考研数学三(微积分)模拟试卷153(题后含答案及解析)
- 格式:doc
- 大小:27.50 KB
- 文档页数:4
考研数学三(微积分)模拟试卷114(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.已知f(x)在x=a处可导,则=( ).A.0B.f’(a)C.2f’(a)D.3f’(a)正确答案:D解析:知识模块:微积分2.设函数f(x)在点x处可微,则必存在x的一个δ邻域,使在该邻域内函数f(x)( ).A.可导B.连续未必可导C.有界D.不一定存在正确答案:C解析:因为f(x)在x0处可微,所以在x0点必连续,从而有=f(x0).由函数极限的局部有界性知f(x)在x0的某邻域内有界,故选C.知识模块:微积分3.设f(x)=,则f(x)在x=0处( ).A.不连续B.连续但不可导C.可导但f’(x)在x=0不连续D.可导且f’(x)在x=0连续正确答案:D解析:所以f’(x)在x=0处连续.故选D.知识模块:微积分4.设y=xn+ex,则y(n)=( ).A.exB.n!C.n!+nexD.n!+ex解析:因为(xn)(n)=n!,(ex)(n)=ex,所以y(n)=n!+ex.故选D.知识模块:微积分5.函数f(x)=(x2一2x一3)|x2—3x|sin|x|不可导点的个数是( ).A.0B.1C.2D.3正确答案:A解析:f(x)的不可导点可能是|x2一3x|=0或|x|=0的点,即x=0,3,若直接按定义判断较复杂.利用如下结论:若存在,则f(x)=g(x)|x—x0|在x=x0处可导的充要条件是=0.f(x)=[(x2一2x一3)|x一3|sin|x|1]|x|而(x2一2x一3)|x一3|sin|x|=0,所以,f(x)在x=0处可导.同理f(x)=[(x2一2x一3)|x|sin|x|]|x一3|(x2一2x一3)|x|sin|x|=0,所以,f(x)在x=3处可导.故选A.知识模块:微积分填空题6.设f(x)为可导的偶函数,且=2,则曲线y=f(x)在点x=一1处法线的斜率为________.正确答案:一1.解析:由f(x)为可导的偶函数可知f’(x)为奇函数,即f’(一x)=一f’(x).又=一2f’(1)=2,所以f’(1)=一1,f’(一1)=一f’(1)=1,故所求法线的斜率为k=一=一1.知识模块:微积分7.设曲线y=x2+ax+b和2y=一1+xy3在点(1,一1)处相切,则a=________,b=________.正确答案:一1,一1.解析:由导数的几何意义求出公切线的斜率,又点(1,一1)在两条曲线上,由y=x2+ax+b,得y’=2x+a..又点(1,一1)在曲线y=x2+ax+b上,即一1=1+a+b,得b=一1.知识模块:微积分8.设f()=sinx,则f’[f(x)]= ________.正确答案:2sinx2.cos(sinx2)2.解析:由f()=sinx得f(x)=sinx2,因此f[f(x)]=sin[f(x)]2,所以f[f(x)]=cos[f(x)]2.2f(x) =2sinx2.cos(sinx2)2.知识模块:微积分9.设f(x)=,则f’(0)= ________.解析:知识模块:微积分10.设f(x)是以4为周期的函数,且f’(一1)=2,则=________.正确答案:一.解析:知识模块:微积分解答题解答应写出文字说明、证明过程或演算步骤。
2024考研(数学三)真题答案及解析完整版2024年全国硕士研究生入学考试数学(三)真题及参考答案考研数学三考什么内容?数学三在高等数学这一部分因为要求的内容相对较少,所以很多学校经济类、管理类专业在本科期间所用教材并非理工类专业通常会使用的《高等数学》同济大学版,更多的学校本科阶段的教材是中国人民大学版《微积分》。
而考数学三的同学中在实际复习过程中使用哪一本教材的都有)(函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);概率论与数理统计(随机事件和概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。
考研的考试内容有哪些一、考研公共课:政治、英语一、英语二、俄语、日语、数学一、数学二、数学三,考研公共课由国家教育部统一命题。
各科的考试时间均为3小时。
考研的政治理论课(马原22分、毛中特30分、史纲14分、思修18分、形势与政策16分)。
考研的英语满分各为100分(完型10分、阅读理解60分、小作文10分、大作文20分)。
数学(其中理工科考数一、工科考数二、经管类考数三)满分为150分。
数一的考试内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分);数二的内容分布:高数78%(117分)、线代22%(33分);数三的内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分)。
这些科目的考试知识点和考试范围在各科考试大纲上有详细规定,一般变动不大,因此可以参照前一年的大纲,对一些变动较大的科目,必须以新大纲为准进行复习。
二、考研专业课统考专业课:由国家教育部考试中心统一命题,科目包括:西医综合、中医综合、计算机、法硕、历史学、心理学、教育学、农学。
其中报考教育学、历史学、医学门类者,考专业基础综合(满分为300分);报考农学门类者,考农学门类公共基础(满分150分)。
考研数学三(微积分)模拟试卷202(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设f(x)=∫0xdt∫0ttln(1+u2)du,g(x)=∫0sinx2(1-cost)dt,则当x→0时,f(x)是g(x)的( ).A.低阶无穷小B.高阶无穷小C.等价无穷小D.同阶但非等价的无穷小正确答案:A解析:得m=6且g(x)~x6,故x→0时,f(x)是g(x)的低阶无穷小,选A.知识模块:函数、极限、连续2.f(x)g(x)在x0处可导,则下列说法正确的是( ).A.f(x),g(x)在x0处都可导B.f(x)在x0处可导,g(x)在x0处不可导C.f(x)在x0处不可导,g(x)在x0处可导D.f(x),g(x)在x0处都可能不可导正确答案:D解析:令显然f(x),g(x)在每点都不连续,当然也不可导,但f(x)g(x)≡-1在任何一点都可导,选D.知识模块:一元函数微分学3.设函数f(x)满足关系f’’(x)+f’2(x)=x,且f’(0)=0,则( ).A.f(0)是f(x)的极小值B.f(0)是f(x)的极大值C.(0,f(0))是y=f(x)的拐点D.(0,f(0))不是y=f(x)的拐点正确答案:C解析:由f’(0)=0得f’’(0)=0,f’’(x)=1-2f’(x)f’’(x),f’(0)=1>0,由极限保号性,存在δ>0,当0<|x|<δ时,f’’’(x)>0,再由f’’(0)=0,得故(0,f(0))是曲线y=f(x)的拐点,选C.知识模块:一元函数微分学填空题4.设f’(x)连续,x(0)=0,f’(0)=1,则=______.正确答案:0解析:∫0xlncos(x-t)dt=-∫0xlncos(x-t)d(x-t)=一∫x0lncosudu=∫0xlncosudu,知识模块:函数、极限、连续5.设y=y(x)由yexy+xcosx-1=0确定,求dy|x=0=______.正确答案:-2dx解析:当x=0时,y=1,将yexy+xcosx-1=0两边对x求导得将x=0,y=1代入上式得故dy|x=0=-2dx.知识模块:一元函数微分学6.______.正确答案:解析:知识模块:一元函数积分学7.设则a=______.正确答案:ln2解析:故a=ln2.知识模块:一元函数积分学8.微分方程的通解为______.正确答案:lnx+C解析:知识模块:常微分方程与差分方程解答题解答应写出文字说明、证明过程或演算步骤。
考研数学三(微积分)历年真题试卷汇编15(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(2005年)当a取值为( )时,函数f(x)=2x3一9x2+12x—a恰有两个不同的零点。
A.2。
B.4。
C.6。
D.8。
正确答案:B解析:由f’(x)=6x2一18x+12=6(x一1)(x一2),知可能极值点为x=1,x=2,当x<1和x>2时,函数单调增加,1<x<2时,函数单调减小,且f(1)=5一a,f(2)=4一a。
可见当a=4时,f(1)=1>0,且=一∞,由单调性和零点存在性定理可知,函数在(-∞,1)上有唯一的零点,而此时f(2)=0,在(1,2)和(2,+∞)上无零点,因此a=4时,f(x)恰好有两个零点。
故应选B。
知识模块:微积分2.(2001年)设函数f(x)的导数在x=a处连续,又,则( )A.x=a是f(x)的极小值点。
B.x=a是f(x)的极大值点。
C.(a,f(a))是曲线y=f(x)的拐点。
D.x=a不是f(x)的极值点,(a,f(a))也不是曲线y=f(x)的拐点。
正确答案:B解析:又函数f(x)的导数在x=a处连续,根据函数在某点连续的定义,左极限等于右极限且等于函数在该点的值,所以f’(a)=0,于是即f’(a)=0,f”(a)=一1<0,根据判定极值的第二充分条件知x=a是f(x)的极大值点,因此,正确选项为B。
知识模块:微积分3.(2004年)设f(x)=|x(1-x)|,则( )A.x=0是f(x)的极值点,但(0,0)不是曲线y=f(x)的拐点。
B.x=0不是f(x)的极值点,但(0,0)是曲线y=f(x)的拐点。
C.x=0是f(x)的极值点,且(O,O)是曲线y=f(x)的拐点。
D.x=0不是f(x)的极值点,(0,0)也不是曲线y=f(x)的拐点。
正确答案:C解析:令φ(x)=x(x一1),则φ(x)=是以直线x=为对称轴,顶点坐标为开口向上的一条抛物线,与x轴相交的两点坐标为(0,0),(1,0),f(x)=|φ(x)|的图形如图。
考研数学三(微积分)模拟试卷10(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.已知y=x/lnx是微分方程y’=y/x+φ(x/y)的解,则φ(x/y)的表达式为A.-y2/x2B.y2/x2C.-x2/y2D.x2/y2正确答案:A 涉及知识点:微积分2.设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则A.λ=1/2,μ=1/2B.λ=-1/2,μ=-1/2C.λ=2/3,μ=1/3D.λ=2/3,μ=2/3正确答案:A 涉及知识点:微积分3.若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内A.有极值点,无零点.B.无极值点,有零点.C.有极值点,有零点.D.无极值点,无零点.正确答案:B 涉及知识点:微积分4.设u=e-x sinx/y,则э2 u/эxэy 在点(2,1/π)处的值________。
正确答案:π2/э2 涉及知识点:微积分5.设an>0(n=l,2,…),Sn=a1+a2+…+an,则数列{Sn}有界是数列{an}收敛的A.充分必要条件B.充分非必要条件C.必要非充分条件D.既非充分也非必要条件正确答案:B解析:解决数列极限问题的基本方法是:求数列极限转化为求函数极限;利用适当放大缩小法(夹逼定理);利用定积分定义求某些和式的极限. 知识模块:微积分6.“对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的A.充分条件但非必要条件B.必要条件但非充分条件C.充分必要条件D.既非充分条件又非必要条件正确答案:C解析:函数与极限的几个基本性质:有界与无界,无穷小与无穷大,有极限与无极限(数列的收敛与发散),以及它们之间的关系,例如,有极限→(局部)有界,无穷大→无界,还有极限的不等式性质及极限的运算性质等.知识模块:微积分7.设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是A.若{xn}收敛,则{f(xn)}收敛B.若{xn}单调,则{f(xn)}收敛C.若{f(xn)}收敛,则{xn}收敛D.若{f(xn)}单调,则{xn}收敛正确答案:B 涉及知识点:微积分8.函数f(x)=[丨x丨sin(x-2)]/[x(x-1)(x-2)2]存下列哪个区间内有界.A.(-1,0)B.(1,0)C.(1,2)D.(2,3)正确答案:A 涉及知识点:微积分9.设f(x)=ln10x,g(x)=x,h(x)=ex/10,则当x充分大时有A.g(x)<h(x)<f(x).B.f(x)<g(x)<h(x).C.h(x)<g(x)<f(x)D.g(x)<f(x)<h(x).正确答案:C 涉及知识点:微积分10.设函数f(x)任(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是A.若{xn}收敛,则{f(xn)}收敛.B.若{xn}单调,则{f(xn)}收敛.C.若{f(xn)}收敛,则{xn}收敛.D.符{f(xn)}单调,则{xn}收敛.正确答案:B 涉及知识点:微积分11.设可微函数f(x,y)在点(xo,yo)取得极小值,则下列结论正确的是A.f(xo,y)在y=yo处的导数等于零.B.f(xo,y)存y=yo处的导数大于零.C.f(xo,y)在y=yo处的导数小于零.D.f(xo,y)在y=yo处的导数不存在.正确答案:D 涉及知识点:微积分12.设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C 为任意常数,则该方程的通解是A.C[y1(x)-y2(x)].B.y1(x)+C[y1(x)-y2(x)].C.C[y1(x)+y2(x)].D.y1(x)+C[y1(x)+y2(x)].正确答案:B 涉及知识点:微积分13.y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+y2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则A.λ=1/2,μ=1/2.B.λ=-1/2,μ=-1/2.C.λ=2/3,μ=1/3.D.λ=2/3,μ=2/3.正确答案:A 涉及知识点:微积分14.微分方程y”+y=x2+1+sinx 的特解形式可设为A.y*=ax2+bx+c+x(Asinx+Bcosx).B.y*=x(ax2+bx+c+Asinx+Bcosx).C.y*=ax2+bx+c+Asinx.D.y*=ax2+bx+c+Acosx.正确答案:A 涉及知识点:微积分填空题15.当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则a=______,b=______.正确答案:1,-1/6 涉及知识点:微积分16.已知当x→0时,函数f(x)=3sinx-sin3x与cxk是等价无穷小,则k=_______,c=______.正确答案:3,4 涉及知识点:微积分17.设二元函数z=xex+y+(x+1)ln(1+y),则dz丨(1,0)=___________.正确答案:2edx+(e+2)dy 涉及知识点:微积分18.设z=(x+ey)x,则θz/θx丨(1,0)=___________.正确答案:2ln2+1 涉及知识点:微积分19.设函数z=(1+x/y)x/y,则dz丨(1,1)=___________.正确答案:-(2ln2+1) 涉及知识点:微积分20.设z=f(xy,x/y)+g(y/x),其中f,g均可微,则θz/θx=________.正确答案:yf1’+(1/y)f2’-(y/x2)g’涉及知识点:微积分21.设函数f(u)可微,且f(0)=1/2,则z=f(4x2-y2)在点(1,2)处的全微分dz 丨(1,2)=_________.正确答案:4dx-2dy 涉及知识点:微积分22.微分方程xy’+y=0满足初始条件y(1)=2的特解为__________.正确答案:2/x 涉及知识点:微积分23.微分方程xy’+y=0满足条件y(1)=1的解是y=________.正确答案:1/x 涉及知识点:微积分24.微分方程y”-2y’+2y=ex的通解为________.正确答案:ex(C1cosx+C2sinx+1) 涉及知识点:微积分25.微分方程y”-4y=e2x的通解为________.正确答案:C1e2x+C2e-2x+x/4e2x 涉及知识点:微积分26.二阶常系数非齐次线性微分方程y”-4y’+3y=2e2x的通解为y=_______.正确答案:C1ex+C2e3x+2e2x 涉及知识点:微积分27.差分方程yt+1-yt=t2t的通解为_______.正确答案:C+(t-2)2t 涉及知识点:微积分28.差分方程2yt+1+10yt-5t=0的通解为_______.正确答案:C(-5)t+5/12(t-1/6) 涉及知识点:微积分29.某公司每年的工资总额在比上一年增加20%的基础上再追加2百万元.若以W1表示第t年的工资总额(单位:百万元),则Wt满足的差分方程是__________.正确答案:Wt=1.2t-1+2解析:第t年的工资总额W1(百万元)是两部分之和,其中一部分是同定追加额2(百万元),另一部分比前一年的工资总额Wt-1多20%,即是Wt-1的1:2倍.于是可得Wt满足的差分方程是Wt=1.2t-1+2.知识模块:微积分解答题解答应写出文字说明、证明过程或演算步骤。
考研数学三(微积分)模拟试卷100(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设f(x)=3x2+x2|x|,则使f(n)(0)存在的最高阶数n=A.0B.1C.2D.3正确答案:C解析:因3x2在(一∞,+∞)具有任意阶导数,所以f(x)与函数g(x)=x2|x|具有相同最高阶数的导数.因从而综合即得类似可得综合即得g’’(0)存在且等于0,于是由于g’’(x)在x=0不可导,从而g(x)存在的最高阶导数的阶数n=2,即f(x)存在的最高阶导数的阶数也是n=2.故应选C.知识模块:微积分2.设f(x)在x=0的某邻域连续且f(0)=0,则f(x)在x=0处A.不可导.B.可导且f’(0)≠0.C.有极大值.D.有极小值.正确答案:B解析:因,由极限的保号性质知,由于1—cosx>0→当0<|x|<δ时f(x)>0,又f(0)=0,故f(x)在x=0取得极小值.故应选D.知识模块:微积分3.若x f’‘(x)+3x[f’(x)]2=1一e-x且f’(x0)=0(x0≠0),则A.(x0,f(x0))是曲线y=f(x)的拐点.B.f(x0)是f(x)的极小值.C.f(x0)不是f(x)的极值,(x0,f(x0))也不是曲线y=f(x)的拐点.D.f(x0)是f(x)的极大值.正确答案:B解析:由题设知又由f’’(x)存在可知f’(x)连续,再由在x=x0≠0附近连续可知f’’(x)在x=x0附近连续,于是由f’(x0)=0及f’’(x0)>0可知f(x0)是f(x)的极小值.故应选B.知识模块:微积分4.曲线渐近线的条数是A.1B.2C.3D.4正确答案:A解析:令f(x)的定义域是(一∞,一2)U(一2,1)U(1,+∞),因从而x=1与x=一2不是曲线y=f(x)的渐近线.又因故是曲线y=-f(x)的水平渐近线.综合知曲线y=f(x)有且只有一条渐近线.选A.知识模块:微积分5.曲线的拐点有A.1个B.2个C.3个D.4个正确答案:B解析:f(x)的定义域为(一∞,一1)∪(一1,1)∪(1,+∞),且在定义域内处处连续.由令f’’(x)=0,解得x1=0,x2=2;f’’(x)不存在的点是x3=一1,x4=1(也是f(x)的不连续点).现列下表:由上表可知,y在x1=0与x2=2的左右邻域内凹凸性不一致,因此它们都是曲线y=f(x)的拐点,故选B.知识模块:微积分填空题6.设y=aretanx,则y(4)(0)=__________.正确答案:0解析:因y=arctanx是奇函数,且y具有任何阶连续导数,从而y’,y’’是偶函数,y’’,y(4)是奇函数,故y(4)(0)=0.知识模块:微积分7.74的极大值点是x=__________,极小值点是x=____________.正确答案:极大值点x=0;极小值点为解析:知识模块:微积分8.设f(x)=xex,则f(n)(x)在点x=__________处取极小值___________.正确答案:x0一(n+1)为f(n)(x)的极小值点;极小值为f(n)(x0)=一e-(n+1) 解析:由归纳法可求得f(n)(x)=(n+x)ex,由f(n+1)(x)=(n+1+x)ex=0得f(n)(x)的驻点x0=一(n+1).因为f(n+2)(x)|x=x0=(n+2+x)ex|x=x0=ex0>0,所以x0一(n+1)为f(n)(x)的极小值点;极小值为f(n)(x0)=一e-(n+1).知识模块:微积分9.曲线y=x2e-x2的渐近线方程为____________.正确答案:y=0解析:函数y=x2e-x2的定义域是(一∞,+∞),因而无铅直渐近线.又因故曲线y=x2e-x2有唯一的水平渐近线y=0.知识模块:微积分10.曲线的渐近线方程为__________.正确答案:解析:本题中曲线分布在右半平面x>0上,因故该曲线无垂直渐近线.又其中利用了当故曲线仅有斜渐近线知识模块:微积分11.曲线(x一1)3=y2上点(5,8)处的切线方程是__________.正确答案:解析:由隐函数求导法,将方程(x一1)3=y2两边对x求导,得3(x一1)2=2yy’.令z=5,y=8即得y’(5)=3.故曲线(x一1)3=y2在点(5,8)处的切线方程是知识模块:微积分12.曲线y=lnx上与直线x+y=1垂直的切线方程为__________.正确答案:y=x-1解析:与直线x+y=1垂直的直线族为y=x+c,其中c是任意常数,又因y=lnx 上点(x0,y0)=(x0,lnxn)(x0>0)处的切线方程是从而,切线与x+y=1垂直的充分必要条件是即该切线为y=x一1.知识模块:微积分13.设某商品的需求量Q与价格P的函数关系为Q=aPb,其中a和b是常数,且a>0,则该商品需求对价格的弹性=________.正确答案:b解析:知识模块:微积分14.设某商品的需求量Q与价格P的函数关系为Q=100—5P.若商品的需求弹性的绝对值大于1,则该商品价格P的取值范围是__________.正确答案:10<P≤20解析:从而P的取值范围是10<P≤20.知识模块:微积分解答题解答应写出文字说明、证明过程或演算步骤。
考研数学三(微积分)模拟试卷158(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设a为任意常数,则级数( ).A.发散B.条件收敛C.绝对收敛D.敛散性与常数a有关正确答案:B解析:知识模块:微积分2.设在区间[a,b]上f(x)>0,f’(x)<0,f’’(x)>0,令S1=∫abf(x)dx,S2=f(b)(b-a),S3=[f(a)+f(b)],则( ).A.S1<S2<S3B.S2<S1<S3C.S3<S1<S2D.S2<S3<S1正确答案:B解析:因为函数f(x)在[a,b]上为单调减少的凹函数,根据几何意义,S2<S1<S3,选(B).知识模块:微积分3.设曲线y=x2+ax+b与曲线2y=xy3-1在点(1,一1)处切线相同,则( ).A.a=1,b=1B.a=-1,b=-1C.a=2,b=1D.a=-2,b=-1.正确答案:B解析:由y=x2+ax+b得y’=2x+a,2y=xy3~1两边对x求导得2y’=y3+3xy2y’,解得y’=,因为两曲线在点(1,-1)处切线相同,所以选(B).知识模块:微积分4.设f(x)=,则f(x)( )A.无间断点B.有间断点x=1C.有间断点x=-1D.有间断点x=0正确答案:B解析:当|x|<1时,f(x)=1+x;当|x|>1时,f(x)=0;当x=-1时,f(x)=0;当x=1时,f(x)=1.于是f(x)=显然x=1为函数f(x)的间断点,选(B).知识模块:微积分填空题5.=______.正确答案:1解析:注意到xx=1,由洛必达法则得知识模块:微积分6.设f(x)可导且=2,又g(x)=在x=0处连续,则a=______.正确答案:3解析:因为g(x)在x=0处连续,所以a=3.知识模块:微积分7.=______.正确答案:解析:知识模块:微积分8.由x=zey+z确定z=z(x,y),则dz|(e,0)=______.正确答案:解析:x=e,y=0时,z=1.知识模块:微积分9.计算∫02dx∫x2y2e-y2dy=______.正确答案:解析:改变积分次序得∫02dx∫x2y2e-y2dy=∫02dy∫0yy2e-y2dx=∫02y3e-y2dy 知识模块:微积分10.以y=C1e-2x+C2ex+cosx为通解的二阶常系数非齐次线性微分方程为______.正确答案:y’’+y’-2y=-sinx-3cosx解析:特征值为λ1=-2,λ2=1,特征方程为λ2+λ-2=0,设所求的微分方程为y’’+y’-2y=Q(x),把y=cosx代入原方程,得Q(z)=-sinx一3cosx,所求微分方程为y’’+y’-2y=-sinx-3cosx.知识模块:微积分解答题解答应写出文字说明、证明过程或演算步骤。
考研数学三(微积分)模拟试卷150(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.函数f(x)=的间断点及类型是()A.x=1为第一类间断点,x=—1为第二类间断点B.x=±1均为第一类间断点C.x=1为第二类间断点,x=—1为第一类间断点D.x=±1均为第二类间断点正确答案:B解析:分别就|x|=1,|x|<1,|x|>1时求极限得出f(x)的分段表达式:所以,x=±1均为f(x)的第一类间断点,故选B。
知识模块:微积分2.设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g’(a)存在,则g(a)=0,g’(a)=0是F(x)在x=a处可导的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件正确答案:A解析:因φ(x)在x=a处不可导,所以不能对F(x)用乘积的求导法则,须用定义求F’(a)。
题设φ(x)以x=a为跳跃间断点,则存在A+,A+≠A—。
当g(a)=0时,这表明,g(a)=0时,F’(a)存在下面证明若F’(a)存在,则g(a)=0。
反证法,若g(a)≠0,φ(x)=由商的求导法则,φ(x)在x=a 可导,这与题设矛盾,则g(a)=0,g’(a)=0是F(x)在x=a处可导的充要条件。
故选A。
知识模块:微积分3.设f(x)在(0,+∞)内二阶可导,满足f(0)=0,f”(x)<0(x>0),又设b>a>0,则a<x<b时,恒有()A.af(x)>xf(a)B.f(x)>xf(b)C.xf(x)>bf(b)D.xf(x)>af(a)正确答案:B解析:将A,B选项分别改写成于是,若能证明或xf(x)的单调性即可。
又因令g(x)=xf’(x)—f(x),则g(0)=0,g’(x)=xf”(x)<0(x >0),那么g(x)<g(0)=0 (x>0),即故在(0,+∞)内单调减小。
考研数学三(微积分)模拟试卷140(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设数列{xn}与{yn}满足xnyn=0,则下列判断正确的是()A.若{xn}发散,则{yn}必发散B.若{xn}无界,则{yn}必无界C.若{xn}有界,则{yn}必为无穷小D.若为无穷小,则{yn}必为无穷小正确答案:D解析:取xn=n,yn=0,显然满足xnyn=0,由此可排除A、B。
若取xn=0,yn=n,也满足xnyn=0,又排除C,故选D。
知识模块:微积分2.设函数f(x)=在(一∞,+∞)内连续,且f(x)=0,则常数a,b满足()A.a<0,b<0B.a>0,b>0C.a≤0,b>0D.a≥0,b<0正确答案:D解析:因f(x)连续,故a+ebx≠0,因此只要a≥0即可。
再由可知x→一∞时,a+ebx必为无穷大(否则极限必不存在),此时需b<0,故选D。
知识模块:微积分3.设f(x)在x=0的某邻域内连续,在x=0处可导,且f(0)=0。
则φ(x)在x=0处()A.不连续B.连续但不可导C.可导但φ’(x)在x=0不连续D.可导且φ’(x)在x=0连续正确答案:D解析:因为因此,φ’(x)在x=0连续。
故选D。
知识模块:微积分4.设y= f(x)在(a,b)可微,则下列结论中正确的个数是()①x0∈(a,b),若f’(x0)≠0,则△x→0时dy|xx0与△x是同阶无穷小。
②df (x)只与x∈(a,b)有关。
③△y=f(x+△x)—f(x),则dy≠△y。
④△x →0时,dy —△y是△x的高阶无穷小。
A.1B.2C.3D.4正确答案:B解析:逐一分析。
①正确。
因为=f’(x0)≠0,因此△x→0时与△x是同阶无穷小。
②错误。
df(x)=f’(x)△x,df(x)与x∈(a,b)及△x有关。
③错误。
当y= f(x)为一次函数,f(x)=ax+b,则dy=a△x=△y。
考研数学三(解答题)高频考点模拟试卷3(题后含答案及解析) 题型有:1.1.已知y=y(x)由方程.正确答案:方程两边对自变量x求导,得涉及知识点:微积分2.设,求n及a的值.正确答案:由此可知n=2,a=-2e2.涉及知识点:函数、极限、连续3.已知矩阵A的伴随矩阵A*=diag(1,1,1,8),且ABA-1=BA-1+3E,求B正确答案:由题意可知A-1存在,A*=|A|A-1两端取行列式可得|A*|=|A|4|A-1|=|A|3,因为A*=diag(1,1,1,8),所以|A|=8,即|A|=2.由ABA-1=BA-1+3E移项并提取公因式得,(A-E)BA-1=3E,右乘A得(A-E)B=3A,左乘A-1得(E-A-1)B=3E.且由已求结果|A|=2,知涉及知识点:矩阵4.求A的特征值.正确答案:A+3E就是一个秩为1的矩阵了,于是A=A+3E一3E,就容易求特征值了.的秩为1,因此特征值为0,0,6.A的特征值为一3,一3,3.涉及知识点:线性代数5.已知抛物线y=ax2+bx(其中a<0,b>0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S,问当a,b为何值时,S 最大?最大值是多少?正确答案:由图1—5—3可知,抛物线与z轴交点的横坐标为x1=0 由直线x+y=5与抛物线y=ax2+bx相切可知,它们有唯一的交点,其坐标满足方程将方程①代入方程②得ax2+(b+1)x一5=0.其判别式必等于零,即△=(b+1)2+20a=0,因为,当0<b<3时,S’(b)>0;当b>3时,S’(b)<0.所以,当b=3时,S(b)取极大值,即最大值.解析:利用定积分求面积,容易得到其面积是a,b的函数S(a,b),问题是如何求S(a,b)的最大值.因为抛物线与固定直线相切,所以a与b并非独立变量.利用相切的条件可求出它们之间的函数关系,于是将问题转化为一元函数求最值的问题.知识模块:微积分6.已知三元二次型XTAX经正交变换化为2y12-y22-y32,又知矩阵B满足矩阵方程BA-1=2AB+4E,且A*α=α,其中α=[1,1,-1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.正确答案:由条件知A的特征值为2,-1,-1,则|A|=2,因为A*的特征值为,所以A*的特征值为1,-2,-2.由已知,α是A*关于λ=1的特征向量,也就是α是A关于λ=2的特征向量.由得2ABA-1=2AB+4E=>B=2(E-A)-1,则B的特征值为-2,1.1,且Bα=-2α.设B关于λ=1的特征向量为β=[x1,x2,x3]T,又B是实对称阵,α与β正交,故x1+x2-x3=0,解出β1=[1,-1,0]T,β2=[1,0,1]T,令故XTBX=-2x1x2+2x1x3+2x2x3.涉及知识点:线性代数7.求直线与平面x-y+2z=3之间的夹角.正确答案:涉及知识点:综合8.设≥一1,求正确答案:当一1≤x≤0时,当x>0时,因此涉及知识点:定积分及应用9.设L:y=sinx(0≤x≤),由x=0,L及y=sinx围成面积S1(t);由y=sint,L及x=围成面积S2(t),其中0≤t≤.(1)t取何值时,S(t)=S1(t)+S2(t)取最小值?(2)t取何值时,S(t)=S1(t)+S2(t)取最大值?正确答案:S1(t)=tsint-∫0tsinxdx=tsint+cost-1,S2(t)=sint,S(t)=S1(t)+S2(t)=2(t-)sint+2cost-1.由S’(t)=2(t-,.(1)当t=时,S(t)最小,且最小面积为-1;(2)当t=0时,S(t)最大,且最大面积为S(0)=1.涉及知识点:微积分10.设f(x)在[0,+∞)上连续,且f(0)>0,设f(x)在[0,x]上的平均值等于f(0)与f(x)的几何平均数,求f(x).正确答案:涉及知识点:微积分11.将f(x)=展开x的幂级数.正确答案:涉及知识点:无穷级数12.已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解。
考研数学三(微积分)模拟试卷153(题后含答案及解析)
题型有:1. 选择题 2. 填空题 3. 解答题
选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设un收敛,则下列级数必收敛的是( ).
A.
B.un2
C.(u2n-1-u2n)
D.(un+un+1)
正确答案:D
解析:(u1+un+1)收敛,因为Sn=2(u1+u2+…+un)-u1+un+1,而级数收敛,所以存在,由级数收敛的定义,(u1+un+1)收敛,选(D). 知识模块:微积分
2.设f(x)为可导函数,F(x)为其原函数,则( ).
A.若f(x)是周期函数,则F(x)也是周期函数
B.若f(x)是单调函数,则F(x)也是单调函数
C.若f(x)是偶函数,则F(x)是奇函数
D.若f(x)是奇函数,则F(x)是偶函数
正确答案:D
解析:令f(x)=cosx-2,F(x)=sinx-2x+C,显然f(x)为周期函数,但F(x)为非周期函数,(A)不对;令f(x)=2x,F(x)=x2+C,显然f(x)为单调增函数.但F(x)为非单调函数,(B)不对;令f(x)=x2,F(x)=x3+2,显然f(x)为偶函数,但F(x)为非奇非偶函数,(C)不对;若f(x)为奇函数,F(x)=∫axf(t)dt,因为F(-x)所以F(x)为偶函数,选(D).知识模块:微积分
3.设f(x)=,则在x=1处f(x)( ).
A.不连续
B.连续但不可导
C.可导但不是连续可导
D.连续可导
正确答案:D
解析:因为(x2+x+1)=3=f(1),所以f(x)在x=1处连续.因为=3,所以f(x)在x=1处可导.当x≠1时,f’(x)=2x+1,因为f’(x)=3=f’(1),所以f(x)在x=1处连续可导,选(D).知识模块:微积分
4.当x→1时,f(x)=的极限为( ).
A.2
B.0
C.∞
D.不存在但不是∞
正确答案:D
解析:知识模块:微积分
填空题
5.当x→时,π-3arccosx~a,则a=______,b=______.
正确答案:,1
解析:由得π-3arccosx~,b=1.知识模块:微积分
6.=______.
正确答案:
解析:知识模块:微积分
7.设f(x)=ln(2x2-x-1),则f(n)(x)=______.
正确答案:
解析:知识模块:微积分
8.=______.
正确答案:1
解析:知识模块:微积分
9.设f(x,y)连续,且f(x,y)=xy+f(x,y)dσ,其中D由y=0,y=x2及x=1围成,则f(x,y)=______.
正确答案:
解析:令f(x,y)dσ=k,则f(x,y)=xy+k,两边在D上积分得f(x,y)dσ=(xy+k)dσ,即k=∫01dx∫0x2(xy+k)dy,解得k=,所以f(x,y)=xy+.知识模块:微积分
10.微分方程y’’+4y=4x-8的通解为______.
正确答案:y=C1cos2x+C2sin2x+x-2
解析:微分方程两个特征值为λ1=-2i,λ2=2i,则微分方程的通解为y =C1cos2x+C2sin2x+x-2.知识模块:微积分
解答题解答应写出文字说明、证明过程或演算步骤。
11.求.
正确答案:涉及知识点:微积分
12.求.
正确答案:涉及知识点:微积分
13.(1)求常数m,n的值,使得=3.(2)设当x→0时,x-(a+bcosx)sinx 为x的5阶无穷小,求a,b.(3)设当x→0时,f(x)=ln(1+t)dt~g(x)=xa(ebx-1),求a,b.
正确答案:由=3得m+n+1=0,得m+2=6,解得m=4,n=-5.(2)x -(a+bcosx)sinx (x→0)再由g(x)=xa(ebx-1)~bka+1得a=3,b=.涉及知识点:微积分
14.设y=x2lnx,求y(n)(n≥3).
正确答案:y(n)=Cnox2(lnx)(n)+Cn12x.(lnx)(n-)+Cn22.(lnx)n-1。
由(lnx)(n)=得涉及知识点:微积分
15.设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f()<0.证明:存在ξ∈(a,b),使得f’(ξ)=f(ξ).
正确答案:不妨设f(a)>0,f(b)>0,f<0,令φ(x)=e-xf(x),则φ’(x)=e -x[f’(x)-f(x)].因为φ(a)>0,φ<0,φ(b)>0,所以存在,使得φ(ξ1)=φ(ξ2)=0,由罗尔定理,存在ξ∈(ξ1,ξ2)(a,b),使得φ’(ξ)=0,即e-ξ[f’(ξ)-f(ξ)]=0,因为e-ξ≠0,所以f’(ξ)=f(ξ).涉及知识点:微积分
16.证明:当x>1时,.
正确答案:令f(x)=(1+x)ln(1+x)-xlnx,f(1)=2ln2>0,因为f’(x)=ln(1+x)+1-lnx-1=ln(1+)>0(x>1),所以f(x)在[1,+oo)上单调增加,再由f(1)=2ln2>0得当x>1时,f(x)>0,即.涉及知识点:微积分
17.求.
正确答案:涉及知识点:微积分
18.当x≥0时,f(x)=x,设g(x)=当x≥0时,求∫0af(t)g(x-t)dt.
正确答案:涉及知识点:微积分
19.设f(x)=,求∫02πf(x-π)dx.
正确答案:涉及知识点:微积分
20.设L:y=e-x(x≥0).(1)求由y=e-x、x轴、y轴及x=a(a>0)所围成平面区域绕x轴一周而得的旋转体的体积V(a).(2)设V(c)=V(a),求c.
正确答案:(1)V(a)=π∫0ae-2xdx=(1-e-2a).(2)由V(c)=涉及知识点:微积分
21.设z=f(etsinnt,tant),求.
正确答案:=et(sint+cost)f’1+f’2sec2t 涉及知识点:微积分
22.改变积分次序f(x,y)dy.
正确答案:涉及知识点:微积分
23.设f(x)=S0=∫02f(x)e-xdx,S1=∫24f(x-2)e-xdx,…,Sn=∫2n2n +2f(x-2n)e-xdx.求Sn.
正确答案:S0=∫02f(x)e-xdx=∫01xe-xdx+∫12(2-x)e-xdx=令t=x -2,即S1=e-2∫02f(t)e-tdt=e-2S0,令t=x-2n,即Sn=e-2n∫02f(t)e -tdt=e-2S0,S=涉及知识点:微积分
24.求幂级数的收敛域.
正确答案:涉及知识点:微积分
25.求微分方程x2y’+xy=y2满足初始条件y(1)=1的特解.
正确答案:由x2y’+xy=y2得,两边积分得,因为y(1)=1,所以C=-1,再把=Cx2得原方程的特解为y=.涉及知识点:微积分。