲线 公共点,此时称直线与双曲线 . 注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.(2)直线l :y =kx +m 与双曲线:()0,012222>>=-b a by a x 的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用x 0,y 0表示) 三、抛物线方程. 1、抛物线的定义平面内与一个定点F 和一条定直线l (不经过点F ) 的点的轨迹叫做抛物线.点F 叫做抛物线的 ,直线l 叫做抛物线的 .思考1:平面内与一个定点F 和一条定直线l (l 经过点F ),点的轨迹是 2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2), AB 的中点M (x 0,y 0),相应的准线为l .(1)以AB 为直径的圆必与准线l 的位置关系是 ; (2)|AB |= (焦点弦长用中点M 的坐标表示); (3)若直线AB 的倾斜角为α,则|AB |= (焦点弦长用倾斜角为α表示);如当α=90°时,AB 叫抛物线的通径,是焦点弦中最短的;抛物线的通径等于 . (4)求证A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2= ,y 1·y 2= . 4、直线与抛物线的位置关系1.设直线l :y =kx +m ,抛物线:y 2=2px (p >0),将直线方程与抛物线方程联立整理成 关于x 的一元二次方程为 ,(1)若k =0,直线与抛物线有 个公共点,此时直线 于抛物线的对称轴或与对称轴 . 因此直线与抛物线有一个公共点是直线与抛物线相切的 条件. (2)若k ≠0, 当Δ>0时,直线与抛物线 ,有两个公共点;当Δ=0时,直线与抛物线 ,有一个公共点; 当Δ<0时,直线与抛物线 ,无公共点.2.直线l :y =kx +m 与抛物线:y 2=2px (p >0)的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用p 和x 0,y 0表示)3.抛物线:y 2=2px (p >0,y >0)在点A (x 0,02px )处的切线方程为 ,4.抛物线:x 2=2py (p >0)在点A (x 0,px 220)处的切线方程为 ,。
让我们来深入探讨一下圆锥曲线焦点弦角度公式的推导过程。
1. 圆锥曲线的定义和性质圆锥曲线是指平面上与一个圆锥相交得到的曲线。
常见的圆锥曲线包括椭圆、双曲线和抛物线。
它们都有各自独特的性质和特点,例如焦点、准线、离心率等。
2. 焦点、准线和焦点弦角度的概念在圆锥曲线中,焦点是一个重要的点,具有特殊的几何性质。
准线是与焦点相关的直线,它们共同构成了圆锥曲线的性质。
焦点弦角度是指过焦点的两条相交弦所夹的角度。
3. 圆锥曲线焦点弦角度公式的推导过程接下来,我们将从推导焦点弦角度的定义出发,逐步推导出其数学公式。
我们需要利用圆锥曲线的几何特性,结合焦点和准线的定义,来得出焦点弦角度的数学表达式。
我们将使用坐标系和几何代数的方法,结合圆锥曲线的方程式,推导出具体的焦点弦角度公式。
这个过程涉及到大量的数学运算和推理,需要严谨的逻辑和思维,同时也需要对圆锥曲线的性质有深入的理解。
4. 个人观点和理解在我看来,圆锥曲线焦点弦角度公式的推导过程是非常有意义的。
它不仅涉及到几何和代数知识的综合运用,还能帮助我们更深入地理解圆锥曲线的性质和特点。
通过深入研究焦点弦角度的推导过程,我们可以更好地理解圆锥曲线的几何意义,同时也能对数学运算和推理能力进行提升。
总结回顾:在本文中,我们深入探讨了圆锥曲线焦点弦角度公式的推导过程。
通过对圆锥曲线的定义和性质进行分析,我们逐步推导出了焦点弦角度的数学表达式,并通过坐标系和代数方法得到具体的公式。
我们也共享了个人观点和理解,认为这一过程对我们的数学思维和几何理解有着重要的意义。
我希望通过这篇文章的阅读,您能够更深入地理解圆锥曲线焦点弦角度的推导过程,并对数学知识有一个更全面、深刻的理解。
也希望能够引发您对圆锥曲线和数学推导过程的兴趣,激发您对数学研究的进一步探索。
圆锥曲线是数学中非常重要的一个概念,涉及到几何、代数以及数学推导等多个方面的知识。
其性质和特点的深入理解对于数学的学习和研究具有重要意义。
圆锥曲线知识点汇总在数学的世界里,圆锥曲线如同璀璨的明珠,闪耀着独特的魅力。
圆锥曲线包括椭圆、双曲线和抛物线,它们在数学、物理以及工程等领域都有着广泛的应用。
接下来,让我们一同深入探索圆锥曲线的奥秘。
一、椭圆椭圆是平面内到定点 F1、F2 的距离之和等于常数(大于|F1F2|)的动点 P 的轨迹。
椭圆的标准方程有两种形式:当焦点在 x 轴上时,椭圆的标准方程为:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)表示椭圆的长半轴,\(b\)表示椭圆的短半轴,\(c\)(\(c^2 = a^2 b^2\))表示半焦距,焦点坐标为\((\pm c, 0)\)。
当焦点在 y 轴上时,椭圆的标准方程为:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\)),焦点坐标为\((0, \pm c)\)。
椭圆的性质包括:1、对称性:椭圆关于 x 轴、y 轴和原点对称。
(b \leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leqb\),\(a \leq y \leq a\)。
3、离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e< 1\)),它反映了椭圆的扁平程度,\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。
二、双曲线双曲线是平面内到两个定点 F1、F2 的距离之差的绝对值等于常数(小于|F1F2|)的动点 P 的轨迹。
双曲线的标准方程也有两种形式:焦点在 x 轴上时,双曲线的标准方程为:\(\frac{x^2}{a^2}\frac{y^2}{b^2} =1\),其中\(a\)表示双曲线的实半轴,\(b\)表示双曲线的虚半轴,\(c\)(\(c^2 = a^2 + b^2\))表示半焦距,焦点坐标为\((\pm c, 0)\)。
双曲线的焦点弦的两个焦半径倒数之和为常数圆锥曲线中的重要性质经典精讲上性质一:椭圆中焦点三角形的内切圆圆心轨迹是以原焦点为顶点的椭圆 双曲线中焦点三角形的内切圆圆心轨迹是以过原顶点的两平行开线段(长为2b )2 21已知动点P 在椭圆—L 4 3 1上,F i , F 2为椭圆之左右焦点,点 G F 1PF 2内心,试求点G 的轨迹方程 x 2 2 •已知动点P 在双曲线一 4 3 仝 1上,F 1, F 2为双曲线之左右焦点,圆G 是厶F 1PF 2的内切圆,探究圆G 是否过定点,并证明之• 性质二:圆锥曲线的焦点弦的两个焦半径倒数之和为定值。
椭圆的焦点弦的两个焦半径倒数之和为常数 IAF 1 | |BF 1 |ep|AF | |BF | epAB 在同支时I AR | | BF 1 | ep—AB 在异支时ep性质三:圆锥曲线相互垂直的焦点弦长倒数之和为常数此求四边形ABCD 面积的最小值•性质四:椭圆、双曲线、抛物线的焦点弦直线被曲线及对称轴所分比之和为定值X 2 y 25.已知椭圆-冷1,点F 1为椭圆之左焦点,过点F 1的直线11分别交椭圆于A , B 两点,II设直线AB 与 y 轴于点M , MA AFtMB BF 1,试求性质五:椭圆、双曲线的焦半径向量模的比之和为定值过椭圆或双曲线上任点 A 作两焦点的焦点弦AB AC 其共线向量比之和为定值. 即AF 1 F 1 B AF 2 F 2C12 1F A?FB 恒成立•并由此求I ABI 的最小值•椭圆互相垂直的焦点弦倒数之和为常数2 e 2双曲线互相垂直的焦点弦倒数之和为常数抛物线互相垂直的焦点弦倒数之和为常数|AB||CD|2ep|AB||CD ||2 e 2|2ep2 e 2|AB||CD|2ep24.已知椭圆—4 2红 1 , F 1为椭圆之左焦点,过点 F 1的直线11,12分别交椭圆于 A, B 两3点和C, D 两点,且 I 112 ,是否存在实常数,使的值.实常数 ,恒成立•并由⑴求椭圆C 的方程;⑵设E 为椭圆C 上任一点,过焦点 F i , F 2的弦分别为ES, ET ,设圆锥曲线中的重要性质经典精讲中2性质一:过圆锥曲线焦点所在轴上任意一点N( t,0 )的一条弦端点与对应点Y ,0的连线所成角被对称轴平分。
圆锥曲线焦点弦的一个性质
浙江省台州市实验中学 张铭
由于圆锥曲线(椭圆、双曲线、抛物线)有着统一的内在规律,因而它们的一些性质逐渐被人们揭示。
本人在研究圆锥曲线焦点弦时,发现了一个统一性质,现叙述如下:
定理1:已知抛物线E:y 2=2px (p>0)的焦点为F ,其准线为L: 2p x =-,,过焦点F 的直线m 与抛物线交于A 、B 两点.则112||||AF BF p += 证明:若过点F 的直线m 的斜率存在为k(k ≠0),则m 的方程为()2
p y k x =-. 设1122(,),(,)A x y B x y ,将()2p y k x =-代入抛物线方程可得22()22
p k x px -= 即22222
(2)04k p k x p k x -++= 22
12122(2),4p k p x x x x k +∴+=⋅= 1112||||,||||22
p p AF AA x BF BB x ==+==+又 221222
(2)2(1)||||p k p k AF BF x x p p k k ++∴+=++=+= (1) 2
1212122222222||||()()()2224(2)1424p p p p AF BF x x x x x x p p p k p k p k k
⋅=++=⋅+++++=+⋅+=⋅ (2) (1) 除以(2)得 ||||22||||AF BF AF BF p p
+=+=⋅11 ,即 |AF||BF| 若过F 点的直线m 的斜率不存在,此时直线m 的方程为:2
p x =
则A.B 两点坐标为(,)(,)||||22p p p p AF BF p -∴==和 11112||||AF BF p p p
∴+=+= 命题也成立。
综上,定理得证。
定理2:已知椭圆E:22221(0)x y a b a b +=>>,其焦点F(c,0)对应的准线为2:a l x c = 焦点F 到准线L 的距离|FK|=p,过F 点的直线m 与椭圆E 相交于A,B 两点. 则112||||AF BF ep
+=.(其中e 为椭圆的离心率) 证明:过A 点作AA 1垂直L,AM 垂直x 轴,垂足分别为A 1,M..
则根据椭圆第二定义:|AF|=e|AA 1|=e(|FK|-|FM|)
.|(||cos )
||||cos ,||1cos AFM AF e p AF ep AF ep AF e AF e θθθθ
∠==-∴=-⋅∴=+设则 | 同样,过B 点作BB 1垂直L,BN 垂直x 轴,垂足分别为B 1,N.
则1||||(||||)(||cos )
||||cos ,||1cos 111cos 1cos 2||||BF e BB e FN FK e BF p ep
BF BF e ep BF e e e AF BF ep ep ep θθθ
θθ==+=+∴-=∴=-+-∴+=+=
定理得证。
定理3:已知双曲线E:22221x y a b -=,其焦点F(c,0)对应的准线为2
:a l x c = 焦点F 到准线L 的距离|FK|=p,过F 点的直线m 与双曲线E 相交于A,B 两点. 则112||||AF BF ep
+=.(其中e 为双曲线的离心率) 证明:过A 点作AA 1垂直L,AM 垂直x 轴,垂足分别为A 1,M..
则根据双曲线第二定义:|AF|=e|AA 1|=e(|FK|+|FM|)
.|(||cos )
||||cos ,||1cos AFM AF e p AF ep AF ep AF e AF e θθθθ
∠==+∴=+⋅∴=-设则 | 同样,过B 点作BB 1垂直L,BN 垂直x 轴,垂足分别为B 1,N.
则1||||(||||)(||cos )
||||cos ,||1cos 111cos 1cos 2..||||BF e BB e FK FN e p BF ep BF BF e ep BF e e e AF BF ep ep ep θθθ
θθ==-=-∴+=∴=
+-+∴+=+=证毕
综上,可得如下定理:
定理:若过圆锥曲线焦点的直线与圆锥曲线有两个交点,则这两个交点到圆锥
曲线焦点的距离的倒数和是一个定值2
ep。
(其中p为圆锥曲线的焦点到相应准线的
距离,e为圆锥曲线的离心率。
)。