数控机床精度检测项目及常用工具
- 格式:doc
- 大小:104.50 KB
- 文档页数:3
数控铣床精度检验表
a (允差)b(允差)
在300测量长度上在300测量长度上普通级精密级
允差
a b
d~d
允差mm
六、小结
本堂课主要针对了数控铣床在新机装配时并且在无负荷或精加工条件下对机床进行精度检验的检验项目做了介绍并对有些项目进行实操;通过各个项目的检验得出的数据进行对比可以体现出机床的精度有没有达到精度要求,如果没达到精度要求的就要对机械进行调整,所以说检验出来的数据就是整台机床的机械装配的体现。
我们要重点要掌握的就是机床的检验的前所要准备工工具检验时仪器和量具的正确摆放方法,数据的读取;及误差的计算方法。
数控机床精度及性能检验数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。
另一方而,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。
因此,数控机床精度和性能检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。
一、精度检验一台数控机床的检测验收工作,是一项工作量大而复杂,试验和检测技术要求高的工作。
它要用各种检测仪器和手段对机床的机、电、液、气各部分及整机进行综合性能及单项性能的检测,最后得出对该数控机床的综合评价。
这项工作为数控机床今后稳定可靠地运行打下一定的基础,可以将某些隐患消除在考机和验收阶段中,因此,这项工作必须认真、仔细,并将符合要求的技术数据整理归档,作为今后设备维护、故障诊断及维修中恢复技术指标的依据。
1、几何精度检验几何精度检验,又称静态精度检验,是综合反映机床关键零部件经组装后的综合几何形状误差。
数控机床的几何精度的检验工具和检验方法类似于普通机床,但检测要求更高。
几何精度检测必须在地基完全稳定、地脚螺栓处于压紧状态下进行。
考虑到地基可能随时间而变化,一般要求机床使用半年后,再复校一次几何精度:在几何精度检测时应注意测量方法及测量工具应用不当所引起的误差。
在检测时,应按国家标准规定,即机床接通电源后,在预热状态下,机床各坐标轴往复运动几次,主轴故个等的转速运转十多分钟后进行。
常用的检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪及高精度主轴心棒等。
检测工具的精度必须比所测的几何精度高一个等级。
(一)卧式加工中心几何精度检验1)x 、y 、z 坐标轴的相互垂直度。
2)工作台面的平行度。
3)x 、Z 轴移动时工作台面的平行度。
4)主轴回转轴线对工作台面的平行度。
5)主轴在Z 轴方向移动的直线度:6)x 轴移动时工作台边界与定位基准面的平行度。
7)主轴轴向及孔径跳动。
8)回转工作台精度。
具体的检测项目及方法见表2—1。
数控机床精度检验数控机床精度检测数控机床的⾼精度最终是要靠机床本⾝的精度来保证,数控机床精度包括⼏何精度和切削精度。
另⼀⽅⾯,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使⽤。
因此,数控机床精度检验对初始使⽤的数控机床及维修调整后机床的技术指标恢复是很重要的。
1、检验所⽤的⼯具1.1、⽔平仪⽔平:0.04mm/1000mm扭曲:0.02mm/1000mm⽔平仪的使⽤和读数⽔平仪是⽤于检查各种机床及其它机械设备导轨的直线度、平⾯度和设备安装的⽔平性、垂直性。
使⽤⽅法:测量时使⽔平仪⼯作⾯紧贴在被测表⾯,待⽓泡完全静⽌后⽅可读数。
⽔平仪的分度值是以⼀⽶为基长的倾斜值,如需测量长度为L的实际倾斜值可以通过下式进⾏计算:实际倾斜值=分度值×L×偏差格数1.2、千分表1.3、莫⽒检验棒2、检验内容2.1、相关标准(例)加⼯中⼼检验条件第2部分:⽴式加⼯中⼼⼏何精度检验JB/T8771.2-1998加⼯中⼼检验条件第7部分:精加⼯试件精度检验JB/T8771.7-1998加⼯中⼼检验条件第4部分:线性和回转轴线的定位精度和重复定位精度检验JB/T8771.4-1998机床检验通则第2部分:数控轴线的定位精度和重复定位精度的确定JB/T17421.2-2000加⼯中⼼技术条件JB/T8801-19982.2、检验内容精度检验内容主要包括数控机床的⼏何精度、定位精度和切削精度。
2.2.1、数控机床⼏何精度的检测机床的⼏何精度是指机床某些基础零件本⾝的⼏何形状精度、相互位置的⼏何精度及其相对运动的⼏何精度。
机床的⼏何精度是综合反映该设备的关键机械零部件和组装后⼏何形状误差。
数控机床的基本性能检验与普通机床的检验⽅法差不多,使⽤的检测⼯具和⽅法也相似,每⼀项要独⽴检验,但要求更⾼。
所使⽤的检测⼯具精度必须⽐所检测的精度⾼⼀级。
其检测项⽬主要有:直线度⼀条线在⼀个平⾯或空间内的直线度,如数控卧式车床床⾝导轨的直线度。
数控机床精度检测项目及常用工具数控机床精度检测项目及常用工具●为什么数控机床一定要进行校准对每个工厂来讲,购买数控机床都是一笔相当可观的投资。
为使工厂成百万乃至上千万之投资的设备在生产中真正发挥中坚作用,保证加工出合格的零件,尽快回收成本是至关重要的。
经验表明,80%以上的机床在安装时必须在现场调试后才能符合其技术指标。
因此在新机床验收时,要进行检定,使机床一开始安装就能保证达到其技术指标及预期的质量和效率。
另外经验也表明,80%已投入生产使用的机床在使用一段时间后,处在非正常超性能工作状态,甚至超出其潜在承受能力。
因此,通常新机床在使用半年后需再次进行检定,之后可每年检定一次。
定期检测机床误差并及时校正螺距、反向间隙等可切实改善生产使用中的机床精度,改善零件加工质量,并合理进行生产调度和机床加工任务分配,不至于产生废品,大大提高机床利用率。
总之,及时揭示机床问题会避免导致机床精度损失及破坏性地使用机床。
随着数控技术的进一步推广应用,越来越多的数控机床利用自身带有的测头系统来进行工件尺寸检测、刀具尺寸检测及进行仿形数字化。
要知道上述功能的实现,与机床自身的精度密切相关,若机床精度不作定期校准,则谈不上准确地完成上述工作。
●数控机床常见检测标准数控机床常见精度要求及传统检测方法归纳起来,数控机床的精度要求有如下几个方面:1)几何精度:项目:几何精度包括直线度、垂直度、俯仰与扭摆、平面度、平行度等;工具:传统方法采用大理石或金属平尺、角规、百分表、水平仪、准直仪等;特点:传统采用人工操作,手工记录数据与计算,精度低,多用于小型机床。
2)位置精度:项目:数控机床位置精度包括定位精度、重复定位精度、微量位移精度、反向间隙等;工具:传统方法采用金属线纹尺或步距规、电子测微计、准直仪等;特点:当机床规格稍大一点时,传统方法其相应的标准器件很重,且精度太低,受环境温度的影响大,其检验方法极冗长乏味,且检验重复性也很差,难以反映受检机床的真正精度。
CNC机床加工中的加工精度评估与标准在现代制造业中,CNC机床已成为一种主要的加工工具。
它具有高效、精密、灵活等特点,被广泛应用于汽车、航空航天、电子等领域。
然而,CNC机床的加工精度对于产品的质量和性能至关重要。
因此,评估加工精度并制定相应的标准成为了保证产品质量和提高制造效率的重要环节。
一、CNC机床加工精度评估的方法CNC机床加工精度评估的方法有很多,常用的包括工件尺寸测量、表面质量评估和加工能力验证等。
1. 工件尺寸测量工件尺寸测量是对CNC机床加工精度进行评估的基本方法之一。
通过测量工件的实际尺寸与设计尺寸的差异来评估CNC机床的加工精度。
常用的测量设备包括千分尺、游标卡尺、高度规等。
在测量过程中,需注意选择合适的测量方法和设备,保证测量结果的准确性。
2. 表面质量评估表面质量是评估CNC机床加工精度的重要指标之一。
通常通过光学显微镜、扫描电子显微镜等设备对工件表面进行观察和分析,评估其粗糙度、平整度等指标。
3. 加工能力验证加工能力验证是评估CNC机床加工精度的定量方法之一。
通过制定一系列的加工试验,比如圆度试验、直线度试验等,得出CNC机床的实际加工能力。
加工能力验证可以帮助制定合理的加工参数和工艺流程,提高加工效率和加工精度。
二、CNC机床加工精度的评估标准为了确保CNC机床加工的稳定性和精度,制定相应的评估标准至关重要。
下面介绍几种常用的CNC机床加工精度评估标准。
1. 国家标准不同国家制定了相应的CNC机床加工精度评估标准。
例如中国的《数控机床精度检验标准》(GB/T 16672-2008)规定了CNC机床的加工精度分级与检验方法,包括几何精度、运动精度和位置精度等指标。
2. 行业标准各行业也制定了相应的CNC机床加工精度评估标准。
以航空航天行业为例,美国航空航天协会(AIA)制定了《航空航天产品精度与质量评估标准》(AIA NAS-970)。
该标准覆盖了航空航天产品的设计、制造和验收等方面,对CNC机床加工精度进行了详细的规定。
数控铣床精度检验表
G2
允差
a b
普通级精密级普通级精密级
0.016/30
0 0.010/30
0.016/30
0.010/30
工作台面对
主轴箱垂向
移动的垂直
度:
a 在机床的
横向垂直平
面内:
b 在机床的
纵向垂直平
面内:
角尺:工作台位于行
程中间位置。
角尺放在工作台面
上:a 横向垂直平面内
b 纵向垂直平面内。
固
定指示器,使其侧头触
及角尺的检验面。
移动
主轴箱进行检验。
a、b 的误差分别计
算。
误差以指示器读数
的最大差值计简图检验项目检验方法
检验工具
参照GB/T
17421.1—1998的
有关条文:5.3.2.2
5.3.2.3
G3
d~d
‵----每次测量移动距离
局部公差:在任意300测量长度上
工作台面
的平面度
水平仪
或工作台位于行程中
间位置。
平尺量:用水平仪
检验:如图,在工
作台面上选择由
六、小结
本堂课主要针对了数控铣床在新机装配时并且在无负荷或精加工条件下对机床进行精度检验的检验项目做了介绍并对有些项目进行实操;通过各个项目的检验得出的数据进行对比可以体现出机床的精度有没有达到精度要求,如果没达到精度要求的就要对机械进行调整,所以说检验出来的数据就是整台机床的机械装配的体现。
我们要重点要掌握的就是机床的检验的前所要准备工工具检验时仪器和量具的正确摆放方法,数据的读取;及误差的计算方法。
一、数控机床的精度检验一、数控机床的精度检验数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。
另一方面,数控机床各项性能和性能检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。
1. 几何精度检验几何精度检验,又称静态精度检验,是综合反映机床关键零部件经组装后的综合几何形状误差。
数控机床精度的检验工具和检验方法类似于普通机床,但检测要求更高。
几何精度检测必须在地基完全稳定、地脚螺栓处于压紧状态下进行。
考虑到地基可能随时间而变化,一般要求机床使用半年后,再复校一次几何精度。
在几何精度检测时,应注意测量方法及测量工具应用不当所引起的误差。
在检测时,应按国家标准规定,即机床接通电源后,在预热状态下,机床各坐标轴往复运动几次,主轴按中等转速运转十多分钟后进行。
常用的检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪及高精度主轴心棒等。
检测工具的精度必须比所设的几何精度高一个等级。
1)2) 直线运动轴机械原点的返回精度;3) 直线运动失动量的测定;4) 直线运动定位精度(转台A 、B 、C 轴);5) 回转运动重复定位精度;6) 回转轴原点的返回精度;7) 回转运动矢动量的测定。
(2)机床定位精度的试验方法检查定位精度和重复定位精度使用得比较多的方法是应用精密线纹尺和读数显微镜(或光电显微镜)。
以精密线纹尺作为测量时的比较基准,测量时将精密线纹尺用等高垫按最佳支架(见图5.1)安装在被测部件例如工作台的台面上,并用千分表找正。
显微镜可安装在机床的固定部件上,调整镜头使与工作台垂直。
在整个坐标的全长上可选取任意几个定位点,一般为5~15个,最好是非等距的。
对每个定位点重复进行多次定位。
可以从单一方向趋近定位点,也可以从两个方向分别趋紧,以便揭示机床进给系统中间隙和变形的影响。
每一次定位的误差值X 可按下式计算:()()00y y s s X L L ---=式中 0s ——基准点或零点时显微镜的读数;L s ——工作台移动L 距离后显微镜的读数; 0y 、L y ——相应于0s 和Ls 时机床调位读数装置或数码显示装置的读数,对于数控机床就是程序指令中给定的位移数值。
数控机床精度要求、检测方法和验收一、几何精度工作台运动的真直度、各轴向间的垂直度、工作台与各运动方向的平行度、主轴锥孔面的偏摆、主轴中心与工作台面的垂直度等。
机床主体的几何精度验收工作通过单项静态精度检测工作来进行,其几何精度综合反映机床各关键零、部件及其组装后的综合几何形状误差。
在机床几何精度验收工作中,应注意以下几个问题。
①检测前,应按有关标准的规定,要求机床接通电源后,在预热状态下,使机床各坐标轴往复运动几次,主轴则按中等转速运转10~15min后,再进行具体检测。
②检测用量具、量仪的精度必须比所测机床主体的几何精度高1~2个等级,否则将影响到测量结果的可信度。
③检测过程中,应注意检测工具和检测方法可能对测量误差造成的影响,如百分表架的刚性、测微仪的重力及测量几何误差的方向(公差带的宽度或直径)等。
④机床几何精度中有较多项相互牵连,须在精调后一次性完成检测工作。
不允许调整一项检测一项,如果出现某一单项须经重新调整才合格的情况,一般要求应重新进行其整个几何精度的验收工作。
二、位置精度数控设备的位置精度是指机床各坐标轴在数控系统控制下运动时,各轴所能达到的位置精度(运动精度)。
数控设备的位置精度主要取决于数控系统和机械传动误差的大小。
数控设备各运动部件的位移是在数控系统的控制下并通过机械传动而完成的,各运动部件位移后能够达到的精度将直接反映出被加工零件所能达到的精度。
所以,位置精度检测是一项很重要的验收工作。
1.数控机床的位置精度主要包括以下几项:(1)定位精度;定位精度是指机床运行时,到达某一个位置的准确程度。
该项精度应该是一个系统性的误差,可以通过各种方法进行调整。
(2)重复定位精度;重复定位精度是指机床在运行时,反复到达某一个位置的准确程度。
该项精度对于数控机床则是一项偶然性误差,不能够通过调整参数来进行调整。
(3)反向误差反向误差是指机床在运行时,各轴在反向时产生的运行误差(4)原点复位精度2.检测方法(1)定位精度的检测对该项精度的检测一般在机床和工作台空载的条件下进行,并按有关国家(或国际)标准的规定,以激光测量为准。
数控机床精度检测项目及常用工具
对每个工厂来讲,购买数控机床都是一笔相当可观的投资。
为使投资的设备在生产中真正发挥中坚作用,保证加工出合格的零件,尽快回收成本是至关重要的。
经验表明,80%以上的机床在安装时必须在现场调试后才能符合其技术指标。
因此在新机床验收时,要进行检定,使机床一开始安装就能保证达到其技术指标及预期的质量和效率。
另外经验也表明,80%已投入生产使用的机床在使用一段时间后,处在非正常超性能工作状态,甚至超出其潜在承受能力。
因此通常新机床在使用半年后需再次进行检定,之后可每年检定一次。
定期检测机床误差并及时校正螺距、反向间隙等可切实改善生产使用中的机床精度,改善零件加工质量,不至于产生废品,大大提高机床利用率。
总之,及时揭示机床问题可避免导致机床精度损失及破坏性地使用机床。
随着数控技术的进一步推广应用,越来越多的数控机床利用自身带有的测头系统来进行工件、刀具尺寸检测及进行仿形数字化。
要知道上述功能的实现,与机床自身的精度密切相关,若机床精度不作定期校准,则谈不上准确地完成上述工作。
雷尼绍ML10激光干涉仪线性位移测量软件可提供按下述标准进行的数据分析:BS4656英国三测机标准;BS3800英国机床标准;ISO 230-2国际标准;VDI/DGQ 3441德国工程师学会机床标准;VDI 2617德国工程师学会三测机标准;NMTBA美国机床协会标准;GB10931-89中国国家标准;ASME B89.1.12M美国机械工程师学会标准;ASME B5.54美国机械工程师学会标准;E60―099法国标准;JISB2330日本国家标准。
2 英国雷尼绍公司先进技术
英国雷尼绍公司是专门从事设计、制造高精度检测仪器与设备的世界性跨国公司。
主要产品为三坐标测量机及数控机床用测头、激光干涉仪、球杆仪等,为机械制造工业提供了序前(激光干涉仪和球杆仪)、序中(数控机床用工件测头及对刀测头)和序后(三测机用测头及配置)检测的成
系列质量保证手段。
她的全部技术与产品都旨在保证数控机床精度,改善数控机床性能,提高数控机床效率,可保证和改善数控机床制造厂工作母机的加工精度与质量,扩大制成品的市场。
2.1ML10激光干涉仪
雷尼绍ML10激光干涉仪为机床检定提供了一种高精度仪器,它精度高,达到±1.1PPM(在0~40℃下),测量范围大(线性测长40m,任选80m),测量速度快(60m/min),分辨率高(0.001μm),便携性好。
由于雷尼绍激光干涉仪具有自动线性误差补偿功能,可方便恢复机床精度,更受到用户欢迎!
为使大家进一步了解ML10激光干涉仪在检测数控机床精度方面所具有的独特优点,下面着重介绍ML10激光干涉仪在精度检测中的应用。
(1)几何精度检测可用于检测直线度、垂直度、俯仰与偏摆、平面度、平行度等。
(2)位置精度的检测及其自动补偿可检测数控机床定位精度、重复定位精度、微量位移精度等。
利用雷尼绍ML10激光干涉仪不仅能自动测量机器的误差,而且还能通过RS232接口自动对其线性误差进行补偿,比通常的补偿方法节省了大量时间,并且避免了手工计算和手动数控键入而引起的操作者误差,同时可最大限度地选用被测轴上的补偿点数,使机床达到最佳精度,另外操作者无需具有机床参数及补偿方法的知识。
目前,可供选择的补偿软件有Fanuc,Siemens 800系列,UNM,Mazak,Mitsubishi,Cincinnati Acramatic,Heidenhain, Bosch, Allen-Bradley。
(3)数控转台分度精度的检测及其自动补偿现在,利用ML10激光干涉仪加上RX10转台基准还能进行回转轴的自动测量。
它可对任意角度位置,以任意角度间隔进行全自动测量,其精度达±1。
新的国际标准已推荐使用该项新技术。
它比传统用自准直仪和多面体的方法不仅节约了大量的测量时间,而且还得到完整的回转轴精度曲线,知晓其精度的每一细节,并给出按相关标准处理的统计结果。
(4)双轴定位精度的检测及其自动补偿雷尼绍双激光干涉仪系统可同步测量大型龙门移动式数控机床,由双伺服驱动某一轴向运动的定位精度,而且还能通过RS232接口,自动对两轴线性误差分别进行补偿。
(5)数控机床动态性能检测利用RENISHAW动态特性测量与评估软件,可用激光干涉仪进行机床振动测试与分析(FFT),滚珠丝杠的动态特性分析,伺服驱动系统的响应特性分析,导轨的动态特性(低速爬行)分析等。
三晶变频器S350数控机床专用-高端品牌变频器
三晶S350高性能矢量变频器
S350系列是由广州三晶电气有限公司推出的新一代高性能矢量变频器,有如下特点:
■采用最新高速电机控制专用芯片DSP,确保矢量控制快速响应
■硬件电路模块化设计,确保电路稳定高效运行
■外观设计结合欧洲汽车设计理念,线条流畅,外形美观
■结构采用独立风道设计,风扇可自由拆卸,散热性好
■无PG矢量控制、有PG矢量控制、转矩控制、V/F控制均可选择
■强大的输入输出多功能可编程端子,调速脉冲输入,两路模拟量输出
■独特的“挖土机”自适应控制特性,对运行期间电机转矩上限自动限制,有效抑制过流频繁跳闸
■宽电压输入,输出电压自动稳压(AVR),瞬间掉电不停机,适应能力更强
■内置先进的 PID 算法,响应快、适应性强、调试简单; 16 段速控制,简易PLC 实现定时、定速、定向等多功能逻辑控制,多种灵活的控制方式以满足各种不同复杂工况要求
■内置国际标准的 MODBUS RTU ASCII 通讯协议,用户可通过PC/PLC控制上位机等实现变频器485通讯组网集中控制
三晶变频器应用于数控机床的主要特点:
1、低频力矩大、输出平稳
2、高性能矢量控制
3、转矩动态响应快、稳速精度高
4、减速停车速度快
5、抗干扰能力强。