2018-2019年大庆市初中分班数学模拟试题(共10套)附详细答案
- 格式:doc
- 大小:1.74 MB
- 文档页数:69
2018~2019学年度七年级下学期期中模拟数学试卷满分:120分时间120分钟一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.下列实数是无理数的是()A.3.14B.13C.D.2.下列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中看作由“基本图案”经过平移得到的是()D.C.B.A.3.实数9的算术平方根是()A.3±B.C.D.34.点A(-2,1)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限5.5)A.0和1之间B.1和2之间C.2和3之间D.3和4之间6.下列图形中,由∠1=∠2,能得到AB//CD的是()12GFEA BDCACDB21A. B. C. D.21DCBA7.如图,下列说法不正确的是()A.∠AFE与∠EGC是同位角B.∠AFE与∠FGC是内错角C.∠C与∠FGC是同旁内角D.∠A与∠FGC是同位角8.交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,内错角相等;B.相等的角是对顶角;C.所有的直角都是相等的;D.若a=b,则a-1=b-1.9.点P关于x轴的对称点为(,1)a-,关于y轴的对称点为(2,)b-,那么点P的坐标是()A.(,)a b- B.(,)b a C.(1,2)--D.(2,1)10.△ABC三个顶点坐标(4,3)A--,(0,3)B-,(2,0)C-,将点B向右平移2个长度单位后,再向上平移5个长度单位到D,若设△ABC面积为1S,△ADC的面积为2S,则1S与2S大小关系为()7题A .1S >2S B.1S =2S C.1S <2S D .不能确定二、仔细填一填,你一定很棒!(每小题3分,共18分) 11.=_______.12.写出一个在x 轴正半轴上的点坐标________________.13.如图,一把长方形直尺沿直线断开并错位,点E 、D 、B 、F的度数为_________________. E87654321第13题图F A B CD14.在平面直角坐标系中依次描出下列点,(2,3)--,(1,1)--,(0,1),(1,3),⋅⋅⋅,依照此规律,则第7个坐标是_________________.15.已知四边形ABCD ,其中AD //BC ,AB ⊥BC ,将DC 沿DE 折叠,C 落于C ',DC '交CB 于G ,且ABGD 为长方形(如图1);再将纸片展开,将AD 沿DF 折叠,使A 点落在DC 上一点A '(如图2),在两次折叠过程中,两条折痕DE 、DF 所成的角为____________度.16.在平面直角坐标系中,任意两点A (a ,b ),B (m ,n ),规定运算:A B ⊗=(-若A (9, -1),且A B ⊗=(-6,3).则点B 的坐标是______________.三、精心答一答,你一定能超越!(本大题共8小题,共72分) 17. (本题8分)如图,∠1=30°,∠B =60°,AB ⊥AC .(1)∠DAB +∠B 等于多少度?(2)AD 与BC 平行吗?AB 与CD 平行吗?18.(每小题4分,共8分)计算: (1 (219. (每小题4分,共8分)求下列各式中的x 值. (1)2164x -= (2)3(1)64x -=20. (共8分)完成下面的证明(1)如图,FG //CD ,∠1=∠3,∠B =50°,求∠BDE 的度数. 解:∵FG //CD (已知)∴∠2=_________( ) 又∵∠1=∠3,第20题图1∴∠3=∠2(等量代换)∴BC //__________( )∴∠B +________=180°( ) 又∵∠B =50°∴∠BDE =________________.21. (本题8分)△ABC 在平面直角坐标系中,且A (2,1)-、B (3,2)--、C (1,4)-.将其平移后得到111A B C ∆,若A ,B 的对应点是1A ,1B ,C 的对应点1C 的坐标是(3,1)-.(1)在平面直角坐标系中画出△ABC ;(2)写出点1A 的坐标是_____________,1B 坐标是___________; (3)此次平移也可看作111A B C ∆向________平移了____________ 个单位长度,再向_______平移了______个单位长度得到△ABC .22. (本题10分)已知直线BC //ED .(1)如图1,若点A 在直线DE 上,且∠B =44°,∠EAC(2)如图2,若点A 是直线DE 的上方一点,点G 在BC (3)如图3,FH 平分∠AFE ,CH 平分∠ACG ,且∠FHC AD BE图1G 图2EBD AH图323. (本题10分)如图,在平面直角坐标系中,点A 、C 分别在x 轴上、y 轴上,CB //OA ,OA =8,若点B 的坐标为(a ,b ),且b 4.(1)直接写出点A 、B 、C 的坐标;(2)若动点P 从原点O 出发沿x 轴以每秒2个单位长度的速度向右运动,当直线PC 把四边形OABC 分成面积相等的两部分停止运动,求P 点运动时间;(3)在(2)的条件下,在y 轴上是否存在一点Q ,连接PQ ,使三角形CPQ 的面积与四边形OABC 的面积相等?若存在,求点Q 的坐标;若不存在,请说明理由.O –1–1–2–3–4–5124. (本题12分)在平面直角坐标系中,点A (t +1,t +2),点B (t +3,t +1),将点A 向右平移3个长度单位,再向下平移4个长度单位得到点C .(1)用t 表示点C 的坐标为_______;用t 表示点B 到y 轴的距离为___________;(2)若t =1时,平移线段AB ,使点A 、B 到坐标轴上的点1A 、1B 处,指出平移的方向和距离,并求出点1A 、1B 的坐标;(3)若t =0时,平移线段AB 至MN (点A 与点M 对应),使点M落在x轴的负半轴上,三角形MNB 的面积为4,试求点M 、N 的坐标.2018~2019学年度下学期七年级数学期中参考答案一、选一选,比比谁细心1. C2.B3.D4.B5. C6. B7. A8.C9.D 10.A 二、仔细填一填,你一定很棒! 11. 2 12.答案不唯一,例如(3,0)13.55°14.(4,9)15. 45 16.(2,27-)三、精心答一答,你一定能超越!17.解:(1)∵AB⊥AC,∴∠BAC=90°,∴∠B+∠BAD=60°+90°+30°=180°. (2)由(1)得AD//BC,但是无法确定AB与CD的关系.18.解:(1)原式=6-0.9=5.1(2)原式=1324-+-1=-32+3419.解:(1)225 4x=,∴52x=±;(2)(1)x-=,∴x-1=4,∴x=5.20.(1)∠1(两直线平行,同位角相等);DE(内错角相等,两直线平行);∠BDE(两直线平行,同旁内角互补);130°.(2)∠ADC=∠EFC;EF;∠2;∠CAD.21.(1)xO–1–2–3–4–512345(2)1(0,4)A,1B(1,1)-(3)下;3;左;2.22.解:(1)∵BC//ED,∴∠BAE+∠B=180°,∴∠BAC=180°-∠B-∠EAC=79°;(2)F2F1方法②方法①G图2ECBDA如图,方法①,作AF//BC,又∵BC//ED,∴AF//ED//BC,∴∠F AC =∠ACG ,且∠ABC=∠F AB,∴∠ACG=∠F AC=∠BAC+∠F AB=∠BAC+∠ABC. (3)MN yxyx GHF 图3E C BDA作AM //BC ,HN //BC , ∴可证AM //BC //ED ,HN //BC //ED ,又设∠ACH =GCH =x , ∠AFH =EFH =y , ∴∠A =2x -2y , ∠FHC =x -y ,∴∠A =2∠FHC ,又∵∠FHC =2∠A -60°,∴∠A =40°.23.(1)A (8,0),B (4,4),C (0.4);(2)设运动时间t 秒,∴OP =2t , ∴12⋅2t ⋅4=(8-2t )⋅4,∴t =83.(3)设Q (0,y ), ∵OABC CPQ S S ∆=四边形,∴12-4y 2t ⋅=12(4+8)⋅4, ∴1y =13,2y =-5,∴1Q (0,13),2Q (0,-5) 24.(1)C (t +4,t -2);3t +(2)当t =1时,A (2,3),B (4,2)将AB 左平移2个单位得1A (0,3);1B (2,2); 将AB 下平移2个单位得1A (2,1);1B (4,0)(3)若t =0,则A (1,2),B (3,1)设A 下平移2个单位,再左平移a 个单位到达x 轴负半轴,∴M (1-a ,0),N(3-a , -1),∴(3-1+a )⋅2-12(3-1+a )⋅1-12(3-a -1+a )⋅1-12(3-3+a )⋅2=4,∴a =4,∴M (-3,0),N (-1,-1).。
小升初数学试卷51一、填空题1、________ =________:24=0.75=3÷________=________%=________折.2、一次数学测验全班平均95分,小明考了98分,张老师记作+3分.小亮考了91分,那么张老师记作________分.3、在一个比例中,两个外项的积是,一个内项是3,另一个内项是________.4、比24米少是________米;100千克比________千克多25%.5、根据图求剩下的吨数列式________.6、一个长方体的棱长之和是48分米,长是5分米,宽是3分米,这个长方体的表面积是________平方分米,体积是________立方分米.7、用一张长12.56分米,宽6.28分米的长方形铁皮圈成一个圆柱铁皮桶侧面,若另用铁皮给这个铁皮桶配上底面,至少需要________或________平方分米的铁皮.(接头处忽略不计)8、如图,瓶底的面积和锥形杯口的面积相等,将瓶子中的液体倒入锥形杯子中,能倒满________杯.9、在一个书包里放3只黄乒乓球和5只白乒乓球,让你每次任意摸出1只球,这样摸120次,摸出黄乒乓球的次数大约占总次数的________,摸出的黄球大约会有________次,如果想摸出黄球的次数达总次数的80%左右,你认为需要再放________只黄球.二、判断题10、中国获得了2008年奥运会的主办权,这一年的上半年共有181天.________(判断对错)11、圆的周长与半径成正比例.________(判断对错)12、如果数a能够被2整除,则a+1必定是奇数.________13、1:20000的比例尺,就是说图上距离1厘米表示实际距离200米.________(判断对错)14、以直角三角形任意一条直角边为轴旋转一周,可以形成一个圆柱.________(判断对错)三、选择题15、下列图形中,()不是轴对称图形.A、B、C、D、16、小明把8×(□+4)错写成8×□+4,他得到的结果要比正确答案小了()A、8B、28C、3217、下列三句话中,正确的是()A、一种商品打八折出售,也就是说是低于原价的80%出售B、任意一个三角形中至少有两个角是锐角C、分母能被2和5整除的分数一定能化为有限小数18、下面的比,能与:组成比例的是()A、0.6:0.7B、0.7:C、:19、某班的男生人数比全班学生人数的少4人,女生人数比全班学生人数的40%多6人.那么这个班的男生人数比女生人数少()A、5人B、3人C、9人D、10人四、计算题20、直接写出得数.×1.5=________ ×16=________ ×24÷ =________21、正确、合理、灵活的计算下面各题.8﹣× ﹣×[ ﹣(﹣)]9.5× ×9.5.22、求未知数x(1)(2)23、求阴影部分的面积.五、动手画画.在方格纸上按要求画图.24、在方格纸上按要求画图.①按2:1的比画出正方形放大后的图形;②按1:2的比画出三角形缩小后的图形.六、应用题25、图书室有科技书1200本,科技书比文艺书的2倍少150本,文艺书有多少本?26、修路队修一条公路,第一个月修了全长的,第二个月修了全长的,第二个月比第一个月多修240米,这条公路全长多少米?27、一个圆柱体容器,高10分米,底面积16平方分米,装的水高6分米.现放入一个体积是24立方分米的铁块(完全浸没),这时水面的高度是多少?28、小红、小华和小明都是集邮爱好者.小红的邮票是三人总数的,若小华送12张奥运纪念邮票给小红,则他们三人的邮票一样多.他们一共集了多少张邮票?29、如图①表示的是某综合商场1﹣5月份的月销售额的情况,图②表示的是商场服装部1﹣5月月销售额占商场当月销售总额的百分比情况.观察图①、图②,解答下面的问题.(1)来自商场财务部的数据报告表明,1﹣5月份商场销售总额一共是410万元,请求出4月份的销售额.(2)商场服装部2月份的销售额是多少万元?(3)小刚观察图②后认为,商场服装部5月份的销售额比4月份减少了.你同意他的看法吗?请你说明理由.答案解析部分一、填空题1、【答案】12;18;4;75;七五【考点】比与分数、除法的关系【解析】【解答】解:=18:24=0.75=3÷4=75%=七五折.故答案为:12,18,4,75,七五.【分析】把0.75分成分数并化简是,根据分数的基本性质分子、分母都乘4就是;根据比与分数的关系=3:4,再根据比的基本性质比的前、后项都乘6就是18:24;根据分数与除法的关系=3÷4;把0.75的小数点向右移动两位添上百分号就是75%;根据折扣的意义75%就是七五折.2、【答案】-4【考点】负数的意义及其应用【解析】【解答】解:95﹣91=4(分)所以一次数学测验全班平均95分,小明考了98分,张老师记作+3分.小亮考了91分,那么张老师记作﹣4分;故答案为:﹣4.【分析】此题主要用正负数来表示具有意义相反的两种量:选平均95分为标准记为0,超过部分为正,不足的部分为负,直接得出结论即可.3、【答案】【考点】比例的意义和基本性质【解析】【解答】解:在一个比例中,两个外项的积是根据比例的性质,可知两个内项的积也是,其中一个内项是3,则另一个内项为÷3=.故答案为:.【分析】根据比例的性质“在比例里,两内项的积等于两外项的积”,先确定出两个內项的积也是,进而根据一个内项是3,用除法计算即可求得另一个內项的数值.4、【答案】16;80【考点】分数乘法,分数除法【解析】【解答】解:(1)24×(1﹣)=24×=16(米)答:比24米少是16米.(2)100÷(1+25%)=100÷125%=80(千克);答:100千克比80千克多25%.故答案为:16,80.【分析】(1)根据分数乘法的意义,比24米少是24×(1﹣)米.(2)把要求的数量看成单位“1”,它的1+25%对应的数量是100千克,由此用除法求出要求的数量.5、【答案】250×【考点】分数乘法应用题【解析】【解答】解:250×=100(吨)答:剩下100吨.故答案为:250×.【分析】根据图,可得总的吨数是250吨,剩下了,求剩下的吨数,即求250吨的是多少,根据分数乘法的意义,用分数乘法解答即可.6、【答案】94;60【考点】长方体和正方体的表面积,长方体和正方体的体积【解析】【解答】解:这个长方体的高是:48÷4﹣(5+3),=12﹣8,=4(分米),表面积是:2×(5×3+5×4+3×4),=2×(15+20+12),=2×47,=94(平方分米).长方体的体积是:5×3×4=60(立方分米);答:这个长方体的表面积是94平方分米,体积是60立方分米.故答案为:94;60.【分析】根据长方体的棱长总和=(长+宽+高)×4,可知,长方体的高=棱长总和÷4﹣(长+宽),然后利用表面积=2×(长×宽+长×高+宽×高),长方体的体积=长×宽×高,代入数值计算即可.7、【答案】12.56;3.14【考点】圆柱的侧面积、表面积和体积【解析】【解答】解:12.56÷3.14÷2=2(分米)3.14×22=12.56(平方分米)6.28÷3.14÷2=1(分米)3.14×12=3.14(平方分米)答:这个铁皮桶的底面积是12.56或3.14平方分米.故答案为:12.56,3.14.【分析】根据题干分析可得,此题有两种不同的方法:(1)以长12.56分米为底面周长,(2)以6.28分米为圆柱的底面周长,由此求出圆柱的底面半径,再根据圆的面积公式即可解决问题.8、【答案】6【考点】圆柱的侧面积、表面积和体积,圆锥的体积【解析】【解答】解:圆柱形瓶内水的体积:S×2h=2Sh,圆锥形杯子的体积:×S×h=Sh,倒满杯子的个数:2Sh÷ Sh=6(杯);答:能倒满6杯.故答案为:6.【分析】根据题意知道瓶底的面积和锥形杯口的面积相等,设瓶底的面积为S,瓶子内水的高度为2h,则锥形杯子的高度为h,先根据圆柱的体积公式求出圆柱形瓶内水的体积,再算出圆锥形杯子的体积,进而得出答案.9、【答案】;45;17【考点】分数除法应用题【解析】【解答】解:3÷(3+5)=3÷8=120×=45(次)5÷(1﹣80%)﹣8=5÷20%﹣8=25﹣8=17(只)答:摸出黄乒乓球的次数大约占总次数的,摸出的黄球大约会有45次,如果想摸出黄球的次数达总次数的80%左右,需要再放入17只黄球.故答案为:、45、17.【分析】在一个书包里放3只黄乒乓球和5只白乒乓球,则共有3+5=8只球,根据分数的意义,黄球占总个数的3÷8=,这样摸120次,则摸出黄球与白球的次数应与它们占总个数的分率相对应,摸出黄乒乓球的次数大约占总次数的,根据分数乘法的意义,摸出黄球的次数大约有120×次.如果想摸出黄球的次数达总次数的80%左右,则应使黄球个数占总个数的80%,根据分数减法的意义,白球个数占总数的1﹣80%,根据分数除法的意义,总个数应是5÷(1﹣80%)=25个,则需要再放入25﹣8=17只黄球.二、判断题10、【答案】错误【考点】年、月、日及其关系、单位换算与计算,平年、闰年的判断方法【解析】【解答】解:29+31×3+30×2=182(天);所以2008年第29届奥运会在北京举行,这一年的上半年共有182天;故答案为:错误.【分析】2008÷4=502能整除,所以2008年2月29天,1月、3月、5月是大月,各有31天,4月、6月是小月,各有30天,加在一起即可得解.11、【答案】正确【考点】辨识成正比例的量与成反比例的量【解析】【解答】解:圆的周长÷半径=2π,2π一定,也就是这两种量的比值一定,所以成正比例;故答案为:正确.【分析】圆的周长与半径是两种相关联的量,圆的周长÷半径=2π,2π一定,也就是这两种量的比值一定,所以成正比例,12、【答案】正确【考点】奇数与偶数的初步认识,整除的性质及应用【解析】【解答】解:由于a可表示为2n(n为整数),则a+1=2n+1,2n+1不能被2整除,根据奇数的定义可知,所以a+1必为奇数.故答案为:正确.【分析】如果数a能够被2整除,则a可表示为2n(n为整数),则a+1=2n+1,2n+1不能被2整除,自然数中不能被2整除的数为奇数,所以a+1必为奇数.13、【答案】正确【考点】比例尺【解析】【解答】解:一幅图的比例尺是1:20000,由比例尺的意义可知,1:20000表示图上的1厘米代表实际距离20000厘米,即图上的1厘米表示实际距离200米.故答案为:正确.【分析】根据比例尺=图上距离:实际距离,据此进行判断即可.14、【答案】错误【考点】圆柱的特征,将简单图形平移或旋转一定的度数【解析】【解答】解:以直角三角形任意一条直角边为轴旋转一周,可以形成一个圆锥.故答案为:错误.【分析】根据直角三角形及圆锥的特征,直角三角形绕一直角边旋转一周形成一个以旋转直角边为高,另一直角边为底面半径的圆锥.三、选择题15、【答案】A【考点】轴对称图形的辨识【解析】【解答】解:平行四边形不是轴对称图形;故选:A.【分析】根据轴对称图形的特点和性质,沿对称轴把图形对折两边的图形完全重合,每组对应点到对称轴的距离相等;由此解答.16、【答案】B【考点】整数四则混合运算【解析】【解答】解:令□=1,则:8×(□+4)=8×(1+4)=8×5=40;8×□+4=8×1+4=1240﹣12=28答:他得到的结果要比正确答案小了28.故选:B.【分析】运用赋值法,令□=1,分别代入8×(□+4)和8×□+4,求出结果,再作差即可求解.17、【答案】B【考点】小数与分数的互化,百分数的意义、读写及应用,三角形的内角和【解析】【解答】解:A、一种商品打八折出售,也就是说是低于原价的80%出售,错误,应是原价的80%出售;B、任意一个三角形中至少有两个角是锐角,说法正确;C、分母能被2和5整除的分数一定能化为有限小数,错误,应是最简分数的分母能被2和5整除的分数一定能化为有限小数;故选:B.【分析】根据相关知识点逐项分析判断即可.18、【答案】B【考点】比例的意义和基本性质【解析】【解答】解::=÷=;A、0.6:0.7=0.6÷0.7=,因为≠,所以不能组成比例;B、0.7:=0.7÷0.6=,因为=,所以能组成比例;C、:=÷=,因为≠ ,所以不能组成比例.故选:B.【分析】表示两个比相等的式子叫做比例,据此可先求出:的比值,再逐项求出每个比的比值,进而根据两个比的比值相等,就能组成比例,比值不相等,就不能组成比例.19、【答案】B【考点】分数、百分数复合应用题【解析】【解答】解:全班:(6﹣4)÷(1﹣﹣40%)=2÷=45(人),男生有:45×﹣4=25﹣4=21(人);男生比女生少:45﹣21﹣21=3(人);答:该班男生比女生少3人.故选:B.【分析】男生人数比全班学生人数的少4人,即女生人数为全班的1﹣=多4人,又女生比全班人数的40%多6人,则6﹣2人占全班人数的﹣40%,则全班人数为(6﹣4)÷(-40%)人,进而求得该班男生比女生少多少人.四、计算题20、【答案】1001①490②4③10④0.6⑤2⑥24⑦13【考点】整数的加法和减法,分数的四则混合运算,小数乘法【解析】【分析】根据整数小数分数加减乘除法的计算方法解答.21、【答案】解:①8﹣× ﹣=8﹣﹣=8﹣(+ )=8﹣1=7② ×[ ﹣(﹣)]= ×[ ﹣+ ]= ×[(+ )﹣]= ×=③9.5× ×9.5=9.5×()=9.5×1=9.5【考点】分数的简便计算【解析】【分析】(1)先算乘法,再利用减法性质计算;(2)先去掉小括号,再利用加法结合律计算,最后算中括号外的乘法;(3)利用乘法分配律计算.22、【答案】(1)解:,,,x= ;(2)解:,,,x=【考点】方程的解和解方程,解比例【解析】【分析】(1)先化简方程,再依据等式的性质,方程两边同时除以求解,(2)先依据比例基本性质,两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以求解.23、【答案】解:① ×5×6×2=30(dm2);② ×(4+6)×4= ×10×4=20(dm2);故答案为:30dm2,20dm2.【考点】组合图形的面积【解析】【分析】(1)阴影部分是两个相同的三角形,三角形的底与高均已知,根据三角形的面积公式S=ah即可求得.(2)阴影部分是一个下底为大正方形边长,上底和高为小正方形边长的一个梯形,根据梯形的面积公式S=(a+b)h即可求得.五、动手画画.在方格纸上按要求画图.24、【答案】解:【考点】图形的放大与缩小【解析】【分析】按2:1的比画出正方形放大后的图形,原正方形的边长是2格,放大后的正方形的边长是4格;按1:2的比画出三角形缩小后的图形,原三角形的底是8格,高是4格,缩小后的三角形的底是4格,底是2格.据此画图.六、应用题25、【答案】解:设文艺书有x本,根据题意可得方程:2x﹣150=12002x=1350x=675答:文艺书有675本.【考点】整数的除法及应用【解析】【分析】根据题干,设文艺书有x本,根据等量关系:文艺书的本数×2﹣150本=科技书的本数,据此列出方程即可解决问题.26、【答案】解:240÷(﹣)=240÷=1600(米)答:这条公路全长1600米【考点】分数四则复合应用题【解析】【分析】把这条路的全长看作单位“1”,已知第一个月完成全长的,第二个月完成全长的,第二个月比第一个月多修240米,由此可知:240米相当于这条路全长的(),根据已知一个数的几分之几或百分之几是多少,求这个数,用除法解答.27、【答案】解:24÷16+6=1.5+6=7.5(分米)答:这时的水面高7.5分米【考点】圆柱的侧面积、表面积和体积【解析】解:24÷16+6=1.5+6=7.5(分米)答:这时的水面高7.5分米.【分析】先求出体积是24立方分米的铁块使长方体的容器升高的高度,再加上原来装的水高,即可求解.28、【答案】解:12÷()==12×8=96(张)答:他们一共集了96张邮票【考点】分数除法应用题,分数四则复合应用题【解析】【分析】把它们三个人邮票的总张数看作单位“1”,已知小红的邮票是三人总数的,若小华送12张奥运纪念邮票给小红,则他们三人的邮票一样多,也就是小红加上12张占总数的,因此可以求出12张占总数的(),根据已知一个数的几分之几是多少,求这个数,用除法解答.29、【答案】(1)解:410﹣(100+90+65+80)=410﹣335=75(万元);答:4月份的销售额是75万元。
小升初数学综合模拟试卷44一、填空题:1.1997+1996-1995-1994+1993+1992…-2+1=_______.3.有一个新算符“*”,使下列算式成立:5*3=7,3*5=1,8*4=12,3*4=2,那么7*2=______.4.王朋家里买了150斤大米和100斤面粉,吃了一个月后,发现吃的米和面一样多,而且剩的米刚好是面的6倍,则米剩______斤.5.张、王、李三位老师分别在小学教劳动、数学、自然、手工、语文、思想品德,且每位老师教两门课.自然老师和劳动老师住同一个宿舍,张老师最年轻,劳动老师和李老师爱打篮球,数学老师比手工老师岁数大,比王老师岁数小,三人中最大的老师住的比其他两位老师远,则张老师教______,王老师教______,李老师教______.6.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是______.7.在下面四个算式中,最大的是______.8.如图是一个半径为4厘米,高为4厘米的圆柱体,在它的中间依次向下挖半径分别为3厘米、2厘米、1厘米,高分别为2厘米、1厘米、0.5厘米的圆柱体,则最后得到的立体图形表面积是_______平方厘米.9.“红星”小学三年级和一年级学生去历史博物馆参观,由于学校仅有一辆车,车速是每小时60千米,且只能坐一个年级的学生.已知三年级学生步行速度是每小时5千米,一年级学生步行速度是每小时3千米,为使两个年级的学生在最短的时间内到达,则三年级与一年级学生步行的距离之比为______.10.有一串数;1,5,12,34,92,252,688,…其中第一个数是1,第二个数是5,从第三个数起,每个数恰好是前两个数之和的2倍.那么在这串数中,第4000个数除以9的余数是______.二、解答题:1.六年级学生和一年级学生共120人一起给树浇水,六年级学生一人提两桶水,一年级学生两人抬一桶水,两个年级一次浇水180桶,问有一年级学生多少人?2.小雪和小序两人比赛口算,共有1200题,小雪每分算出20题,小序每算出80题比小雪算同样多的题少用了4秒,问:小序做完1200题时,小雪还有多少题没做?3.小红有一只手表和一只小闹钟,走时总有点差别,小闹钟走半小时,手表要多走36秒,又知在半小时的标准时间里,小闹钟少走了36秒,问:这只手表准不准?每小时差多少?答案,仅供参考。
小升初数学综合模拟试卷47一、填空题:1.102+104+108+116+132-101-103-109-127=______.3.如图,阴影部分的面积是_______.数是______.5.小明有一堆核桃,第一天他卖了这堆核桃的七分之一;第二天他卖了余下核桃的六分之一;第三天他卖了余下核桃的五分之一;第四天他卖了余下核桃的四分之一;第五天他卖了余下核桃的三分之一;第六天他卖了余下核桃的二分之一.这时还剩下30个核桃,那么,第一天和第二天小明卖的核桃总数是_______个.6.六个空瓶可以换一瓶汽水,某班同学喝了213瓶汽水,其中一些是用喝后的空瓶换来的,那么,他们至少要买汽水______瓶.7.如图是6×6的方格纸,小方格的面积是1平方厘米,小方格的顶点称为格点.请你在图上选8个格点,要求其中任意3个格点都不在一条直线上,并且使这8个点用直线连接后所围成的图形面积尽可能大.那么,所围图形的面积是_______平方厘米.8.甲、乙、丙都在读同一本故事书,书中有100个故事,每人都从某一个故事开始,按顺序往后读,已知甲读了50个故事,乙读了61个故事,丙读了78个故事,那么甲、乙、丙三人共同读过的故事至少有______个.9.甲、乙两厂共同完成了一批机床的生产任务,已知甲厂比乙厂少生______台.10.某次演讲比赛,原定一等奖10人,二等奖20人,现将一等奖中的最后4人调整为二等奖,这样得二等奖的学生的平均分提高了一分,得一等奖的学生的平均分提高了3分,那么原来一等奖平均分比二等奖平均分多______分.二、解答题:1.减数、被减数与差三者之和除以被减数,商是多少?2.把40,44,45,63,65,78,99,105这八个数平分成两组,使每组四个数的乘积相等.3.将1,1,2,2,3,3,4,4这八个数字排成一个八位数,使两个1之间有一个数字,两个2之间有两个数字,两个3之间有三个数字,两个4之间有四个数字,请找出二个这样的八位数.4.如图,从A至B,步行走粗线道ADB需要35分,坐车走细线道A→C→D→E→B需要22.5分,D →E→B车行驶的距离是D至B步行距离的3倍,A→C→D车行驶的距离是A至D步行距离的5倍,已知车速是步行速度的6倍,那么先从A至D步行,再从D→E→F坐车所需要的总时间是多少分?答案,仅供参考。
大庆初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列各式中正确的是()A. B. C. D.【答案】A【考点】平方根,算术平方根,立方根及开立方【解析】【解答】解:A、,故A选项符合题意;B、,故B选项不符合题意;C、,故C选项不符合题意;D、,故D选项不符合题意;故答案为:A.【分析】一个正数的算数平方根是一个正数,一个正数的平方根有两个,它们互为相反数;任何数都只有一个立方根,正数的立方根是一个正数,根据定义即可一一判断。
2、(2分)x=3是下列哪个不等式的解()A.x+2>4B.x2-3>6C.2x-1<3D.3x+2<10【答案】A【考点】不等式的解及解集【解析】【解答】解:根据不等式的解的定义求解【分析】把x=3分别代入各选项即可作出判断。
3、(2分)某车间工人刘伟接到一项任务,要求10天里加工完190个零件,最初2天,每天加工15个,要在规定时间内完成任务,以后每天至少加工零件个数为()A. 18B. 19C. 20D. 21【答案】C【考点】一元一次不等式的应用【解析】【解答】解:设平均每天至少加工x个零件,才能在规定的时间内完成任务,因为要求10天里加工完190个零件,最初2天,每天加工15个,还剩8天,依题意得2×15+8x≥190,解之得,x≥20,所以平均每天至少加工20个零件,才能在规定的时间内完成任务.故答案为:C【分析】设平均每天至少加工x个零件,才能在规定的时间内完成任务,因为要求10天里加工完190个零件,最初2天,每天加工15个,还剩8天,从而根据前两天的工作量+后8天的工作量应该不小于190,列出不等式,求解即可。
4、(2分)如图,,、、分别平分的内角、外角、外角.以下结论:①∥;②;③;④;⑤平分.其中正确的结论有()A. 2个B. 3个C. 4个D. 5个【答案】C【考点】平行线的判定与性质,三角形内角和定理,三角形的外角性质,等边三角形的判定,菱形的判定【解析】【解答】解:延长BA,在BA的延长线上取点F.①∵BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,∴AD平分△ABC的外角∠FAC,∴∠FAD=∠DAC,∵∠FAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠FAD=∠ABC,∴AD∥BC,故①正确;故①符合题意,②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=∠ABC+∠MBC=×180∘=90∘,∴EB⊥DB,故②正确,故②符合题意,③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=②∠BAC,∵∠BAC+2∠ACB=180∘,∴∠BAC+∠ACB=90∘,∴∠BDC+∠ACB=90∘,故③正确,故③符合题意,④∵∠BEC=180∘−(∠MBC+∠NCB)=180∘−(∠BAC+∠ACB+∠BAC+∠ABC)=180∘−(180∘+∠BAC)∴∠BEC=90∘−∠BAC,∴∠BAC+2∠BEC=180∘,故④正确,故④符合题意,⑤不妨设BD平分∠ADC,则易证四边形ABCD是菱形,推出△ABC是等边三角形,这显然不可能,故⑤错误。
小升初数学综合模拟试卷46一、填空题:1.8+88+888+8888+88888=______.2.如图,阴影部分S1的面积比阴影部分S2的面积大12平方厘米,且BD=4厘米,DC=1厘米,则线段AB=______厘米.3.一个人在河中游泳,逆流而上,在A处将帽子丢失,他向前游了15分后,才发现帽子丢了,立即返回去找,在离A处15千米的地方追到了帽子,则他返回来追帽子用了______分.4.乒乓球单打决赛在甲、乙、丙、丁四位选手中进行,赛前,有些人预测比赛结果,A说:甲第4;B说:乙不是第2,也不是第4;C说:丙的名次在乙的前面;D说:丁将得第1.比赛结果表明,四个人中只有一人预测错了.那么,甲、乙、丙、丁四位选手的名次分别为:_______.5.如图,正立方体边长为2,沿每边的中点将每个角都切下去,则所得到的几何体有______条棱.6.一本书,如果每天读50页,那么5天读不完,6天又有余;如果每天读70页,那么3天读不完,4天又有余;如果每天读n页,恰可用n天读完(n是自然数).这本书的页数是______.使每一横行,每一竖行,两对角线斜行中三个数的和都相等.8.有本数学书共有600页,则数码0在页码中出现的次数是______.9.张明骑自行车,速度为每小时14千米,王华骑摩托车,速度为每小时35千米,他们分别从A、B 两点出发,并在A、B两地不断往返行驶,且两人第四次相遇(两人同时到达同一地点叫做相遇)与第五次相遇的地点恰好相距120千米,那么,A、B两地之间的距离是______千米.10.某次数学竞赛原定一等奖8人,二等奖16人,现在将一等奖中最后4人调整为二等奖,这样得二等奖的学生的平均分提高了1.2分,得一等奖的学生的平均分提高了4分,那么原来一等奖平均分比二等奖平均分多______分.二、解答题:1.学校要建一段围墙,由甲、乙、丙三个班完成,已知甲班单独干需要20小时完成,乙班单独干需要24小时完成,丙班单独干需要28小时完成,如果先由甲班工作1小时,然后由乙班接替甲班干1小时,再由丙班接替乙班干1小时,再由甲班接替丙班干1小时,……三个班如此交替着干,那么完成此任务共用了多少时间?2.如图甲、乙、丙三个皮带轮的半径比分别为:5∶3∶7,求它们的转数比.当甲轮转动7圈时,乙、丙两轮各转多少圈?3.甲、乙、丙三个小孩分别带了若干块糖,甲带的最多,乙带的较少,丙带的最少.后来进行了重新分配,第一次分配,甲分给乙、丙,各给乙、丙所有数少4块,结果乙有糖块最多;第二次分配,乙给甲、丙,各给甲、丙所有数少4块,结果丙有糖块最多;第三次分配,丙给甲、乙,各给甲、乙所有数少4块,经三次重新分配后,甲、乙、丙三个小孩各有糖块44块,问:最初甲、乙、丙三个小孩各带糖多少块?4.甲容器中有纯桔汁16升,乙容器中有水24升,问怎样能使甲容器中纯桔汁含量为60%,乙容器中纯桔汁含量为20%,甲、乙容器各有多少升?答案,仅供参考。
小升初数学综合模拟试卷31一、填空题:2.123×5.67+8.77×567=______.3.如图,有三个同心半圆,它们的直径分别为2,6,10,用线段分割成9块,如果每块字母代表这一块的面积并且相同的字母代表相同的面积,那么(A+B):C=______.等于______.5.小刚,小强两人骑车的速度之比是15∶13,如果小刚,小强分别由甲、乙两地同时出发,相向而行,半小时后相遇;如果他们同向而行,那么小刚追上小强需要_______小时.6.5个正方体的六个面上分别写着1、2、3、4、5、6六个数,并且它们任意两个相对的面上所写的两个数的和都等于7.现在把五个这样的正方体一个挨着一个地连接起来(如图),在紧挨着的两个面上的两个数之和都等于8,那么,图中打“?”的这个面上所写的数是______.7.先任意指定7个整数,然后将它们按任意顺序填入2×7方格表第一行的七个方格中,再将它们按任意顺序填入方格表第二行的方格中,最后,将所有同一列的两个数之和相乘.那么,积是______数(填奇或偶).8.有两组数,第一组数的平均数是13.6,第二组数的平均数是10.8,而这两组数总的平均数是12.4,那么,第一组数的个数与第二组数的个数的比值是______.9.有四个数,每次选取其中三个数,算出它们的平均数,再加上另外一个数,用这种方法计算了四次,分别得到以下四个数:72,98,136,142,那么,原来四个数的平均数是______.10.体育组有一筐球,其中足球占45%,如果再放入5个篮球,足球就只占36%,那么,这筐球中,足球有______个.二、解答题:1.松鼠妈妈采松籽,晴天每天可以采20个,有雨的天每天只能采12个.它一连几天采了112个松籽,平均每天采14个.那么,这几天中有几天有雨?2.有6块岩石标本,它们的重量分别是8.5千克、6千克、4千克、4千克、3千克、2千克,要把它们分别装在3个背包里,要求最重的一个背包尽可能轻一些.请写出最重的背包里装的岩石标本是多少千克?3.上午8时8分,小明骑自行车从家里出发,8分后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立刻回家.到家后又立刻回头去追小明,再追上他的时候,离家恰好是8千米,问这时是几时几分?4.70个数排成一行,除了两头的两个数以外,每个数的三倍都恰好等于它两边两个数的和,这一行最左边的几个数是这样的:0,l,3,8,21,….问最右边一个数被6除余几?答案,仅供参考。
小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.小升初数学综合模拟试卷22一、填空题:2.设A=30×70×110×170×210,那么不是A的约数的最小质数为______.3.一张试卷共有15道题,答对一道题得6分,答错一道题扣4分,小明答完了全部的题目却得了0分,那么他一共答对了______道题.4.一行苹果树有16棵,相邻两棵间的距离都是3米,在第一棵树旁有一口水井,小明用1只水桶给苹果树浇水,每棵浇半桶水,浇完最后一棵时,小明共走了______米.5.有一个四位数,它的个位数字与千位数字之和为10,且个位既是偶数又是质数,去掉个位数字和千位数字,得到一个两位质数,又知道这个四位数能被72整除,则这个四位数是______·6.甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距______千米.7.如图,在△ABC中,DC=3BD,DE=EA,若△ABC面积是2,则阴影部分的面积是______.8.小朋从1997年的日历中抽出14张,是从5月14日到5月27日连续14天的.这14天的日期数相加是287.小红也抽出连续的14天的日历14张,这14天的日期数虽然与小明的不相同,但相加后恰好也是287.小红抽出的14张是从______月______日到______月______日的.9.今有五个自然数,计算其中任意三个数的和,得到了10个不同的自然数,它们是:15、16、18、19、21、22、23、26、27、29,这五个数的积是______.10.某工厂的记时钟走慢了,使得标准时间每70分钟分针与时针重合一次.李师傅按照这慢钟工作8小时,工厂规定超时工资要比原工资多3.5倍,李师傅原工资每小时3元,这天工厂应付给李师傅超时工资______元.二、解答题:1.计算问参加演出的男、女生各多少人?3.国际象棋比赛的奖金总数为10000元,发给前五名.每一名次的奖金都不一样,名次在前的钱数是比名次在后的钱数多,每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、三名两人之和,第二名的钱数是第四、五名两人之和,那么第三名最多能得多少元?4.在一条公路上,甲、乙两地相距600米,小明和小强进行竞走训练,小明每小时行走4千米,小强每小时行走5千米.9点整,他们二人同时从甲、乙两地出发相向而行,1分后二人都调头反向而行,又过3分,二人又都调头相向而行,依次按照1、3、5、7、…(连续奇数)分钟数调头行走,那么二人相遇时是几点几分?答案一、填空题:1.1002.13根据A=30×70×110×170×210,可知2,3,5,7,11都是A的约数,而13不是A的约数.3.6因为小明答完了全部题目后得0分,所以他答对的题数与答错的题数之比为4∶6=2∶3,小明答对了15÷(2+3)×2=6(道)4.339(3+9+15+21+27+33+39)×2+45=339(米)能被8和9整除(8×9=72).因此8+a+b+2=10+a+b是9的倍数,由此可知a+b=8或a+b=17.53三种可能.若a+b=17,根据8+9=17,只有89一种可能.在四位数8172,8712,8532,8892中只有8712能被8整除,所以8712为所求.6.19.2因为甲、乙二人的速度比是3∶5,所以甲、乙二人在相同路程上所用的时间比是5∶3,因此A、B两地相距连结FD,由AE=ED可知:S△AFE=S△EFD,S△AEC=S△DCE由DC=3BD,可知:S△DCF=3S△BDF.因此S△ABC=(1+3+3)×S△BDF=7S△BDF8.2月16日,3月1日14+15+16+…+27=287,如果再找出14个连续的自然数之和为287是不可能的.需要调整,找出另外14个数的和为287,试验:(1)如果前面去掉14日,后面增加28日,显然和大于287;(2)如果前面去掉14、15日,后面增加2天,和为29,只能增加28日、 1日,这说明这个月的最后一天为28日.(3)如果前面去掉三天或三天以上,无论后面如何排,其和都不是287.所以小红抽出的14张是从2月16日到3月1日.9.5184因为计算其中任意三个数的和,所以每个数都使用了6次,因此这六个数的总和为(15+16+18+19+21+22+23+26+27+29)÷6=36设五个数从小到大依次为A、B、C、D、E,则所以 C=15+29-36=8.根据A+B+D=16,C=8,可推出D=9.所以E=29-(C+D)=12.根据B+D+E=27,可推出B=27-(D+E)=6.所以A=15-(B+C)=1.这五个数的乘积为1×6×8×9×12=5184.10.10.5走时正常的钟时针与分针重合一次需要慢钟走8小时,实际上是走所以应付超时工资二、解答题:1.22.男生16人,女生30人.因此女生人数为(46-16=)30人.3.1700为叙述方便,将100元作为计算单位,10000元就是100.根据题目条件可知五个人的奖金实际上是3个第二名与2个第三名的奖金之和.取偶数,因此第三名至多是(100-22×3)÷2=174.9点24分.如果不掉头行走,二人相遇时间为600÷[(4+5)×1000÷60]=4(分)两人相向行走1分后,掉头背向行走3分,相当于从出发地点背向行走(3-1=)2分;两人又掉头行走5分,相当于从出发地点相向行走(5-2=)3分;两人又掉头行走7分,相当于从出发地点背向行走(7-3=)4分;两人又掉头行走9分,相当于从出发地点相向行走(9-4=)5分.但在行走4分时二人就已经相遇了.因此共用时间1+3+5+7+8=24(分)相遇时间是9点24分.小升初数学综合模拟试卷23一、填空题:2.以正方形的4个顶点和正方形的中心(共5个点)为顶点,可以套出______种面积不等的三角形.3.某校组织不到200名同学外出参观,集合时,他们排成了一个正方形的队伍,乘车时,由于每人都要有座位,因此需要每辆有60个座位的大轿车至少4辆.那么参加活动的共有______人.4.服装厂的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装.现有66名工人生产,每天最多能生产______套.6.一列客车从甲站开往乙站,每小时行65千米,一列货车从乙站开往甲站,每小时行60千米,已知货车比客车早开出5分,两车相遇的地点距甲乙两站中点10千米,甲乙两站之间的距离是______千米.7.55道数学题,分给甲、乙、丙三人计算。