2016年深圳市南山区中考数学二模试卷
- 格式:docx
- 大小:127.19 KB
- 文档页数:4
2016年广东省深圳市中考数学试卷第一部分 选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个选项是正确的)1.下列四个数中,最小的正数是( )A .—1B . 0C . 1D . 2 2.把下列图形折成一个正方体的盒子,折好后与“中”相对的字是( )A .祝B .你C .顺D .利 3.下列运算正确的是( )=8 B .(-a )4=a 4 ×a 2=a 6 D .(a -b )2=a 2-b 2 4.下列图形中,是轴对称图形的是( )5.据统计,从2005年到2015年中国累积节能00吨标准煤,00这个数用科学计数法表示为( )如图,已知a ∥b ,直角三角板的直角顶点在直线b 上,若∠1=60°,则下列结论错误的是( )A . ∠2=60°B . ∠3=60°C . ∠4=120°D . ∠5=40° 7.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签法确定一个小组进行展示活动。
则第3小组被抽到的概率是( ) A .71 B . 31 C . 211D . 1018.下列命题正确是( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.两边及一角对应相等的两个三角形全等C.16的平方根是4D.一组数据2,0,1,6,6的中位数和众数分别是2和69.施工队要铺设一段全长2000米,的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米。
设原计划每天施工x 米,则根据题意所列方程正确的是( )A.25020002000=+-x x B.22000502000=-+x x C.25020002000=--x x D.22000502000=--xx10.给出一种运算:对于函数nx y =,规定1-=n nxy 丿。
例如:若函数4x y =,则有34x y =丿。
2016年广东省深圳市南山区中考数学二模试卷一、选择题:本题有12小题,每题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.1.(3分)﹣5的倒数是()A.B.C.﹣5D.52.(3分)人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为()A.0.2×107B.2×107C.0.2×108D.2×1083.(3分)方程x2﹣4x+4=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根4.(3分)如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A.B.C.D.5.(3分)下列等式成立的是()A.(a+4)(a﹣4)=a2﹣4B.2a2﹣3a=﹣aC.a6÷a3=a2D.(a2)3=a66.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PC =BC,则下列选项正确的是()A.B.C.D.7.(3分)如图,l1∥l2,l3⊥l4,∠1=42°,那么∠2的度数为()A.48°B.42°C.38°D.21°8.(3分)关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2B.m≤2C.m>2D.m<29.(3分)如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A (3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A.0<x<2B.0<x<3C.2<x<3D.x<0或x>3 10.(3分)如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1米,太阳光线与地面的夹角∠ACD=60°,则AB的长为()A.米B.米C.米D.米11.(3分)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°12.(3分)如图,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是()A.3B.4C.2D.二、填空题:本题共4小题,每小题分,共12分,把答案填在答题卡上13.(3分)某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg),则这组数据的中位数是.14.(3分)分解因式:2x2y﹣8y=.15.(3分)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是.16.(3分)已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tan B为.三、解答题(本大题有七题,其中第17题6分、第18题6分、第19题7分、第20题8分、第21题8分、第22题8分、第23题9分,共52分)解答应写出文字说明或演算步骤. 17.(6分)计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°.18.(6分)解不等式组并求它的整数解.19.(7分)为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.20.(8分)【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC=.【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.(1)求证:ED=FC.(2)若∠ADE=20°,求∠DMC的度数.21.(8分)某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400元,购买B品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍,已知购买一个B品牌蓝球比购买一个A品牌蓝球多花50元.(1)求购买一个A品牌、一个B品牌的蓝球各需多少元?(2)该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的售价进行调整,A品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?22.(8分)如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.(1)求证:P A是⊙O的切线;(2)若,AB=6,求sin∠ABD的值.23.(9分)如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).(1)求以C为顶点,且经过点D的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.2016年广东省深圳市南山区中考数学二模试卷参考答案与试题解析一、选择题:本题有12小题,每题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.1.(3分)﹣5的倒数是()A.B.C.﹣5D.5【解答】解:∵(﹣5)×(﹣)=1,∴﹣5的倒数是﹣.故选:A.2.(3分)人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为()A.0.2×107B.2×107C.0.2×108D.2×108【解答】解:将“两千万”用科学记数法表示为:2×107,故选:B.3.(3分)方程x2﹣4x+4=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根【解答】解:∵a=1,b=﹣4,c=4,∴△=b2﹣4ac=16﹣16=0,∴一元二次方程有两个相等的实数根.故选:A.4.(3分)如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A.B.C.D.【解答】解:从上面看易得左边第一列有2个正方形,中间第二列最有2个正方形,最右边一列有1个正方形在右上角处.故选:C.5.(3分)下列等式成立的是()A.(a+4)(a﹣4)=a2﹣4B.2a2﹣3a=﹣aC.a6÷a3=a2D.(a2)3=a6【解答】解:A、原式=a2﹣16,不成立;B、原式不能合并,不成立;C、原式=a3,不成立;D、原式=a6,成立.故选:D.6.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PC =BC,则下列选项正确的是()A.B.C.D.【解答】解:∵PB+PC=BC,而P A+PC=BC,∴P A=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:D.7.(3分)如图,l1∥l2,l3⊥l4,∠1=42°,那么∠2的度数为()A.48°B.42°C.38°D.21°【解答】解:如图,∵l1∥l2,∠1=42°,∴∠3=∠1=42°,∵l3⊥l4,∴∠2=90°﹣∠3=48°.故选:A.8.(3分)关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2B.m≤2C.m>2D.m<2【解答】解:由mx﹣1=2x,移项、合并,得(m﹣2)x=1,∴x=.∵方程mx﹣1=2x的解为正实数,∴>0,解得m>2.故选:C.9.(3分)如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A (3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A.0<x<2B.0<x<3C.2<x<3D.x<0或x>3【解答】解:如图所示:若y1<y2,则二次函数图象在一次函数图象的下面,此时x的取值范围是:0<x<3.故选:B.10.(3分)如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1米,太阳光线与地面的夹角∠ACD=60°,则AB的长为()A.米B.米C.米D.米【解答】解:设直线AB与CD的交点为点O.∴.∴AB=.∵∠ACD=60°.∴∠BDO=60°.在Rt△BDO中,tan60°=.∵CD=1.∴AB=.故选:B.11.(3分)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°【解答】解:由旋转的性质得:△ADE≌△ABC,∴∠D=∠B=40°,AE=AC,∵∠CAE=60°,∴△ACE是等边三角形,∴∠ACE=∠E=60°,∴∠DAE=180°﹣∠E﹣∠D=80DU=(180°﹣∠CAE)=(180°﹣60°)=80°,∴∠DAC=∠DAE﹣∠CAE=80°﹣60°=20°;故选:B.12.(3分)如图,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是()A.3B.4C.2D.【解答】解:过点D作DE⊥AB交AB于E,设CD=x,则BD=8﹣x,∵AD平分∠BAC,∴,即,∴x=3,∴CD=3,∴S△ABD=AB•DE=3=15,∵AD==3,设BD到AD的距离是h,∴S△ABD=AD•h,∴h=2.故选:C.二、填空题:本题共4小题,每小题分,共12分,把答案填在答题卡上13.(3分)某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg),则这组数据的中位数是6.【解答】解:数据按从小到大排列后为3,5,5,6,8,9,10,故这组数据的中位数是6.故答案为:6.14.(3分)分解因式:2x2y﹣8y=2y(x+2)(x﹣2).【解答】解:2x2y﹣8y,=2y(x2﹣4),=2y(x+2)(x﹣2).故答案为:2y(x+2)(x﹣2).15.(3分)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是5.【解答】解:∵一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第五组的频数是0.2×50=10,∴第六组的频数是50﹣6﹣8﹣9﹣10﹣12=5.故答案为:5.16.(3分)已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tan B为.【解答】解:过A作AC⊥y轴,过B作BD⊥y轴,可得∠ACO=∠BDO=90°,∴∠AOC+∠OAC=90°,∵OA⊥OB,∴∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△AOC∽△OBD,∵点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,∴S△AOC=1,S△OBD=4,∴S△AOC:S△OBD=1:4,即OA:OB=1:2,则在Rt△AOB中,tan∠ABO=.故答案为:三、解答题(本大题有七题,其中第17题6分、第18题6分、第19题7分、第20题8分、第21题8分、第22题8分、第23题9分,共52分)解答应写出文字说明或演算步骤. 17.(6分)计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°.【解答】解:原式=﹣+1﹣(2﹣)﹣2×=﹣+1﹣2+﹣=﹣.18.(6分)解不等式组并求它的整数解.【解答】解:,由①得:x<8,由②得:x≥6,∴不等式组的解集为6≤x<8,则不等式组的整数解为6,7.19.(7分)为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是25,扇形统计图中B类所对应扇形圆心角的度数为72度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.【解答】解:(1)该镇本次统计的小微企业总个数是:4÷16%=25(个);扇形统计图中B类所对应扇形圆心角的度数为:×360°=72°;故答案为:25,72;A类小微企业个数为:25﹣5﹣14﹣4=2(个);补全统计图:(2)分别用A,B表示2个来自高新区的,用C,D表示2个来自开发区的.画树状图得:∵共有12种等可能的结果,所抽取的2个发言代表都来自高新区的有2种情况,∴所抽取的2个发言代表都来自高新区的概率为:=.20.(8分)【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC=90°.【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.(1)求证:ED=FC.(2)若∠ADE=20°,求∠DMC的度数.【解答】解:如图①中,∵四边形ABCD是正方形,∴AD=AB=CD,∠ADC=90°,∵△ADE≌△DFC,∴DF=CD=AE=AD,∵∠FDC=60°+90°=150°,∴∠DFC=∠DCF=∠ADE=∠AED=15°,∴∠FDE=60°+15°=75°,∴∠MFD+∠FDM=90°,∴∠FMD=90°,故答案为90°(1)∵△ABE为等边三角形,∴∠EAB=60°,EA=AB.∵△ADF为等边三角形,∴∠FDA=60°,AD=FD.∵四边形ABCD为矩形,∴∠BAD=∠ADC=90°,DC=AB.∴EA=DC.∵∠EAD=∠EAB+∠BAD=150°,∠CDF=∠FDA+∠ADC=150°,∴∠EAD=∠CDF.在△EAD和△CDF中,,∴△EAD≌△CDF.∴ED=FC;(2)∵△EAD≌△CDF,∴∠ADE=∠DFC=20°,∴∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC=60°+20°+20°=100°.21.(8分)某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400元,购买B品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍,已知购买一个B品牌蓝球比购买一个A品牌蓝球多花50元.(1)求购买一个A品牌、一个B品牌的蓝球各需多少元?(2)该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的售价进行调整,A品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?【解答】解:(1)设购买一个A品牌的篮球需x元,则购买一个B品牌的篮球需(x+50)元,由题意得=×2,解得:x=80,经检验x=80是原方程的解,x+50=130.答:购买一个A品牌的篮球需80元,购买一个B品牌的篮球需130元.(2)设此次可购买a个B品牌篮球,则购进A品牌篮球(30﹣a)个,由题意得80×(1+10%)(30﹣a)+130×0.9a≤3200,解得a≤19,∵a是整数,∴a最大等于19,答:该学校此次最多可购买19个B品牌蓝球.22.(8分)如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.(1)求证:P A是⊙O的切线;(2)若,AB=6,求sin∠ABD的值.【解答】(1)证明:连结AO,交BC于点E.∵点A是的中点∴AO⊥BC,又∵AP∥BC,∴AP⊥AO,∴AP是⊙O的切线;(2)解:∵AO⊥BC,,∴,又∵AB=6∴,∵OA=OB∴∠ABD=∠BAO,∴.23.(9分)如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).(1)求以C为顶点,且经过点D的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.【解答】解:(1)由已知,设抛物线解析式为y=a(x﹣2)2把D(0,﹣1)代入,得a=﹣∴y=﹣(x﹣2)2(2)如图1,连结BN.∵N1,N2是N的对称点∴BN1=BN2=BN,∠N1BD=∠NBD,∠NBC=∠N2BC∴∠N1BN2=2∠DBC∵四边形ABCD是菱形∴AB=BC,∠ABC=2∠DBC∴∠ABC=∠N1BN2,∴△ABC∽△N1BN2(3)∵点N是CD上的动点,∴点到直线的距离,垂线段最短,∴当BN⊥CD时,BN最短.∵C(2,0),D(0,﹣1)∴CD=,∴BNmin==,∴BN1min=BN min=,∵△ABC∽△N1BN2∴,N1N2min=,(4)如图2,过点P作PE⊥x轴,交AB于点E.∵∠PQA=∠BAC∴PQ1∥AC∵菱形ABCD中,C(2,0),D(0,﹣1)∴A(﹣2,0),B(0,1)∴l AB:y=x+1不妨设P(m,﹣(m﹣2)2),则E(m,m+1)∴PE=m2﹣m+2∴当m=1时,,∴P(1,﹣),∴Q1(﹣,﹣).此时,PQ1最小,最小值为=,∴PQ1=PQ2=.设Q2(n,n+1),∵P(1,﹣),∴PQ2==,∴n=﹣或n=,∴Q2(,),∴满足条件的Q(﹣,﹣)或(,),。
一、选择题(每题3分,共30分)1. 下列各数中,是负数的是()A. -5/3B. 2/3C. 0D. 52. 下列代数式中,正确的是()A. (a+b)² = a² + 2ab + b² + 2abB. (a-b)² = a² - 2ab + b² - 2abC. (a+b)² = a² + 2ab + b²D. (a-b)² = a² - 2ab + b² - 2ab3. 若方程 2x - 3 = 5 的解为 x,则 x 的值为()A. 2B. 3C. 4D. 54. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 等边三角形C. 长方形D. 梯形5. 若sinα = 1/2,且α 在第二象限,则cosα 的值为()A. √3/2B. -√3/2C. 1/2D. -1/26. 下列函数中,是单调递增函数的是()A. y = 2x - 3B. y = -x²C. y = x³D. y = 1/x7. 若 a、b、c 是等差数列,且 a + b + c = 9,则 a + c 的值为()A. 3B. 6C. 9D. 128. 下列命题中,正确的是()A. 平行四边形的对角线互相平分B. 矩形的对角线相等C. 菱形的对角线互相垂直D. 正方形的对角线互相垂直且相等9. 下列方程中,有唯一解的是()A. x² - 4x + 4 = 0B. x² - 4x + 3 = 0C. x² - 4x + 5 = 0D. x² - 4x + 6 = 010. 若 a、b、c、d 是等比数列,且 a + b + c + d = 8,则a×b×c×d 的值为()A. 16B. 8C. 4D. 2二、填空题(每题3分,共30分)11. 若sinα = 3/5,且α 在第三象限,则cosα 的值为 _______。
一、选择题(本大题共10小题,每小题3分,共30分)1. 下列数中,不是有理数的是()A. 2.5B. -1/3C. √4D. √-12. 已知a、b是方程x^2-5x+6=0的两个根,则a+b的值是()A. 2B. 5C. 6D. 103. 在△ABC中,若∠A=30°,∠B=45°,则∠C的度数是()A. 105°B. 75°C. 90°D. 60°4. 下列函数中,有最小值的是()A. y=x^2B. y=x^3C. y=x^2+1D. y=x^2-15. 已知等差数列{an}的首项a1=2,公差d=3,则第10项an的值是()A. 29B. 28C. 27D. 266. 若log2x=3,则x的值为()A. 2B. 4C. 8D. 167. 在△ABC中,若a=5,b=6,c=7,则△ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 梯形8. 已知函数f(x)=2x-1,若f(x)的值域为[1,3],则x的取值范围是()A. [1,2]B. [1,3]C. [2,3]D. [1,4]9. 下列不等式中,正确的是()A. 3x>2x+1B. 2x<3x+1C. 3x>2x-1D. 2x<3x-110. 若|a|=5,|b|=3,则|a+b|的最大值为()A. 8B. 7C. 6D. 5二、填空题(本大题共10小题,每小题3分,共30分)11. 已知等差数列{an}的首项a1=3,公差d=2,则第10项an的值是______。
12. 若log2x=3,则x的值为______。
13. 在△ABC中,若∠A=30°,∠B=45°,则∠C的度数是______。
14. 已知函数f(x)=2x-1,若f(x)的值域为[1,3],则x的取值范围是______。
15. 若|a|=5,|b|=3,则|a+b|的最大值为______。
2016年广东省深圳市福田区中考数学二模试卷一、选择题:本部分共12小题,共36分,每小题给出4个选项,其中只有一个是正确的.1.﹣2的倒数是()A.﹣B.﹣2 C. D.22.2016年4月14日日本熊本县发生6.2级地震,据NHK报道,受强地震造成的田地受损,农产品无法出售等影响,日本熊本县农林业遭受的地震损失最少可达236亿日元,数据236亿用科学记数法表示为()A.2.36×108B.2.36×109C.2.36×1010D.2.36×10113.下列计算正确的是()A.a10﹣a7=a3 B.(﹣2a2b)2=﹣2a4b2C. D.(a+b)9÷(a+b)3=(a+b)64.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A. B. C. D.5.在选拔2016年第十三届全国冬季运动会速滑运动员时,教练打算根据平时训练成绩,从运动员甲和乙种挑选1名成绩稳定的运动员,甲、乙两名运动员平时训练成绩的方差分别为S甲2=0.03,S乙2=0.20,你认为教练应该挑选的运动员是()A.乙B.甲C.甲、乙都行D.无法判断6.五一期间刚到深圳的小明在哥哥的陪伴下,打算上午从莲山春早、侨城锦绣、深南溢彩中随机选择一个景点,下午从梧桐烟云、梅沙踏浪、一街两制中随机选择一个景点,小明恰好上午选中莲山春早,下午选中梅沙踏浪的概率是()A. B. C. D.7.如图是深圳市少年宫到中心书城地下通道的手扶电梯示意图,其中AB、CD分别表示地下通道、市民广场电梯口处地面的水平线,∠ABC=135°,BC的长约是5,则乘电梯从点B到点C上升的高度h是()A. m B.5m C. m D.10m8.在平面直角坐标系中,点(a﹣3,2a+1)在第二象限内,则a的取值范围是()A.﹣3<a< B.<a<3 C.﹣3<a<﹣D.<a<39.2016年4月21日在深圳体育馆召开的第八届中国(深圳)国际茶业文化博览会上某茶商将甲、乙两种茶叶卖出,甲种茶叶卖出1200元,盈利20%,乙种茶叶卖出1200元,亏损20%,则此人在这次交易中是()A.盈利50元B.盈利100元C.亏损150元D.亏损100元10.下列命题中,不正确的是()A.有一个角是60°的等腰三角形是等边三角形B.一组对边平行且一组对角相等的四边形是平行四边形C.对角线互相垂直且相等的四边形是矩形D.对角线相等的菱形是正方形11.如图,Rt△ABC中AB=3,BC=4,∠B=90°,点B、C在两坐标轴上滑动.当边AC⊥x轴时,点A刚好在双曲线上,此时下列结论不正确的是()A.点B为(0,) B.AC边的高为C.双曲线为 D.此时点A与点O距离最大12.一块矩形木板ABCD,长AD=3cm,宽AB=2cm,小虎将一块等腰直角三角板的一条直角边靠在顶点C上,另一条直角边与AB边交于点E,三角板的直角顶点P在AD边上移动(不含端点A、D),当线段BE最短时,AP的长为()A. cm B.1cm C. cm D.2cm二、填空题:本题共4小题,每小题3分,共12分.13.因式分解:a3﹣ab2=______.14.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为______m.15.在平行四边形ABCD中,AB=3,BC=5,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,则△CDE的周长为______.16.将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是______.三、解答题:本题共7小题,其中第17题5分,第18题6分,第19题7分,第20、21题各8分,第22题9分,第23题9分,共52分.17.计算:﹣12016+cos60°﹣()﹣2+3.140.18.解方程组.19.为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):选择意向所占百分比文学鉴赏a科学实验35%音乐舞蹈b手工编织10%其他c根据统计图表中的信息,解答下列问题:(1)本次调查的学生总人数为______;(2)补全条形统计图;(3)将调查结果绘成扇形统计图,则“音乐舞蹈”社团所在扇形所对应的圆心角为______;(4)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数为______.20.如图,正方形ABCD中,以对角线BD为边作菱形BDFE,使B,C,E三点在同一直线上,连接BF,交CD与点G.(1)求证:CG=CE;(2)若正方形边长为4,求菱形BDFE的面积.21.深圳市地铁9号线梅林段的一项绿化工程由甲、乙两工程队承担,已知乙工程队单独完成这项工程所需的天数是甲工程队单独完成所需天数的,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?22.如图,△ABC中,AB=AC=10,BC=12,点D在边BC上,且BD=4,以点D为顶点作∠EDF=∠B,分别交边AB于点E,交AC或延长线于点F.(1)当AE=4时,求AF的长;(2)当以边AC为直径的⊙O与线段DE相切时,求BE的长.23.如图,在平面直角坐标系中,将一块腰长为的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣1,0),点B在抛物线y=ax2+ax﹣2上.(1)点A的坐标为______,点B的坐标为______;(2)抛物线的解析式为______;(3)设(2)中抛物线的顶点为D,求△DBC的面积;(4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.2016年广东省深圳市福田区中考数学二模试卷参考答案与试题解析一、选择题:本部分共12小题,共36分,每小题给出4个选项,其中只有一个是正确的.1.﹣2的倒数是()A.﹣B.﹣2 C. D.2【考点】倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:有理数﹣2的倒数是﹣.故选:A.2.2016年4月14日日本熊本县发生6.2级地震,据NHK报道,受强地震造成的田地受损,农产品无法出售等影响,日本熊本县农林业遭受的地震损失最少可达236亿日元,数据236亿用科学记数法表示为()A.2.36×108B.2.36×109C.2.36×1010D.2.36×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵1亿=1×108,∴236亿=236×108=2.36×1010.故选:C.3.下列计算正确的是()A.a10﹣a7=a3 B.(﹣2a2b)2=﹣2a4b2C. D.(a+b)9÷(a+b)3=(a+b)6【考点】二次根式的加减法;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】A、原式不能合并,错误;B、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可作出判断;C、原式不能合并,错误;D、原式利用同底数幂的除法法则计算得到结果,即可作出判断.【解答】解:A、原式不能合并,错误;B、原式=4a4b2,错误;C、原式不能合并,错误;D、原式=(a+b)6,正确,故选D4.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、旋转角是,只是每旋转与原图重合,而中心对称的定义是绕一定点旋转180度,新图形与原图形重合.因此不符合中心对称的定义,不是中心对称图形.D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.5.在选拔2016年第十三届全国冬季运动会速滑运动员时,教练打算根据平时训练成绩,从运动员甲和乙种挑选1名成绩稳定的运动员,甲、乙两名运动员平时训练成绩的方差分别为S甲2=0.03,S乙2=0.20,你认为教练应该挑选的运动员是()A.乙B.甲C.甲、乙都行D.无法判断【考点】方差.【分析】先比较出两名运动员的方差,再根据方差的意义:方差越小数据越稳定,即可得出答案.【解答】解:∵甲、乙两名运动员平时训练成绩的方差分别为S甲2=0.03,S乙2=0.20,∴S甲2<S乙2,∴甲的成绩更稳定,∴教练应该挑选的运动员是甲;故选B.6.五一期间刚到深圳的小明在哥哥的陪伴下,打算上午从莲山春早、侨城锦绣、深南溢彩中随机选择一个景点,下午从梧桐烟云、梅沙踏浪、一街两制中随机选择一个景点,小明恰好上午选中莲山春早,下午选中梅沙踏浪的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出恰好上午选中莲山春早,下午选中梅沙踏浪的情况数,即可求出所求概率.【解答】解:根据题意列表如下(莲山春早、侨城锦绣、深南溢彩、梧桐烟云、梅沙踏浪、一街两制分别记作1,2,3,4,5,6),1234(1,4)(2,4)(3,4)5(1,5)(2,5)(3,5)6(1,6)(2,6)(3,6)所有等可能的情况有9种,其中恰好上午选中莲山春早,下午选中梅沙踏浪的情况有1种,则P=,故选C7.如图是深圳市少年宫到中心书城地下通道的手扶电梯示意图,其中AB、CD分别表示地下通道、市民广场电梯口处地面的水平线,∠ABC=135°,BC的长约是5,则乘电梯从点B到点C上升的高度h是()A. m B.5m C. m D.10m【考点】解直角三角形的应用.【分析】如图,作CH⊥AB于H,在Rt△CBH中,根据sin45°=,即可求出CH.【解答】解:如图,作CH⊥AB于H.在Rt△CBH中,∵∠CHB=90°,BC=5,∠CBH=45°,∴sin45°=,∴CH=BC×=5.故选B.8.在平面直角坐标系中,点(a﹣3,2a+1)在第二象限内,则a的取值范围是()A.﹣3<a< B.<a<3 C.﹣3<a<﹣D.<a<3【考点】解一元一次不等式组;点的坐标.【分析】根据第二象限内点的坐标特点列出关于a的不等式组,求出a的取值范围即可.【解答】解:∵在平面直角坐标系中,点(a﹣3,2a+1)在第二象限内,∴,解得﹣<a<3.故选D.9.2016年4月21日在深圳体育馆召开的第八届中国(深圳)国际茶业文化博览会上某茶商将甲、乙两种茶叶卖出,甲种茶叶卖出1200元,盈利20%,乙种茶叶卖出1200元,亏损20%,则此人在这次交易中是()A.盈利50元B.盈利100元C.亏损150元D.亏损100元【考点】一元一次方程的应用.【分析】求此次茶叶交易中共盈利多少元,关键要求出两种茶叶买进的价格,利用买价+利润=卖价,列方程求解即可.【解答】解:设甲种茶叶的买价是x元,根据题意得:(1+20%)x=1200,解得x=1000.设乙种茶叶的买价是y元,根据题意得:(1﹣20%)y=1200,解得y=1500.1000+1500>1200+1200,即此次交易中亏损了100元.故选D.10.下列命题中,不正确的是()A.有一个角是60°的等腰三角形是等边三角形B.一组对边平行且一组对角相等的四边形是平行四边形C.对角线互相垂直且相等的四边形是矩形D.对角线相等的菱形是正方形【考点】命题与定理.【分析】根据等边三角形的判定方法以及平行四边形和正方形的判定方法分别判断得出答案.【解答】解:A、有一个角是60°的等腰三角形是等边三角形,正确,不合题意;B、一组对边平行且一组对角相等的四边形是平行四边形,符合平行四边形的判定方法,故不合题意;C、对角线互相垂直且相等的四边形是正方形,故此选项错误,符合题意;D、对角线相等的菱形是正方形,正确,不合题意;故选:C.11.如图,Rt△ABC中AB=3,BC=4,∠B=90°,点B、C在两坐标轴上滑动.当边AC⊥x轴时,点A刚好在双曲线上,此时下列结论不正确的是()A.点B为(0,) B.AC边的高为C.双曲线为 D.此时点A与点O距离最大【考点】反比例函数综合题.【分析】根据AB=3,BC=4,∠B=90°,利用勾股定理可求AC=5,而AC⊥x轴,易知点A的纵坐标是5,设AC边上的高是h,再结合三角形的面积公式,易求h,进而可得点A的坐标,再代入反比例函数解析式,易求k,从而可得反比例函数解析式,在Rt△BOC中,利用勾股定理可求OB,从而可得点B的坐标.综上可知A、B、C都正确,从而选择D.【解答】解:∵AB=3,BC=4,∠B=90°,∴AC=5,∵AC⊥x轴,∴点A的纵坐标是5,设AC边上的高是h,∵S△ABC=×3×4=×5•h,∴h=;∴点A的坐标是(,5),又∵点A在上,∴k=12,∴反比例函数的解析式是y=;∵OC=,BC=4,∴OB=(负数舍去),∴B点坐标是(0,).综上所述,可知ABC都是正确的,答案D不一定正确,利用排除法可知.故选D.12.一块矩形木板ABCD,长AD=3cm,宽AB=2cm,小虎将一块等腰直角三角板的一条直角边靠在顶点C上,另一条直角边与AB边交于点E,三角板的直角顶点P在AD边上移动(不含端点A、D),当线段BE最短时,AP的长为()A. cm B.1cm C. cm D.2cm【考点】相似三角形的判定与性质;二次函数的最值.【分析】设BE=y,AP=x,由△AEP∽△DPC,得=,构建二次函数即可解决问题.【解答】解:设BE=y,AP=x,∵四边形ABCD是矩形,∴∠A=∠D=90°,∵∠EPC=90°,∴∠APE+∠AEP=90°,∠APE+∠CPD=90°,∴∠AEP=∠CPD,∴△AEP∽△DPC,∴=,∴=,∴y=x2﹣3x+4=(x﹣)2+.∵a=1>0,∴x=时,y有最小值,故选C.二、填空题:本题共4小题,每小题3分,共12分.13.因式分解:a3﹣ab2= a(a+b)(a﹣b).【考点】提公因式法与公式法的综合运用.【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).14.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为 4 m.【考点】平行投影;相似三角形的应用.【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得=;即DC2=ED•FD,代入数据可得答案.【解答】解:如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°,∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有=;即DC2=ED•FD,代入数据可得DC2=16,DC=4;故答案为:4.15.在平行四边形ABCD中,AB=3,BC=5,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,则△CDE的周长为8 .【考点】平行四边形的性质.【分析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又AB+BC=AD+CD=8,继而可得△CDE的周长等于AD+CD.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵AB=3,BC=5,∴AD+CD=8,∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=8.故答案为:8.16.将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是4n+1 .【考点】规律型:图形的变化类.【分析】仔细观察,发现图形的变化的规律,从而确定答案.【解答】解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,则第n次得到4n+1个正方形,故答案为:4n+1.三、解答题:本题共7小题,其中第17题5分,第18题6分,第19题7分,第20、21题各8分,第22题9分,第23题9分,共52分.17.计算:﹣12016+cos60°﹣()﹣2+3.140.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用乘方的意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣1+﹣4+1=﹣3.18.解方程组.【考点】解二元一次方程组.【分析】由第二个方程表示出x,然后代入第一个方程,求出y的值,再求解即可.【解答】解:,由②得,x=2y+8③,③代入①得,3(2y+8)+y=10,解得y=﹣2,把y=﹣2代入③得,x=2×(﹣2)+8=4,所以,方程组的解是.19.为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):选择意向所占百分比文学鉴赏a 科学实验35%音乐舞蹈b 手工编织10%其他c根据统计图表中的信息,解答下列问题:(1)本次调查的学生总人数为200人;(2)补全条形统计图;(3)将调查结果绘成扇形统计图,则“音乐舞蹈”社团所在扇形所对应的圆心角为72°;(4)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数为420人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由“科学实验”社团的人数和其所占的百分比即可求出总人数;(2)根据百分比,计算出文学鉴赏和手工编织的人数,即可补全条形统计图;(3)计算出“音乐舞蹈”社团的百分比即可得到所在扇形所对应的圆心角;(4)用总人数乘以“科学实验”社团的百分比,即可解答.【解答】解:(1)本次调查的学生总人数是:70÷35%=200(人),b=40÷200=20%,c=10÷200=5%,a=1﹣(35%+20%+10%+5%)=30%,故答案为:200人;(2)文学鉴赏的人数:30%×200=60(人),手工编织的人数:10%×200=20(人),如图所示,(3)由题意可知:b=40÷200=20%,所以“音乐舞蹈”社团所在扇形所对应的圆心角=360°×20%=72°,故答案为:72°;(4)全校选择“科学实验”社团的学生人数:1200×35%=420(人),故答案为:420人.20.如图,正方形ABCD中,以对角线BD为边作菱形BDFE,使B,C,E三点在同一直线上,连接BF,交CD与点G.(1)求证:CG=CE;(2)若正方形边长为4,求菱形BDFE的面积.【考点】正方形的性质;菱形的判定与性质.【分析】(1)连接DE,则DE⊥BF,可得∠CDE=∠CBG,根据BC=DC,∠BCG=∠DCE,可证△BCG≌△DCE,可证CG=CE;(2)已知正方形的边长可以证明BD,即BE,根据BE,DC即可求菱形BDFE的面积.【解答】解:连接DE,则DE⊥BF,∵∠ODG+∠OGD=90°,∠CBG+∠CGB=90°,∠CGB=∠OGD∴∠CDE=∠CBG,又∵BC=DC,∠BCG=∠DCE,∴△BCG≌△DCE(ASA),∴CG=CE,(2)正方形边长BC=4,则BD=BC=4,菱形BDFE的面积为S=4×4=16.答:菱形BDFE的面积为16.21.深圳市地铁9号线梅林段的一项绿化工程由甲、乙两工程队承担,已知乙工程队单独完成这项工程所需的天数是甲工程队单独完成所需天数的,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【考点】分式方程的应用.【分析】(1)根据甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成,列出方程求解,等量关系为:乙做36天的工作量+甲队做66天的工作量=1.(2)首先根据题意列出x和y的关系式,进而求出x的取值范围,结合x和y都是正整数,即可求出x和y的值.【解答】解:(1)设解工程队单独完成这项工作需要x天,则乙队单独完成需x天,由题意,得66×+36×=1,解得x=120,经检验,x=120是原方程的解,∴x=80,答:乙队单独完成需80天.(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,∴+=1即y=80﹣x,又∵x<46,y<52,∴,解得42<x<46,∵x、y均为正整数,∴x=45,y=50,答:甲队做了45天,乙队做了50天.22.如图,△ABC中,AB=AC=10,BC=12,点D在边BC上,且BD=4,以点D为顶点作∠EDF=∠B,分别交边AB于点E,交AC或延长线于点F.(1)当AE=4时,求AF的长;(2)当以边AC为直径的⊙O与线段DE相切时,求BE的长.【考点】相似三角形的判定与性质;等腰三角形的性质;切线的性质.【分析】(1)先证△BDE∽△CFD,得出对应边成比例,求出CF的长,即可得出结果;(2)取边AC中点O,作OG⊥DE于G,OQ⊥BC于Q,过点A作AH⊥BC于H,连接OD,则CH=BC=6,由⊙O和线段DE相切,得出OG=AC=5,求出cosC==,CQ=COcosC=3,DQ=BC﹣BD﹣CQ=5,得出OG=DQ,由HL证得Rt△OGD≌Rt△DQO,得出∠GOD=∠QDO,OG∥BC,∠EDB=∠OGD=90°,由cosB==cosC=,即可得出结果.【解答】解:(1)∵∠EDF+∠FDC=∠B+∠DEB,∠EDF=∠B,∴∠FDC=∠DEB,∵AB=AC,∴∠C=∠B,∴△CDF∽△BED,∴,即,解得:CF=,∴AF=AC﹣CF=10﹣=;(2)取边AC中点O,作OG⊥DE于G,OQ⊥BC于Q,过点A作AH⊥BC于H,连接OD,如图所示:∵AB=AC,AH⊥BC,∴CH=BC=6,∵⊙O和线段DE相切,∴OG=AC=5,在Rt△CAH中,∠AHC=90°,cosC===,在Rt△CQO中,∠CQO=90°∵cosC=,∴CQ=COcosC=5×=3,∴DQ=BC﹣BD﹣CQ=12﹣4﹣3=5,∴OG=DQ,在Rt△OGD与Rt△DQO中,,∴Rt△OGD≌Rt△DQO(HL),∴∠GOD=∠QDO,∴OG∥BC,∴∠EDB=∠OGD=90°,∴cosB==cosC=,∴BE==,∴当以边AC为直径的⊙O与线段DE相切时,BE=.23.如图,在平面直角坐标系中,将一块腰长为的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣1,0),点B在抛物线y=ax2+ax﹣2上.(1)点A的坐标为(0,2),点B的坐标为(﹣3,1);(2)抛物线的解析式为y=x2+x﹣2 ;(3)设(2)中抛物线的顶点为D,求△DBC的面积;(4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先根据勾股定理求出OA的长,即可得出点A的坐标,再求出OE、BE的长即可求出B的坐标;(2)把点B的坐标代入抛物线的解析式,求出a的值,即可求出抛物线的解析式;(3)先求出点D的坐标,再用待定系数法求出直线BD的解析式,然后求出CF的长,再根据S△DBC=S△CEB+S△CED进行计算即可;(4)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,过点P1作P1M⊥x轴,由全等三角形的判定定理可得△MP1C≌△FBC,再由全等三角形的对应边相等可得出点P1点的坐标;②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,由全等三角形的性质可得出点P2的坐标;点P1、P2的坐标代入抛物线的解析式进行检验即可.③以点P为直角顶点,求出点P的坐标,再判断点P不在抛物线上.【解答】解:(1)∵C(﹣1,0),AC=,∴OA===2,∴A(0,2);过点B作BF⊥x轴,垂足为F,∵∠ACO+∠CAO=90°,∠ACO+∠BCF=90°,∠BCF+∠FBC=90°,在△AOC与△CFB中,∵,∴△AOC≌△CFB,∴CF=OA=2,BF=OC=1,∴OF=3,∴B的坐标为(﹣3,1),故答案为:(0,2),(﹣3,1);(2)∵把B(﹣3,1)代入y=ax2+ax﹣2得:1=9a﹣3a﹣2,解得a=,∴抛物线解析式为:y=x2+x﹣2.故答案为:y=x2+x﹣2;(3)由(2)中抛物线的解析式可知,抛物线的顶点D(﹣,﹣),设直线BD的关系式为y=kx+b,将点B、D的坐标代入得:,解得.∴BD的关系式为y=﹣x﹣.设直线BD和x 轴交点为E,则点E(﹣,0),CE=.∴S△DBC=××(1+)=;(4)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,过点P1作P1M⊥x轴,∵CP1=BC,∠MCP1=∠BCF,∠P1MC=∠BFC=90°,∴△MP1C≌△FBC.∴CM=CF=2,P1M=BF=1,∴P1(1,﹣1);②若以点A为直角顶点;i)则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,∴NP2=OA=2,AN=OC=1,∴P2(2,1),ii)若以点P为直角顶点.过P3作P3G⊥y轴于G,同理,△AGP3≌△CAO,∴GP3=OA=2,AG=OC=1,∴P3为(﹣2,3).经检验,点P1(1,﹣1)与点P2(2,1)都在抛物线y=x2+x﹣2上,点P3(﹣2,3)不在抛物线上.故点P的坐标为P1(1,﹣1)与P2(2,1).。
2016年广东省深圳市中考数学试卷第一部分选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个选项是正确的)1.下列四个数中,最小的正数是()A .—1 B. 0 C. 1 D. 2 2.把下列图形折成一个正方体的盒子,折好后与“中”相对的字是()A .祝 B.你 C.顺 D.利3.下列运算正确的是()A.8a-a=8B.(-a)4=a 4C.a 3×a 2=a 6D.(a-b )2=a 2-b 2 4.下列图形中,是轴对称图形的是()5.据统计,从2005年到2015年中国累积节能1570000000吨标准煤,1570000000这个数用科学计数法表示为()A.0.157×1010B.1.57×108C.1.57×109D.15.7×1086.如图,已知a ∥b,直角三角板的直角顶点在直线b 上,若∠1=60°,则下列结论错误的是()A. ∠2=60°B. ∠3=60°C. ∠4=120°D. ∠5=40° 7.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签法确定一个小组进行展示活动。
则第3小组被抽到的概率是() A.71 B. 31 C. 211 D. 1018.下列命题正确是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.两边及一角对应相等的两个三角形全等C.16的平方根是4D.一组数据2,0,1,6,6的中位数和众数分别是2和69.施工队要铺设一段全长2000米,的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米。
设原计划每天施工x 米,则根据题意所列方程正确的是()A.25020002000=+-x x B.22000502000=-+x x C.25020002000=--x x D.22000502000=--xx 10.给出一种运算:对于函数n x y =,规定1-=n nx y 丿。
南山区2017年九年级二模数学试卷(时间:90分钟,总分:100分)一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项涂在答题卡上.............) 1.下列四个数中,最大的数是(). A .2- B .13C .0D .62.下列运算正确的是(). A .236a a a ?B .235()a a =C .2363(2)8a b a b -=-D .22(21)421a a a +=++3.“互联网”已全面进入人们的日常生活,据有关部门统计,目前全国4G 用户达到4.62亿,其中4.62亿用科学记数法表示为(). A .44.6210´B .64.6210´C .84.6210´D .80.46210´4.下列图形中,既是轴对称图形又是中心对称图形的是().A .B .C .D .5.如图,直线12l l ∥,等腰直角ABC △的两个顶点A 、B 分别落在直线1l 、2l 上,90ACB ??,若115??,则2Ð的度数是().A .35°B .30°C .25°D .20°6.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、第二束气球的价格如图所示,则第三束气球的价格为().A .19B .18C .16D .17.下列说法正确的是().①面积之比为1:2的两个相似三角形的周长之比是1:4;②三视图相同的几何体是正方体③27-没有立方根④对角线互相垂直的四边形是菱形⑤某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82x =甲分,82=乙分,2245S =甲,2190S =乙,那么成绩较为整齐的是乙班(注意有文字) A .1个 B .2个 C .3个 D .4个8.如图,在Rt ABC △,90C ??,顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则ABD △的面积是().21l 2l 1CAA .15B .30C .45D .609.如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至11A B ,则a b +的值为().A .2B .3C .4D .510.如图,抛物线()20y ax bx c a =++?的对称轴为直线1x =,与x 轴的一个交点坐标为(1,0)-,其部分图象如图所示,下列结论:)①24ac b <②方程20ax bx c ++=的两个根是11x =-,23x = ③30a c +>④当0y >时,x 的取值范围是1x -<≤3 ⑤当0x <时,y 随x 增大而增大 其中结论正确的个数是( ). A .4个 B .3个 C .2个 D .1个11.如图,在矩形ABCD 中,E 是AD 边的中点,BE AC ^,垂足为点F ,连接DF ,分析下列四个结论:①AEF CAB ∽△△;②2CF AF =;③DF DC =;④tan CAD? ).A .4个B .3个C .2个D .1个12.如图,正方形ABCD 的边长为3cm ,动点M 从点B 出发以3cm/s 的速度沿着边BC CD DA --运动,到达点A 停止运动,另一动点N 同时从点B 出发,以1cm/s 的速度沿着边BA 向点A 运动,到达点A 停止运动,设点M 运动时间为(s)x ,AMN △的面积为2(cm )y ,则y 关于x 的函数图象是().FCDEB ACMBN DAA .B .C .D .二、填空题(本题有4小题,每小题3分,共12分,把答案填在答题卡上.........). 13.已知3a b +=,5a b -=,则代数式22a b -的值是__________.14.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ¢处,那么tan BAD ¢Ð等于__________.15.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M 与圆心O 重合,则图中阴影部分的面积是__________.16.如图,已知点A是双曲线y 在第三象限分支上的一个动点,连结AO 并延长交另一分支于点B ,以AB 为边作等边三角形ABC ,点C 在第四象限内,且随着点A 的运动,点C的位置也在不断变化,DADBC但点C 始终在双曲线ky x=上运动,则k 的值是__________.三、解答题(本大题有7题,其中17题6分,18题5分,19题8分,20题7分,21题8分,22题9分,23题9分,共52分) 17.(本题6分)化简:2222421121x x x x x x x ++-?+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值.18.(本题5分)计算:20160(1)2sin 60π-+?-+.19.(本题8分)黔东南州某中学为了解本校学生平均每天的课外学习时间情况,随机抽取部分学生进行问卷调查,并将调查结果分为A ,B ,C ,D 四个等级,设学生课外学习时间为t (小时),:A 1t <,:1 1.5B t <≤,:1.52C t <≤,:2D t ≥,根据调查结果绘制了如图所示的两幅不完整的统计图,请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整. (2)本次抽样调查中,学习中位数落在哪个等有内. (3)表示B 等级的扇形圆心角a 的度数是多少.(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或画树状的方法求选出的2人来自不同班级的概率.图1 图28040αDCB A20.(本题7分)为更新果树品种,某果园计划新购进A 、B 两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A 种苗的单价为7元/棵,购买B 种苗所需费用y (元)与购买数量x (棵)之间存在如图所示的函数关系. (1)求y 与x 的函数关系式.(2)若在购买计划中,B 种苗的数量不超过35棵,但不少于A 种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.21.(本题8分)如图,地面上两个村庄C 、D 处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN 方向水平飞行,航线MN 与C 、D 在同一铅直平面内.当该飞行器飞行至村庄C 的正上方A 处时,测得60NAD ??;该飞行器从A 处飞行40分钟至B 处时,测得75ABD ??.从A 处飞行40分钟至B 处时,测得75ABD ??.求村庄C 、D1.73,结果精确到0.1千米).22.(本题9分)如图,已知,AB 是⊙O 的直径,点P 在AB 的延长线上,弦CE 交AB 于点,连结OE ,AC ,且P E ??,2POE CAB ??, (1)求证:CE AB ^. (2)求证:PC 是⊙O 的切线.(3)若2BD OD =,且9PB =,求⊙O 的半径长和tan P Ð的值.23.(本题9分)如图,抛物线2(1)(1)y x m x m m =-+-+>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点(0,3)C .(1)求抛物线的解析式.(2)点D 和点C 关于抛物线的对称轴对称,点F 在直线AD 上方的抛物线上,FG AD ^于G ,FH x∥轴交直线AD 于H ,求FGH △的周长的最大值;(3)点M 是抛物线的顶点,直线l 垂直于直线AM ,与坐标轴交于P 、Q 两点,点R 在抛物线的对称轴上,使得PQR △是以PQ 为斜边的等腰直角三角形,求直线l 的解析式.PBD EO CA。
2016年广东省深圳市中考数学试卷第一部分选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个选项是正确的)1.下列四个数中,最小的正数是()A.—1 B. 0 C. 1 D. 22.把下列图形折成一个正方体的盒子,折好后与“中”相对的字是()A.祝 B.你 C.顺 D.利3.下列运算正确的是()A.8a-a=8B.(-a)4=a4C.a3×a2=a6D.(a-b)2=a2-b24.下列图形中,是轴对称图形的是()5.据统计,从2005年到2015年中国累积节能1570000000吨标准煤,1570000000这个数用科学计数法表示为()A.0.157×1010B.1.57×108C.1.57×109D.15.7×1086.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是()A. ∠2=60°B. ∠3=60°C. ∠4=120°D. ∠5=40°7.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签法确定一个小组进行展示活动。
则第3小组被抽到的概率是( ) A .71 B . 31 C . 211 D . 1018.下列命题正确是( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.两边及一角对应相等的两个三角形全等C.16的平方根是4D.一组数据2,0,1,6,6的中位数和众数分别是2和69.施工队要铺设一段全长2000米,的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米。
设原计划每天施工x 米,则根据题意所列方程正确的是( )A.25020002000=+-x x B.22000502000=-+x x C.25020002000=--x x D.22000502000=--xx 10.给出一种运算:对于函数nx y =,规定1-=n nx y 丿。
2016年广东省深圳市中考数学试卷第一部分选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个选项是正确的)1.下列四个数中,最小的正数是()A.—1 B. 0 C. 1 D. 22.把下列图形折成一个正方体的盒子,折好后与“中”相对的字是()A.祝 B.你 C.顺 D.利3.下列运算正确的是()A.8a-a=8B.(-a)4=a4C.a3×a2=a6D.(a-b)2=a2-b24.下列图形中,是轴对称图形的是()5.据统计,从2005年到2015年中国累积节能1570000000吨标准煤,1570000000这个数用科学计数法表示为( )A.0.157×1010B.1.57×108C.1.57×109D.15.7×1086.如图,已知a ∥b,直角三角板的直角顶点在直线b 上,若∠1=60°,则下列结论错误的是( )A. ∠2=60°B. ∠3=60°C. ∠4=120° D. ∠5=40°7.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签法确定一个小组进行展示活动。
则第3小组被抽到的概率是( )A.71 B. 31 C. 211 D. 1018.下列命题正确是( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.两边及一角对应相等的两个三角形全等C.16的平方根是4D.一组数据2,0,1,6,6的中位数和众数分别是2和69.施工队要铺设一段全长2000米,的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米。
设原计划每天施工x 米,则根据题意所列方程正确的是( )A.25020002000=+-x xB.22000502000=-+xx C.25020002000=--x x D.22000502000=--xx 10.给出一种运算:对于函数n x y =,规定1-=n nx y 丿。
2016年深圳市高三年级第二次调研考试数学(理科)1.复数z 满足(1i)1i z +=-(i 为虚数单位),则z =( ) ABC .2D .1 【答案】D 【解析】1i1i 11i 1iz --===++. 2.设,A B 是两个集合,则“x A ∈”是“x A B ∈”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B 3.若1cos()23πα-=,则cos(2)πα-=( ) A.9- B.9 C . 79-D .79【答案】C 【解析】∵1cos()23πα-=,∴1sin 3α=. ∴27cos(2)cos 22sin 19πααα-=-=-=-. 4.若,x y 满足约束条件10,10,410.x y x x y +-≥⎧⎪-≤⎨⎪-+≥⎩则目标函数13y z x +=+的最大值为( )A .14 B .23 C .32D .2 【答案】C 【解析】目标函数13y x ++点(,)x y 和点(3,1)--由图可知:当其经过点(1,5)A 即max 15133132y z x ++===++ .5.如图所示的流程图中,若输入,,a b c 的值分别是2,4,5,则输出的x =( )A .1B .2C .lg 2D .10 【答案】A【解析】由题意可知a b c <<,∴lg 2lg51x =+=.6.已知函数()f x 的图象是由函数()cos g x x =的图象经过如下变换得到:先将()g x 的图象向右平移3π个单位长度,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变.则函数()f x 的一条对称轴方程为( ) A .6x π=B .512x π=C .3x π=D .712x π= 【答案】D【解析】cos y x =3π−−−−−→向右个单位所有点的纵坐标不变cos()3y x π=-−−−−−−−→横坐标变为原来的一半纵坐标不变cos(2)3y x π=-.∴()cos(2)3f x x π=-.对称轴方程为2,3x k k Z ππ-=∈,即1,26x k k Z ππ=+∈,故选A .7.以直线y =为渐近线的双曲线的离心率为为( )A .2 BC .2D【答案】C【解析】∵双曲线的渐近线方程为y =,∴b a =a b =224c a =,或2243c a =. ∴2e =,或e =8.2位男生和3位女生共5位同学站成一排,则3位女生中有且只有两位女生相邻的概率是( ) A .310 B .35 C .25 D .15【答案】B【解析】2222322355()35C A A A P A ⋅⋅==. 9.如图,正方形ABCD 中,M 是BC 的中点,若AC AM BN λμ=+,则λμ+=( )A .2B .83C .65D .85【答案】D【解析】∵AC AM BN λμ=+()()AB BM BC CN λμ=+++11()()22AB AD AD AB λμ=++-11()()22AB AD λμλμ=-++,∴112112λμλμ⎧-=⎪⎨⎪+=⎩, 解得6525λμ⎧=⎪⎨⎪=⎩,85λμ+=. 10.已知函数ln ,0,()ln(),0.x x x f x x x x -- >⎧=⎨--+<⎩ 则关于m 的不等式11()ln 22f m <-的解集为( )A. 1(0,)2 B .(0,2) C .11(,0)(0,)22- D .(2,0)(0,2)- 【答案】C【解析】函数()f x 的定义域(,0)(0,)-∞+∞关于原点对称,∵0x >时,0x -<,()ln ()f x x x f x -=-+=, 同理:()()f x f x -=,∴()f x 为偶函数.NA DC MB∵()f x 在(0,)+∞上为减函数,且1(2)ln 22ln 22f =--=-, ∴当0m >时,由11()ln 22f m <-,得1()(2)f f m <,∴12m>,解得102m <<.根据偶函数的性质知当0m <时,得102m -<<.11.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为( )A .48B .16C .32D .165 【答案】D【解析】该几何体的直观图,如图:42585S =⨯=,655h =, ∴11685516335V Sh ==⨯⨯=.12.设定义在(0,)+∞上的函数()f x 满足()()ln xf x f x x x '-=,11()f e e=,则()f x ( ) A .有极大值,无极小值 B .有极小值,无极大值C .既有极大值,又有极小值D .既无极大值,也无极小值 【答案】D【解析】()f x 的定义域为(0,)+∞, ∵()()ln xf x f x x x '-=,∴2()()ln xf x f x xx x '-=, ∴()ln ()f x x x x '=,∴2()1ln 2f x x c x =+,∴21()ln 2f x x x cx =+.∵211111()ln 2f c e e e e e =+⨯=,∴12c =. ∴22111()ln ln (ln 1)0222f x x x x '=++=+≥,∴()f x 在(0,)+∞上单调递增,∴()f x 在(0,)+∞上既无极大值也无极小值. 二、填空题:本大题4小题,每小题5分,满分20分ADC BP13.高为π,体积为2π的圆柱的侧面展开图的周长为 . 【答案】6π【解析】∵2222V r h r πππ===,∴1r =,∴侧面展开图的周长为2(2)6r πππ+=.14.过点(3,1)P 的直线l 与圆22:(2)(2)4C x y -+-=相交于,A B 两点,当弦AB 的长取最小值时,直线l 的倾斜角等于 .【答案】4π 【解析】∵AB 的长取最小值时,AB 垂直于PC ,∴1AB PC k k ⋅=-,即(1)1AB k ⋅-=-, ∴1AB k =,直线l 的倾斜角等于4π. 15.在1020161(2)x展开式中,4x 项的系数为____________.(结果用数值表示)【答案】180【解析】含有4x项为228048201612()180C x x ⋅⋅-=.另解:10102016201611(2)[2]xx=+,∴通项10110201612)rrrr T C x-+=,20161)rx的通项11()(4033)2016221(1)(1)r k r k kk kkk k rrT C xxC x---+=-=-∴1(4033)42010r k r ⎧-=⎪⎨⎪≤≤⎩,∴8r =. ∴4x 项的系数为82102180C =.16.如图,在凸四边形ABCD 中,1AB =,BC =,AC CD ⊥,AC CD =.当ABC ∠变化时,对角线BD 的最大值为_________.【答案】D【解析】设AC CD x ==,在ABC ∆中,2222cos AC AB BC AB BC ABC =+-⋅⋅∠,∴213x ABC =+-∠,∵sin sin AC AB ABC ACB =∠∠,∴sin sin ABCACB x ∠∠=.在BCD ∆中,BD ====,ABCD∵(0,)ABC π∠∈,∴sin()4ABC π∠-可以取到最大值1,∴max 1BD ==.三、解答题:解答应写出文字说明,证明过程或演算步骤 . 17.(本小题满分12分)设数列{}n a 的前n 项和为n S ,n a 是n S 和1的等差中项. (1)求数列{}n a 的通项公式; (2)求数列{}n na 的前n 项和n T . 【解析】(1)由题意得:12n n S a +=, ① 当2n ≥时,112(1)n n S a --=-,② ①-②得122n n n a a a -=-,即12n n a a -=,∴12nn a a -=. 由①式中令1n =,可得11a =,∴数列{}n a 是以1为首项,2为公比的等比数列,∴12n n a -=. (2)由12n n n a b n -=⋅得112233n n n T a b a b a b a b =⋅+⋅+⋅++⋅01211222322n n -=⋅+⋅+⋅++⋅12312122232(1)22n n n T n n -=⋅+⋅+⋅++-⋅+⋅1211222222221212nn nn n n n T n n n ---=++++-⋅=-⋅=--⋅-∴(1)21nn T n =-⋅+.18.(本小题满分12分)某市在以对学生的综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级,其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”.(1)某校高一年级有男生500人,女生4000人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高一学生中抽取了45名学生的综合素质评价结果,其各个等级的把握认为“综合素(2生的概率,且每名学生是否“优秀”相互独立,现从该市高一学生中随机抽取3人.(i )求所选3人中恰有2人综合素质评价为“优秀”的概率;(ii )记X 表示这3人中综合素质评价等级为“优秀”的个数,求X 的数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【解析】(1)设从高一年级男生中抽出m 人,则,25500500400m ==+.而45(1551015)91.1252.706301525208k ⨯⨯-⨯===<⨯⨯⨯ ∴没有90%的把握认为“测评结果为优秀与性别有关”.(2)(i )由(1)知等级为“优秀”的学生的频率为15152453+=,∴从该市高一学生中随机抽取1名学生,该生为“优秀”的概率为23.记“所选3名学和g 中恰有2人综合素质评价‘优秀’学生”为事件A ,则事件A 发生的概率为:223224()()(1)339P A C =⨯⨯-=;(ii )由题意知,随机变量2~(3,)3X B ,∴随机变量X 的数学期望2()323E X =⨯=.19.(本小题满分12分)在三棱柱111ABC A B C -中,CA CB =,侧面11ABB A 是边长为2的正方体.点,E F 分别在线段111,AA A B 上,且113,,24AE A F CE EF ==⊥.(1)证明:平面11ABB A ⊥平面ABC ;(2)若CA CB ⊥,求直线1AC 与平面CEF 所成角的正弦值. 【解析】(1)取线段AB 中点M ,连接EM ,在正方体11ABB A 中,131,2AM A E ==,在Rt EAM ∆和1Rt FA E ∆中,1123AE AM A F A E ==, 又12EAM FA E π∠=∠=,∴1Rt EAM Rt FA E ∆∆∼,∴1AEM A FE ∠=∠,从而1112AEM A EF A FE A EF π∠+∠=∠+∠=,∴2FEM π∠=,即EF EM ⊥. 又,EF CE ME CE E ⊥=, ∴EF ⊥平面CEM ,∵CM ⊂平面CEM , ∴ CM EF ⊥, 在等腰三角形CAB ∆中,CM AB ⊥,又AB 与EF 相交,知CM ⊥平面1AB ,∵CM ⊂平面ABC ,∴平面11ABB A ⊥平面ABC ;(2)在等腰三角形CAB ∆中,由,2CA CB AB ⊥=知CA CB ==,且1CM =,记线段11A B 中点为N ,连接MN ,由(1)知,,,MC MA MN 两两互相垂直, 以M 为坐标原点,分别以,,MC MA MN 为正交基底建立如图所示空间直角坐标系Oxyz ,则111(1,0,0),(0,1,),(0,,2),(0,1,0),(1,0,2)24C E F A C ,设平面CEF 的法向量为(,,)x y z =n ,则,CE EF ⊥⊥n n ,即102202332042x y z x y z y z y z ⎧-++=⎪--=⎧⎪⇒⎨⎨=⎩⎪-+=⎪⎩,取2z =,则4,5y x ==,从而得到平面CEF 的一个法向量(5,4,2)=n .1(1,1,2)AC =-,记直线1AC 与平面CEF 所成角为θ,则111||sin |cos ,|||||AC AC AC θ⋅=<>===⋅n n n .故直线1AC 与平面CEF . 20.(本小题满分12分)过抛物线C :22(0)y px p =>的焦点F 的直线交抛物线于,A B 两点,且,A B 两点的纵坐标之积为4-.ACBA 1B 1C 1FE(1)求抛物线C 的方程;(2)已知点D 的坐标为(4,0),若过D 和B 两点的直线交抛物线C 的准线于P 点,求证:直线AP 与x 轴交于一定点.【解析】(1)抛物线的焦点为(,0)2pF , 故可设直线AB 的方程为2px my =+,由222p x my y px ⎧=+⎪⎨⎪=⎩,得2220y pmx p --=, 设1122(,),(,)A x y B x y ,则212y y p =-,∴24p -=-,由0p >,可得2p =. ∴抛物线C 的方程为24y x =.(2)【方法1】依题意,直线BD 与x 轴不垂直,∴24x ≠. ∴直线BD 的方程可表示为22(4)4y y x x =--,① ∵抛物线C 的准线方程为1x =-,② 由①,②联立方程组可求得P 的坐标为225(1,)4y x ---, 由(1)可得124y y =-, ∴P 的坐标可化为1215(1,)1y y --, ∴1121121151411APy y y y k x y --==---,∴直线AP 的方程为111214()1y y y x x y -=--, 令0y =,可得222111111114444y y x x y --=-=-=, ∴直线AP 与x 轴交于定点1(,0)4.【方法2】直线AP 与x 轴交于定点1(,0)4M . 证明如下:依题意,直线BD 与x 轴不垂直,∴24x ≠. ∴直线BD 的方程可表示为22(4)4y y x x =--,① ∵抛物线C 的准线方程为1x =-,② 由①,②联立方程组可求得P 的坐标为225(1,)4y x ---, 由①,②联立方程组可求得P 的坐标为225(1,)4y x ---, 由(1)可得124y y =-,∴214y y =-. ∴P 的坐标可化为1215(1,)1y y --, ∴,P M 两点连线的斜率为12112150141114PMy y y k y --==---,∴,A M 两点连线的斜率为1121104114AM y yk y x -==--, ∴PM AM k k =,∴P 、A 、M 三点共线, 即直线AP 与x 轴交于定点1(,0)4. 21.(本小题满分12分)已知函数2()x ax f x e =,直线1y x e=为曲线()y f x =的切线.(1)求实数a 的值;(2)用min{,}m n 表示,m n 中的最小值,设函数1()min{(),}(0)g x f x x x x=->,若函数2()()h x g x cx =-为增函数,求实数c 的取值范围.【解析】(1)对()f x 求导得222(2)()()x x x xx e x e x x f x a a e e ⋅-⋅-'=⋅=⋅,设直线1y x e=与曲线()y f x =切于点00(,)P x y ,则 00200001(2x )1x x ax x e e x a ee ⎧=⎪⎪⎨-⎪=⋅⎪⎩,解得01a x ==.所以a 的值为1.(2)记函数211()()(),0x x F x f x x x x x e x=--=-+>,下面考察函数()y F x =的符号.对函数()y F x =求导得2(2)1()1,0x x x F x x e x-'=-->. 当2x ≥时()0F x '<恒成立.当02x <<时,2(2)(2)[]12x x x x +--≤=, 从而2222(2x)11111(x)11110x x x F e x e x x x-'=--≤--<--=-<. ∴()0F x '<在(0,)+∞上恒成立,故()y F x =在(0,)+∞上单调递减. ∵2143(1)0,(2)02F F e e =>=-<,∴(1)(2)0F F ⋅<. 又曲线()y F x =在[1,2]上连续不间断,所以由函数的零点存在性定理及其单调性知∃惟一的0(1,2)x ∈,使0()0F x =∴00(0,),()0;(,),()0x x F x x x F x ∈>∈+∞<.∴02101()min{(),},x x x x xg x f x x x xx x e ⎧-<≤⎪⎪=-=⎨⎪>⎪⎩,, 从而2022201-0()(),xx cx x x x h x g x cx x cx x xe ⎧-<≤⎪⎪=-=⎨⎪->⎪⎩,∴0201120()(2)2,xcx x x xh x x x cx x xe ⎧+-<≤⎪⎪'=⎨-⎪->⎪⎩,由函数2()()h x g x cx =-为增函数,且曲线()y h x =在(0,)+∞上连续不断知()0h x '≥在0(0,)x ,0(,)x +∞上恒成立.①当0x x >时,(2)20x x x cx e --≥在0(,)x +∞上恒成立,即22xxc e-≤在0(,)x +∞上恒成立.记02(),x x u x x x e -=>,则03(),xx u x x x e -'=>, 当x 变化时,()u x ',()u x 变化情况如下表:∴min 3()()(3)u x u x u e===-极小. 故“22x x c e -≤在0(,)x +∞上恒成立”只需min312()c u x e ≤=-,即312c e ≤-. ②当00x x <<时,21()12h x cx x '=+-,当0c ≤时,()0h x '>在0(0,)x 上恒成立.综合(1)(2)知,当312c e ≤-时,函数2()()h x g xcx =-为增函数.故实数c 的取值范围是31(,]2e-∞-.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时写清题号22.(本小题满分10分)选修4-1:几何证明选讲 如图,AB 是O 直径,C 在O 上,CF AB ⊥于F ,点D 为线段CF 上任意一点,延长AD 交O 于E ,30AEC ∠=.证明:(1)AF FO =;(2)若CF =AD AE ⋅的值.A【解析】(1)证明:连接,OC AC , ∵30AEC ∠=,∴60AOC ∠=.∵OA OC =,∴AOC ∆为等边三角形. ∵CF AB ⊥,∴CF 为AOC ∆中AO 边上的中线,即AF FO =. (2)连接BE ,∵CF =AOC ∆为等边三角形,∴1AF =,4AB =. ∵AB 是O 直径,∴90AEB ∠=,∴AEB AFD ∠=∠.∵BAE DAF ∠=∠,∴AEB ∆∽AFD ∆, ∴AD AFAB AE=,即414AD AE AB AF ⋅=⋅=⨯=. 23.(本小题满分10分)选修4-4:坐标系与参数方程选讲 已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合.若曲线C 的参数方程为32cos (2sin x y ααα=+⎧⎨=⎩为参数),直线l 的极坐标方程为sin()14πθ-=.(1)将曲线C 的参数方程化为极坐标方程;(2)由直线l 上一点向曲线C 引切线,求切线长的最小值.【解析】(1)圆C 的直角坐标方程为22(3)4x y -+=.∵222,cos ,sin x y x y ρρθρθ+===, ∴圆C 的极坐标方程为26cos 50ρρθ-+=. (2) ∵直线lsin()14πθ-=,∴sin cos 1ρθρθ-=,∴直线l 的直角坐标方程为10x y -+=. 设直线l 上点P ,切点为A ,圆心(3,0)C ,则有22224PA PC AC PC =-=-, 当PC 最小时,有PA 最小.∵PC ≥=FEBCAD O∴2PA ==,∴切线长的最小值为2.24.(本小题满分10分)选修4-5:不等式选讲已知关于x 的不等式231x x m --+≥+有解,记实数m 的最大值为M . (1)求M 的值;(2)正数,,a b c 满足2a b c M ++=,求111a b b c+≥++. 【解析】23(2)(3)5x x x x --+≤--+=, 若不等式231x x m --+≥+有解, 则满足15m +≤,解得64m -≤≤. ∴4M =.(2)由(1)知正数,,a b c 满足24a b c ++=, ∴11111[())]()4a b b c a b b c a b b c+=++++++++11(1)(1144b c a b a b b c ++=++≥+=++, 当且仅当,2a c a b =+=时,取等号.。
2016年深圳市南山区中考数学二模试卷
一、选择题(每题3分,共36分)
2、人工智能AlphaGo 因在人机大战中大胜韩国围棋手李世石而声名显赫。
它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量)。
此处“两千万”用科学记数法表示为( )A 、0.2×107B 、2×107 C 、0.2×108
D 、2×108
3、方程x 2-4x+4=0的根的情况是( )
A 、有两个相等的实数根
B 、只有一个实数根
C 、没有实数根
D 、有两个不相等的实数根 4、如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是( )
A 、
B 、
C 、
D 、
6、如图,△ABC ,AB<BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC=BC ,则下列选项正确的是( )
A 、
B 、
C 、
D 、
7、如图,l 1∥l 2,l 3⊥l 4,∠1=42°,那么∠2的度数为( )A 、48° B 、42°C 、38° D 、21°
8、关于x 的方程mx-1=2x 的解为正实数,则m 的取值范围是( )
A 、m≥2
B 、m≤2
C 、m>2
D 、m<2 9、如图,二次函数212433y x x =-的图象与正比例函数223
y x =的图象交于点A(3,2),与x 轴交于点B(2,0),若y 1<y 2,则x 的取值范围是( )
A 、0<x<2
B 、0<x<3
C 、2<x<3
D 、x<0或x>3
10、(3分)如图,一根电线杆的接线柱部分AB 在阳光下的投影CD 的长为1米,太阳光线与地面的夹角∠ACD=60°,则AB 的长为( )
A 、12米
B
C D
11、(3分)如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,此时点C 恰好在线
段DE 上,若∠B=40°,∠CAE=60°,则∠DAC 的度数为( )
A 、15°
B 、20°
C 、25°
D 、30°
12、(3分)如图,Rt △ABC 中,∠C=90°,AC=6,BC=8,AD 平分∠BAC ,则点B 到AD 的
距离是( )A 、3 B 、4 C 、 D 二、填空题(每小题分,共12分)
13、某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降
低了5,9,3,10,6,8,5(单位:kg),则这组数据的中位数是 。
15、在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,
8,9,12,第五组的频率是0.2,则第六组的频数是 。
16、点A 、B 分别在反比例函数()20y x x =
>,()80y x x =->的图象上,且OA ⊥OB ,则tanB 为 。
三、解答题(共52分)
19、(7分)为贯彻政府报告中“大众创业、万众创新”的精神,某镇对辖区内
所有的小微企业按年利润w(万元)的多少分为以下四个类型:A 类
(w<10),B 类(10≤w<20),C 类(20≤w<30),D 类(w≥30),该镇政府对
辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:
⑴该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度
数为度,请补全条形统计图;
⑵为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业
派一名代表参会。
计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区。
请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率。
20、(8分)【阅读发现】如图①,在正方形ABCD的外侧,作两个等边△ABE和△ADF,连
结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC=。
【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边△ABE和△ADF,连结ED与FC交于点M。
⑴求证:ED=FC;⑵若∠ADE=20°,求∠DMC的度数。
21、(8分)某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400
元,购买B品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍。
购买一个B品牌蓝球比购买一个A品牌蓝球多花50元。
⑴求购买一个A品牌、一个B品牌的蓝球各需多少元?
⑵该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的
售价进行调整,A品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?
22、(8分)如图,⊙O中,点A为弧BC中点,BD为直径,过A作AP∥BC交DB的延长线于点P。
⑴求证:PA是⊙O的切线;
⑵若BC AB=6,求sin∠ABD的值。
23、(9分)如图,平面直角坐标系中,O为菱形ABCD的对称中心,C(2,0),D(0,-1),N
为线段CD上一点(不与C、D重合)。
⑴求以C为顶点,且经过点D的抛物线解析式;
⑵设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;
⑶求⑵中N1N2的最小值;
⑷过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且
∠PQA=∠BAC,求当PQ最小时点Q坐标。