必修一 2.2.1 对数与对数运算专题训练
- 格式:doc
- 大小:151.00 KB
- 文档页数:8
2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1 对数的概念与基本性质】2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把N 10log 记为N lg .(2)自然对数:在科学技术中常使用以无理数e =2.71828…为底数的对数,以e 为底的对数称为自然对数,并把N e log 记为N ln . 3.对数与指数的关系当0>a ,且1≠a 时,N x N a a xlog =⇔=.4.对数的基本性质(1)负数和零没有对数,即0>N ; (2)01log =a )1,0(≠>a a 且; (3))1,0(1log ≠>=a a a a 且. 【知识点2 对数的运算性质】 1.2.abb c c a log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0). 3.知识拓展(1)可用换底公式证明以下结论:①a b b a log 1log =;②1log log log =⋅⋅a c b c b a ;③b b a na n log log =;④b nm b a m a n log log =;⑤b b a alog log 1-=.(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1 对数有意义条件】【例1】(2019秋•马山县期中)对数式log (a ﹣2)(5﹣a )中实数a 的取值范围是( ) A .(﹣∞,5) B .(2,5)C .(2,3)∪(3,5)D .(2,+∞)【变式1-1】(2019秋•龙岩期末)若对数式log (t ﹣2)3有意义,则实数t 的取值范围是( ) A .[2,+∞) B .(2,3)∪(3,+∞)C .(﹣∞,2)D .(2,+∞)【变式1-2】在M=log(x﹣3)(x+1)中,要使式子有意义,x的取值范围为()A.(﹣∞,3]B.(3,4)∪(4,+∞)C.(4,+∞)D.(3,4)【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【考点2 对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【考点3 解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4);(5)x=16.【考点4 对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2﹣()+lg+()lg1(2)lg52+lg8+lg5lg20+(lg2)2【变式4-1】(2019•西湖区校级模拟)计算:(1);(2).【变式4-2】(2019春•大武口区校级月考)(1)()0+()+();(2)【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【考点5 利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【考点6 用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;(3)log34;(4)lg.【考点7 与对数有关的条件求值问题】【例7】(2018秋•龙凤区校级月考)(1)已知lgx+lg(4y)=2lg(x﹣3y),求x﹣y的值;(2)已知lg2=a,lg3=b,试用a,b表示log830.【变式7-1】(2019秋•江阴市期中)已知lgx+lgy=2lg(x﹣y),求.【变式7-2】已知lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,求log8的值.【变式7-3】已知2lg=lgx+lgy,求.【考点8 对数的综合应用】【例8】设x、y、z均为正数,且3x=4y=6z(1)试求x,y,z之间的关系;(2)求使2x=py成立,且与p最近的正整数(即求与P的差的绝对值最小的正整数);(3)试比较3x、4y、6z的大小.【变式8-1】设a,b,c是直角三角形的三边长,其中c为斜边,且c≠1,求证:log(c+b)a+log(c﹣b)a=2loga•log(c﹣b)a.(c+b)【变式8-2】(2018秋•渝中区校级期中)令P=80.25×+()﹣(﹣2018)0,Q=2log32﹣log3+log38.(1)分别求P和Q.(2)若2a=5b=m,且,求m.【变式8-3】已知2y•log y4﹣2y﹣1=0,•log5x=﹣1,问是否存在一个正整数P,使P=.2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1 对数的概念与基本性质】2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把N 10log 记为N lg .(2)自然对数:在科学技术中常使用以无理数e =2.71828…为底数的对数,以e 为底的对数称为自然对数,并把N e log 记为N ln . 3.对数与指数的关系当0>a ,且1≠a 时,N x N a a xlog =⇔=.4.对数的基本性质(1)负数和零没有对数,即0>N ; (2)01log =a )1,0(≠>a a 且; (3))1,0(1log ≠>=a a a a 且. 【知识点2 对数的运算性质】 1.2.abb c c a log log log =(a >0,且a ≠1;c >0,且c≠1;b >0). 3.知识拓展(1)可用换底公式证明以下结论:①a b b a log 1log =;②1log log log =⋅⋅a c b c b a ;③b b a na n log log =;④b nm b a m a n log log =;⑤b b a alog log 1-=.(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1 对数有意义条件】【例1】(2019秋•马山县期中)对数式log (a ﹣2)(5﹣a )中实数a 的取值范围是( ) A .(﹣∞,5) B .(2,5)C .(2,3)∪(3,5)D .(2,+∞)【分析】对数式有意义的条件是:真数为正数,底为正数且不为1,联立得到不等式组,解出即可. 【答案】解:要使对数式b =log (a ﹣2)(5﹣a )有意义,则,解得a∈(2,3)∪(3,5),故选:C.【点睛】本题主要考查了对数式有意义的条件,即真数为正数,底为正数且不为1,属于基础题.【变式1-1】(2019秋•龙岩期末)若对数式log(t﹣2)3有意义,则实数t的取值范围是()A.[2,+∞)B.(2,3)∪(3,+∞)C.(﹣∞,2)D.(2,+∞)【分析】根据对数式log(t﹣2)3的定义,底数大于0且不等于1,列出不等式组,求出解集即可.【答案】解:要使对数式log(t﹣2)3有意义,须;解得t>2且t≠3,∴实数t的取值范围是(2,3)∪(3,+∞).故选:B.【点睛】本题考查了对数定义的应用问题,是基础题目.【变式1-2】在M=log(x﹣3)(x+1)中,要使式子有意义,x的取值范围为()A.(﹣∞,3]B.(3,4)∪(4,+∞)C.(4,+∞)D.(3,4)【分析】由对数的定义可得,由此解得x的范围.【答案】解:由函数的解析式可得,解得3<x<4,或x>4.故选:B.【点睛】本题主要考查对数的定义,属于基础题.【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【分析】由已知利用对数的概念可得x2﹣5x+6>0,解不等式即可得解.【答案】解:∵对数ln(x2﹣5x+6)存在,∴x2﹣5x+6>0,∴解得:3<x或x<2,即x的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).【点睛】本题考查对数函数的定义域的求法,是基础题.解题时要认真审题,仔细解答.【考点2 对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【分析】利用对数的定义进行指对互化.【答案】解:①log5625=4,② 5.73=m,③e2.303=10,④10﹣2=0.01,⑤24=16.【点睛】本题考查了指对互化,是基础题.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【分析】根据对数的定义进行转化.【答案】解:(1)lg100=2,(2)e b=a,(3)log7343=3;(4)6﹣2=.【点睛】本题考查了对数的定义,属于基础题.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【分析】根据指数式a x=N等价于对数式x=log a N,可将指数式与对数式互化.【答案】解:(1)log216=4可化为:24=16;(2)27=﹣3可化为:;(3)43=64可化为:log464=3;(4)﹣2=16可化为:.【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握指数式a x=N等价于对数式x=log a N,是解答的关键.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【分析】直接利用指数式与对数式的互化,写出结果即可.【答案】解:(1)3﹣2=;可得﹣2=1og3.(2)9=﹣2;()﹣2=9.(3)1g0.001=﹣3.0.001=10﹣3.【点睛】本题考查指数式与对数式的互化,考查计算能力.【考点3 解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【分析】(1)根据对数和指数之间的关系即可将log232=5化成指数式;(2)根据对数和指数之间的关系即可将3﹣3=化成对数式;(3)根据对数的运算法则即可求x;(4)根据对数的运算法则和性质即可求x.【答案】解:(1)∵log232=5,∴25=32(2)∵3﹣3=,∴log3=﹣3;(3)∵log4x=﹣,∴x===2﹣3=;(4)∵log2(log3x)=1,∴log3x=2,即x=32=9.【点睛】本题主要考查指数式和对数式的化简,根据指数和对数的关系是解决本题的关键.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【分析】(1)根据log x27=,可得=,进而得到x=9,(2)根据4x=5×3x,可得,化为对数式可得答案.【答案】解:(1)∵log x27=,∴=27=33=,故x=9,(2)∵4x=5×3x.∴,∴x=【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握a x=N⇔log a N=x(a>0,且a≠1,N >0)是解答的关键.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【分析】化对数式为指数式,然后利用有理指数幂的运算性质化简求值.【答案】解:①由log2x=﹣,得==;②由log x3=﹣,得,即.【点睛】本题考查对数式化指数式,考查了有理指数幂的运算性质,是基础的计算题.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4);(5)x=16.【分析】利用指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质log a1=0及log a a =1、指数的性质即可得出.【答案】解:(1)∵,∴,∴x==32=9;(2),∴==;(3)∵log5(log2x)=0,∴log2x=1,∴x=2;(4)∵,∴,化为33x=3﹣2,∴3x=﹣2,得到;(5)∵,∴,∴2﹣x=24,解得x=﹣4.【点睛】熟练掌握指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质、指数的性质是解题的关键.【考点4 对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2﹣()+lg+()lg1(2)lg52+lg8+lg5lg20+(lg2)2【分析】(1)进行分数指数幂和对数的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2+(lg2+lg5)2=3.【点睛】考查分数指数幂和对数的运算,完全平方公式的运用.【变式4-1】(2019•西湖区校级模拟)计算:(1);(2).【分析】(1)进行对数的运算即可;(2)进行指数式和根式的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查对数的运算性质,以及指数式和根式的运算.【变式4-2】(2019春•大武口区校级月考)(1)()0+()+();(2)【分析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查分数指数幂和对数的运算,以及对数的定义.【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【分析】(1)由指数幂的运算得:原式=4a b=4a,(2)由对数的运算得:原式=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.得解【答案】解:(1)(2a b)(﹣6a b)÷(﹣3a b)=4a b=4a,(2)2(lg)2+lg2•lg5+=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.【点睛】本题考查了对数的运算及指数幂的运算,属简单题.【考点5 利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【分析】根据换底公式,把对数换为以10为底的对数,进行计算即可.【答案】解:(1)log a c•log c a=•=1;(2)log23•log34•log45•log52=•••=1;(3)(log43+log83)(log32+log92)=(+)(+)=(+)(+)=•=.【点睛】本题考查了对数的计算问题,也考查了换底公式的灵活应用问题,是基础题目.【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【分析】利用对数性质、运算法则、换底公式直接求解.【答案】解:(log43+log83)(log32+log92)=(log6427+log649)(log94+log92)=log64243•log98===.【点睛】本题考查对数值的求法,考查对数性质、运算法则、换底公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【分析】(1)利用对数的换底公式展开后通分计算;(2)直接利用对数的换底公式进行化简.【答案】解:(1)log43+log83==;(2)log45+log92==.【点睛】本题考查对数的换底公式,是基础的会考题型.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【分析】利用对数的运算法则和对数的换底公式即可得出.【答案】解:原式==2log25•2log32•2log53=8log25•log32•log53==8.【点睛】本题考查了对数的运算法则和对数的换底公式,属于基础题.【考点6 用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:log189=a,18b=5,∴b=log185,∴log645====【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【分析】(1)先用换底公式用a表示lg3,再用换底公式化简log625=b,把lg3代入求出lg2,再化简log445,把lg3、lg2的表达式代入即可用a,b表示log445.(2)先用换底公式化简log1816,由条件求出lg3,再把它代入化简后的log1816 的式子.【答案】解:(1)∵log310=a,∴a=,∵log625=b===,∴lg2=,∴log445=====.(2)∵log627=a==,∴lg3=,∴log1816====.【点睛】本题考查换底公式及对数运算性质,体现解方程的思想,属于基础题.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:(1)log147=a,log145=b,∴log3528====,(2)∵log189=a,18b=5,∴log185=b,∴log3645====,【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;(3)log34;(4)lg.【分析】利用对数的换底公式与对数的运算法则即可得出.【答案】解:∵lg2=a,lg3=b,∴(1)lg12=2lg2+lg3=2a+b;(2)log224=+log23=3+;(3)log34==;(4)=lg3﹣3lg2=b﹣3a.【点睛】本题考查了对数的换底公式与对数的运算法则,属于基础题.【考点7 与对数有关的条件求值问题】【例7】(2018秋•龙凤区校级月考)(1)已知lgx+lg(4y)=2lg(x﹣3y),求x﹣y的值;(2)已知lg2=a,lg3=b,试用a,b表示log830.【分析】(1)由lgx+lg(4y)=2lg(x﹣3y),推导出=9,再由x﹣y==,能求出结果.(2)log830==,由此能求出结果.【答案】解:(1)∵lgx+lg(4y)=2lg(x﹣3y),∴,解得=9,∴x﹣y===4.(2)∵lg2=a,lg3=b,∴log830===.【点睛】本题考查对数式化简求值,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.【变式7-1】(2019秋•江阴市期中)已知lgx+lgy=2lg(x﹣y),求.【分析】由题意可得x>0,y>0,x﹣y>0,xy=(x﹣y)2,从而解得=,从而解得.【答案】解:∵lgx+lgy=2lg(x﹣y),∴x>0,y>0,x﹣y>0,xy=(x﹣y)2,∴x2﹣3xy+y2=0,即()2﹣3+1=0,故=,故=()=(3+)﹣2.【点睛】本题考查了对数的化简与运算,同时考查了整体思想的应用,属于基础题.【变式7-2】已知lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,求log8的值.【分析】由已知条件推导出,由此能求出log8的值.【答案】解:∵lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,∴,整理,得,解得或=﹣1(舍),∴log8=log82==.∴log8的值为.【点睛】本题考查对数值的求法,是基础题,解题时要认真审题,注意对数的性质和运算法则的合理运用.【变式7-3】已知2lg=lgx+lgy,求.【分析】根据对数的运算法则进行化简即可.【答案】解:由得x>y>0,即>1,则由2lg=lgx+lgy,得lg()2=lgxy,即()2=xy,即(x﹣y)2=4xy,即x2﹣2xy+y2=4xy,即x2﹣6xy+y2=0,即()2﹣6()+1=0,则==3+2或=3﹣2(舍),则=(3+2)=(3﹣2)﹣1=﹣1【点睛】本题主要考查对数的基本运算,根据对数的运算法则是解决本题的关键.【考点8 对数的综合应用】【例8】设x、y、z均为正数,且3x=4y=6z(1)试求x,y,z之间的关系;(2)求使2x=py成立,且与p最近的正整数(即求与P的差的绝对值最小的正整数);(3)试比较3x、4y、6z的大小.【分析】(1)令3x=4y=6z=k,利用指对数互化求出x、y、z,由对数的运算性质求出、、,由对数的运算性质化简与,即可得到关系值;(2)由换底公式求出P,由对数函数的性质判断P的取值范围,找出与它最接近的2个整数,利用对数的运算性质化简P与这2个整数的差,即可得到答案;(3)由(1)得3x、4y、6z,由于3个数都是正数,利用对数、指数的运算性质化简它们的倒数的差,从而得到这3个数大小关系.【答案】解:(1)令3x=4y=6z=k,由x、y、z均为正数得k>1,则x=log3k,y=log4k,z=log6k,∴,,,∵=,且,∴;(2)∵2x=py,∴p=====2=log316,∴2<log316<3,即2<p<3,∵p﹣2=log316﹣2=,3﹣p=3﹣log316=,∵﹣=0,∴,即>,∴与p的差最小的整数是3;(3)由(1)得,3x=3log3k,4y=4log4k、6z=6log6k,又x、y、z∈R+,∴k>1,=﹣==>0,∴,则3x<4y,同理可求=>0,则4y<6z,综上可知,3x<4y<6z.【点睛】本题考查了对数的运算法则、换底公式、指数式与对数式的互化,考查了推理能力,化简、计算能力,属于中档题.【变式8-1】设a,b,c是直角三角形的三边长,其中c为斜边,且c≠1,求证:log(c+b)a+log(c﹣b)a=2loga•log(c﹣b)a.(c+b)【分析】依题意,利用对数换底公式log(c+b)a=,log(c﹣b)a=证明左端=右端即可.【答案】证明:由勾股定理得a2+b2=c2.log(c+b)a+log(c﹣b)a=+====2log(c+b)a•log(c﹣b)a.∴原等式成立.【点睛】本题考查对数换底公与对数运算性质的应用,考查正向思维与逆向思维的综合应用,考查推理证明与运算能力,属于中档题.【变式8-2】(2018秋•渝中区校级期中)令P=80.25×+()﹣(﹣2018)0,Q=2log32﹣log3+log38.(1)分别求P和Q.(2)若2a=5b=m,且,求m.【分析】(1)利用指数与对数运算性质可得P,Q.(2)2a=5b=m,且=2,利用对数换底公式可得a=,b=,代入解出即可得出.【答案】解:(1)P=×+﹣1=2+﹣1=.Q==log39=2.(2)2a=5b=m,且=2,∴a=,b=,∴=2,可得lgm=,∴m=.【点睛】本题考查了指数与对数运算性质、非常的解法,考查了推理能力与计算能力,属于基础题.【变式8-3】已知2y•log y4﹣2y﹣1=0,•log5x=﹣1,问是否存在一个正整数P,使P=.【分析】由2y•log y4﹣2y﹣1=2y•log y4﹣=0可求y,再由•log5x=﹣1求出x即可.【答案】解:∵2y•log y4﹣2y﹣1=2y•log y4﹣=0,∴y=16;∵•log 5x=﹣1,∴,解得,x=;故P===3.【点睛】本题考查了指数函数与对数函数的应用及方程的解法,属于基础题.。
第二章 基本初等函数(Ⅰ)2.2 对数函数 2.2.1 对数与对数运算基础过关练题组一 对数的概念与性质及运用 1.2-3=18化为对数式为 ( )A.lo g 182=-3 B.lo g 18(-3)=2C.log 218=-3D.log 2(-3)=182.给出下列说法: ①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确说法的个数为 ( ) A.1 B.2 C.3 D.43.若log 2[log 3(log 4x )]=0,则x 等于 ( ) A.4 B.16 C.64 D.2564.(2020辽宁高一月考)已知4a =3,b =log 23,则4a -b = ( )A.3B.1C.12D.135.(2020四川双流中学高一开学考试)e ln 3+(18)-23= .(其中e 是自然对数的底数,e=2.718 28…)6.计算:22+log 23+32-log 39= .题组二 对数的运算7.(2020江西南昌十中高一期中)若ab >0,且ab ≠1,则下列等式中正确的是 ( )A.lg (ab )=lg a +lg bB.lg a b=lg a -lg bC.12lga b2=lg a bD.lg (ab )=1log 10(ab )8.(2020福建福州第一中学高一期末)若函数y =√a -a x (a >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485= ( ) A.1 B.2 C.3 D.49.(2020广西北流实验中学高一开学考试)计算:log 225·log 52√2= ( ) A.3 B.4 C.5 D.610.(2020浙江绍兴高一期末)已知a =log 25,4b =9,则2a +b = ,log 53= (用a ,b 表示). 11.计算:(1)(log 43+log 83)×lg2lg3; (2)log 5√2×log 79log 513×log 7√43+log 4(√3+√5-√3-√5)2.题组三 对数运算的综合运用 12.已知lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg a b)2的值是 ( )A.1B.2C.3D.413.若x log 32=1,则4x -2-x = .14.若log 34·log 48·log 8m =ln 1e,则m 的值为 .15.若lg x -lg y =a ,则lg (x 2)3-lg (y 2)3的值为 .16.(2020浙江嘉兴第五高级中学高一期中)16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急.苏格兰数学家纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.后来天才数学家欧拉发现了对数与指数的关系,即a b =N ⇔b =log a N.①若a =log 23,则2a +2-a= ;②若2a =3,3b =2,则ab = .17.燕子每年秋天都要从北方到南方过冬,鸟类科学家发现,两岁燕子的飞行速度v 与耗氧量x 之间满足函数关系式v =a log 2x10.若两岁燕子的耗氧量达到40个单位时,其飞行速度为10 m/s ,则当两岁燕子的飞行速度为25 m/s 时,耗氧量达到 个单位.能力提升练一、选择题1.(2020湖南师范大学附属中学高一期中,)已知函数f (x )={log 2(x -1)(x >1),(13)-x(x ≤1),则f (54)+f (log 312)的值是 ( )A.-12B.-32C.2D.522.(2020安徽安庆一中高一月考,)设x ,y ,z 为正数,且2x =3y =5z ,则 ( )A.2x <3y <5zB.5z <2x <3yC.3y <5z <2xD.3y <2x <5z3.(2020陕西西安中学高一上期中,)根据有关资料显示,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1082,则下列各数中与MN最接近的是(参考数据:lg 3≈0.48) ( )A.1033 B .1053 C.1091 D .10934.(2020山东高一月考,)科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等份,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,……,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段长度的1 000倍,则至少需要构造的次数是(取lg 3≈0.477 1,lg 2≈0.301 0)( )A.16B.17C.24D.25 二、填空题5.(2020福建厦门外国语学校高一上期中,)计算:log 26-log 23-3log 312+(14)-12=.6.(2021山西大联考高一第一次月考,)若函数f (x )=e |2x -m |,且f (2x -1)=f (1-2x ),则f (ln 3)+f (-ln 3)= .7.(2020广东珠海高一上期末学业质量检测,)5-12·5log 5√5-log 37·log 79+log 126+log 122= . 8.(2020山东淄博高一上期末质量检测,)已知a >0,且a ≠1,log a 2=x ,则a x = ,a 2x +a -2x = .9.(2021江苏镇江中学高一开学考试,)已知a ,b 均为正实数,若log a b +log b a =52,a b =b a ,则a b= .10.(2020山东东营第一中学高一月考,)在天文学中,天体的明暗程度可以用星等或亮度来描述.若两颗星的星等与亮度满足m 1-m 2=32lg E 1E 2,其中星等为m k ,星的亮度为E k (k =1,2).(1)若E 1=10 000E 2,则m 1-m 2= ;(2)若太阳的星等是-26.7,天狼星的星等是-1.5,则太阳与天狼星的亮度的比值为 . 三、解答题 11.()(1)计算:log 3√27+lg 25+lg 4+(-9.8)0+lo g (√2-1)(3-2√2);(2)已知lg x +lg y =2lg (x -2y ),求lo g √2y -lo g √2x 的值.12.(2021河南南阳中学高一月考,)已知x ,y ,z 为正数,3x =4y =6z ,且2x =py.(1)求p ; (2)求证:1z -1x =12y.答案全解全析第二章 基本初等函数(Ⅰ)2.2 对数函数2.2.1 对数与对数运算基础过关练1.C2.C3.C4.D 7.C 8.C 9.A 12.B 1.C 根据对数的定义知选C .2.C ①③④正确,②不正确,只有a >0,且a ≠1时,a x =N 才能化为对数式.3.C 由log 2[log 3(log 4x )]=0,得log 3(log 4x )=1,∴log 4x =31=3,∴x =43=64,故选C .4.D 因为b =log 23,所以2b =3,所以4b =(2b )2=32=9,所以4a -b =4a ×14b =3×19=13. 5.答案 7解析 e ln 3+(18)-23=3+22=7.6.答案 13 解析22+log 23+32-log 39=22×2log 23+323log 39=4×3+99=12+1=13. 7.C 对于A ,a <0,b <0时,ab >0,但是lg a ,lg b 无意义,故该等式不正确; 对于B ,a <0,b <0时,a b >0,但是lg a ,lg b 无意义,故该等式不正确; 对于C ,ab >0⇒a b>0,按照对数的运算法则,该等式正确; 对于D ,由换底公式得,lg (ab )=log ab(ab )logab10=1log ab10,故D 不正确.故选C . 8.C 由题意可得a -a x ≥0,则a x≤a ,由定义域为[0,1],可得a >1, 所以y =√a -a x 在定义域上单调递减, 因为值域是[0,1],所以f (0)=√a -1=1,f (1)=0,所以a =2,所以log a 56+log a 485=log 256+log 2485=log 28=3.故选C . 9.A log 225·log 52√2=log 252·log 5232=2×32×log 25×log 52=3,故选A . 10.答案 15;b a解析 由a =log 25,得2a =5,由指数的运算,可知4b =22b =9,则(2b )2=32,所以2b =3,所以2a +b =2a ×2b =5×3=15. 因为2b =3,所以b =log 23,由换底公式可知log 53=log 23log 25=ba. 11.解析 (1)原式=(lg3lg4+lg3lg8)×lg2lg3 =lg32lg2×lg2lg3+lg33lg2×lg2lg3 =12+13=56. (2)原式=log 5√2log 513×7log 7√43+log 4(√3+√5-√3-√5)2=lo g 13√2×lo g √439+log 4(3+√5+3-√5-2√32-5) =lg √2lg 13×lg9lg413+log 4(6-2×2)=12lg2-lg3×2lg323lg2+log 42=-32+12log 22 =-32+12=-1. 方法技巧利用对数性质求值的解题关键是化异为同,先使各项底数相同,再找真数间的联系,对数式的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.12.B 由一元二次方程根与系数的关系,得lg a +lg b =2,lg a ·lg b =12,所以(lg ab )2=(lg a -lg b )2=(lg a +lg b )2-4lg a ·lg b =22-4×12=2.故选B . 13.答案263解析 由题得x =log 23,即2x =3,所以2-x =13,4x =9,所以4x -2-x =263. 14.答案13解析 由已知及换底公式可得lg4lg3·lg8lg4·lgmlg8=-1, 所以lg m =-lg 3,故m =13. 15.答案 3a解析 lg (x2)3-lg (y2)3=3lg x 2-lg y 2=3[(lg x -lg 2)-(lg y -lg 2)]=3(lg x -lg y )=3a.16.答案 ①103②1 信息提取 ①a b =N ⇔b =log a N ;②a =log 23,2a =3,3b =2.数学建模 以对数的发明为情境,构建指数与对数模型,由指、对互化及对数的换底公式求值.解析 ①若a =log 23,则2a =3,所以2a +2-a =2a +12a =3+13=103. ②若2a =3,3b =2,则a =log 23,b =log 32,所以ab =log 23×log 32=lg3lg2×lg2lg3=1. 17.答案 320解析 由题知,当x =40时,v =10,代入v =a log 2x 10,可得10=a log 24010=2a , 所以a =5,因此v =5log 2x 10. 将v =25代入上式,得25=5log 2x 10,解得x =10×25=320.能力提升练1.B2.D3.C4.D一、选择题1.B f (54)=log 2(54-1)=log 214=log 22-2=-2, ∵log 312<1,(13)-x=3x,∴f (log 312)=3log 312=12,∴f (54)+f (log 312)=-32.故选B . 2.D 令2x =3y =5z =k (k >1),则x =log 2k ,y =log 3k ,z =log 5k.∴2x 3y =2lgk lg2·lg33lgk =lg9lg8>1,则2x >3y , 2x 5z =2lgk lg2·lg55lgk =lg25lg32<1,则2x <5z ,∴3y <2x <5z.故选D . 方法技巧对于“连等”问题,常见的方法是令该“连等”为同一个常数,再用这个常数表示出对应的x ,y ,z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.3.C lg M N =lg M -lg N =lg 3361-lg 1082=361×lg 3-82≈361×0.48-82=91.28. ∴M N≈1091,故选C . 4.答案 D信息提取 ①理解“构造”过程,发现构造过程中线段长度的变化规律;②根据最终达到的状态(折线长度达到初始线段长度的1 000倍),求构造的次数.数学建模 以科赫曲线为情境,构建指数函数模型,由折线长度变化规律可知“n 次构造”后的折线长度为(43)na ,由此得到(43)n≥1 000,利用对数运算法则可知n ≥32lg2-lg3,由此计算得到结果.解析 记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为(43)2a ,……,以此类推,“n 次构造”后的折线长度为(43)na ,若得到的折线长度为初始线段长度的1 000倍,则(43)na ≥1 000a ,即(43)n≥1 000,∴lg (43)n=n lg 43=n (lg 4-lg 3) =n (2lg 2-lg 3)≥lg 1 000=3,即n ≥32×0.3010-0.4771≈24.02, ∴至少需要25次构造.故选D . 二、填空题 5.答案52解析 原式=log 26-log 23-12+(2-2)-12=log 263-12+21=1-12+2=52. 6.答案 18解析 由f (2x -1)=f (1-2x ),可知函数f (x )=e |2x -m |的图象关于y 轴对称,则m 2=0,得m =0,故f (x )=e |2x |, f (ln 3)+f (-ln 3)=2f (ln 3)=2e 2ln 3=18. 7.答案 0解析 原式=√5×√5-log 37·log 732+log 1212=1-2log 37·log 73+1=1-2+1=0. 8.答案 2;174解析 由log a 2=x ,得a x =2,从而a -x =12. 又a 2x +a -2x =(a x +a -x )2-2,∴a 2x +a -2x =2+122-2=254-2=174. 9.答案 2或12解析 令t =log a b ,则t +1t =52, ∴2t 2-5t +2=0,即(2t -1)(t -2)=0, ∴t =12或t =2,∴log a b =12或log a b =2,∴a =b 2或a 2=b , ∵a b =b a ,∴2b =a =b 2或b =2a =a 2, ∴b =2,a =4或a =2,b =4,∴a b =2或a b =12. 10.答案 (1)6 (2)10-16.8信息提取 ①星等与亮度满足m 1-m 2=32lg E 1E 2,E 1=10 000E 2;②太阳的星等是-26.7,天狼星的星等是-1.5,根据公式求太阳与天狼星的亮度的比值.数学建模 以天体的明暗程度为情境,构建星等与亮度的函数关系,把已知数据代入m 1-m 2=32lg E 1E 2中,应用对数的运算性质求解. 解析 (1)把E 1=10 000E 2代入m 1-m 2=32lg E 1E 2中,得到m 1-m 2=6. (2)设太阳的星等是m 1,天狼星的星等是m 2,则m 1=-26.7,m 2=-1.5,由题意可得,-26.7-(-1.5)=32lg E 1E 2, 所以lg E 1E 2=-16.8,则E 1E 2=10-16.8. 三、解答题11.解析 (1)原式=log 32712+lg 52+lg 22+1+lo g (√2-1)(√2-1)2=32+2×(lg 5+lg 2)+1+2=132. (2)依题意得x >0,y >0,x -2y >0,∴0<y x <12. 又lg x +lg y =2lg (x -2y ),∴xy =(x -2y )2,即x 2-5xy +4y 2=0, 又x >0,∴4(yx)2-5(y x )+1=0, 解得y x =14或y x=1(舍去), 因此log √2y -log √2x =log √2yx=log √214=-212=-4.12.解析 (1)设3x =4y =6z =k (显然k >0,且k ≠1), 则x =log 3k ,y =log 4k ,z =log 6k. 由2x =py ,得2log 3k =p log 4k =p ·log 3klog 34.∵log 3k ≠0,∴p =2log 34.(2)证明:1z -1x =1log 6k -1log 3k=log k 6-log k 3=log k 2,又12y =12log k 4=log k 2,∴1z -1x =12y. 拓展延伸在运用换底公式时,可以结合底数间的关系恰当选用一些重要的结论,如log a b ·log b a =1,log a b ·log b c ·log c d =log a d ,lo g a m b n =n m log a b ,log a a n =n ,lg 2+lg 5=1等(其中a >0,且a ≠1,b >0,且b ≠1,c >0,且c ≠1,d >0,m ≠0).。
更上一层楼基础·巩固·达标1.设log x2381=,则底数x 的值为( ) A.2 B.21 C.4 D.41 思路解析:log x 81=23⇒log x 2-3=-3log x,2=23⇒log x 2=-21, 所以21-x =2⇒x=2-2=41. 答案:D2.下列指数式与对数式的互化中,不正确的是( )A.100=1与lg1=0B.312731=-与log 2731=-31 C.log 39=2与219=3 D.log 55=1与51=5思路解析:log 39=2应化为32=9所以选项C 不对.答案:C3.在b=log (a-2)(5-a )中,实数a 的取值范围是( )A.a >5或a <2B.2<a <5C.2<a <3或3<a <5D.3<a <4思路解析:由对数的定义知⎪⎩⎪⎨⎧≠><⇒⎪⎩⎪⎨⎧≠->->-3,2,512,02,05a a a a a a ⇒2<a <3或3<a <5.答案:C4.(lg2)3+(lg5)3+3lg2·lg5的值为( )A.4B.1C.6D.3思路解析:原式=(lg2+lg5)3-3lg 22·lg5-3lg2·lg 25+3lg2·lg5=1-3lg2·lg5(lg2+lg5)+3lg2·lg5=1.答案:B5.设lg2=a,lg3=b,则log 512等于( ) A.a b a ++12 B.a b a ++12 C.a b a -+12 D.ab a -+12 思路解析:log 512=a b a -+=-+=⨯=122lg 13lg 2lg 2210lg 32lg 5lg 12lg 2. 答案:C 6.5log 12212+的值等于( ) A.2+5 B.25 C.2+25 D.1+25思路解析:原式=2·5log 22=25.答案:B综合·应用·创新7.lg20+log 10025=____________________.思路解析:∵log 10025=2210lg 5lg 100lg 25lg ==lg5,∴lg20+lg 10025=lg20+lg5=lg100=2.此外,本题也可直接使用换底公式的推论求解.lg20+log 10025=lg20+2105log 2=lg20+22log 105=lg20+lg5=lg100=2. 答案:28.若3a =2,则log 38-2log 36=___________________.思路解析:∵3a =2,∴a=log 32.∴log 38-2log 36=log 323-2log 3(2×3)=3log 32-2(1+log 32)=log 32-2=a-2.答案:a-2 9.lg12.5-lg85+lg0.5=_________________________. 思路解析:原式=lg12.5×58×0.5 =lg10 =1. 答案:110.求值:2lg 3.0lg 211000lg 8lg 27lg +-+. 思路解析:原式=)12lg 23(lg 21)12lg 23(lg 232lg )13(lg 21232lg 33lg 232lg 103lg 2110lg 212lg 3lg 3323-+-+=+--+=+++=3.11.已知lgx+lgy=2lg (x-2y ),求yx 2log的值. 思路解析:由已知条件得⎪⎪⎩⎪⎪⎨⎧>->>-=0200,)2(2y x y x y x xy ⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧>->>=+∙-⇒0200,045)(`2y x y x y x y x 或y x =1. 若yx =1时,x=y ,这与y >0,x-2y >0相矛盾. ∴y x =4. y x 2log =4log 2=2122log 4log 22==4. 答案:4 12.已知3a =4b =6c ,且a,b,c 都不为零,求证:c b a 212=+. 证明:令3a =4b =6c =k(k>0且k ≠1),则a=log 3k , b=log 4k , c=log 6k, 所以b a 12+=kk 43log 1log 2+=2log k 3+log k 4=2log k 3+2log k 2=2(log k 2+log k 3)=2log k 6 又kc 6log 11==log k 6所以c b a 212=+.。
姓名_______ ___年___月__日 第___次课 §2.2.1 对数与对数运算一、课前准备(预习教材P 66~ P 69,找出疑惑之处;有问题:请找陈智林老师,q:1315161217) 1,。
对数:定义:如果a N a a b=>≠()01且,那么数b 就叫做以a 为底的对数,记作b Na =l o g (a 是底数,N 是真数,lo g a N 是对数式。
) 由于N a b=>0故lo g a N 中N 必须大于0。
2.对数的运算性质及换底公式.如果 a > 0,a ≠ 1,b>0,M > 0, N > 0 ,则:(1)log ()a MN = ; (2)nm mn b a =log (3)log aM N= ;(4) log n a M = . (5) b a b a =log换底公式log a b = . (6) b aba=log (7)ba b a nn log 1log =考点一: 对数定义的应用例1:求下列各式中的x 的值; (1)23log27=x; (2)32log 2-=x ; (3)9127log =x (4)1621log =x 例2:求下列各式中x 的取值范围; (1))10(2log-x (2)22)x )1(log +-(x (3)21)-x )1(log (+x例3:将下列对数式化为指数式(或把指数式化为对数式) (1)3log3=x (2)6log 64-=x (3)9132-= (4)1641=x )( 考点二 对数的运算性质1.定义在R 上的函数f(x )满足f(x)=⎩⎨⎧>---≤-)0(),2()1(log )0(),4(2x x f x f x x ,则f(3)的值为__________2.计算下列各式的值: (1)245lg 8lg 344932lg 21+- (2)8.1lg 10lg 3lg 2lg -+ 3.已知)lg(y x ++)32lg(y x +-lg3=lg4+lgx+lgy,求x:y 的值4.计算: (1))log log log582541252++()log log log 812542525++( (2)3473159725log log log log ∙∙+)5353(2log --+(3)求0.3252log4⎛⎫ ⎪ ⎪⎝⎭的值 (4):已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56. 随堂练习:1.9312-=⎪⎭⎫⎝⎛写成对数式,正确的是( ) 2.=34349log ( )A.7B.2C.32D.233.成立的条件yx xy 33)(3log log log +=( ) A.x>0,y>0 B.x>0,y<0 C.x<0.y>0 D.R y R x ∈∈, 4.,0,0,1,0>>≠>y x a a 若下列式子中正确的个数有( ) ①)(log log log y x a y a x a +=∙ ②)-(log log -log y x a y a x a = ③yax a y x alog log log÷= ④y a x a xy a log log log ∙=A.0B.1C.2D.3 5.已知0log)2(log 3log 7=⎥⎦⎤⎢⎣⎡x ,那么21-x =( )A.31 B.321 C.221 D.3316已知x f x =)10(,则f(5)=( )A.510B.105C.105logD.lg57.若16488443log log log log =∙∙m ,则m=( ) A.21 B.9 C.18 D.278.设638323log 2log ,log -=则a ,用a 表示的形式是( )A.a-2B.2)1(3a +-C.5a-2D.132-+-a a 9.设a 、b 、c 均为正实数,且c b a 643==,则有( )A.b a c 111+=B.b a c 112+=C.b a c 2111+=D.ba c 212+=10若方程05lg 7lg lg )5lg 7(lg )lg 2=∙+++x x (的两根为βα,,则βα∙=( ) A.5lg lg7∙ B.35lg C.35 D.351 二.填空题11.若4123log =x ,则x=________ 12.已知______)21(,)lo (2==f x g f x 则13.已知lg2=0.3010,lg3=0.4771,lgx=-2+0.7781,则x=_________ 三.选做题(三题中任选两道)14.已知lgx+lgy=2lg(x-2y),求yx2log 的值15.已知2014log 4)3(32-=x f x ,求f(2)+f(4)+f(8)+.....+)2(1007f 的值 16.设a 、b 、c 均为不等于1的正数,且0111,=++==zyxc b a z y x ,求abc 的值附答案: 考点一:例1:1,x=9 2,223=x 3,32-=x 4,x=-4例2:1,x>0; 2,21≠>x x 且 3,101-≠≠>x x x 且且例3:1,33)(=x , 2,646=-x 3,2log 913-= 4,x =1641log 考点二:1,-2 2,(1)21 (2)213,x:y=1:2或x:y=3:1(x>0,y>0)4, (1)13, (2)-1 (3)-21 (4)12+++a ab aab 随堂练习:一选择题:1B;2D;3A;4A;5C;6D;7B;8A;9C;10D(注意原方程的根为x,不是lgx,别弄错了) 二.填空题:11,91 12,2 13, 0.06三选做题:14, 4 15,2014 16,1。
一、选择题1.将指数式2a =b 写成对数式为A .log 2b =aB .log a b =2C .log 2a =bD .log b 2=a【答案】A【解析】指数式2a =b 所对应的对数式是:log 2b =a .故选A .2.若log a b •log 3a =5,则b =A .a 3B .a 5C .35D .53 【答案】C3.如果log 3x =log 6x ,那么x 的值为A .1B .1或0C .3D .6【答案】A【解析】∵log 3x =log 6x ,36log 1log 1==0,而对数函数3log y x =,6log y x =在x >0时,具有单调性,因此x =1.故选A .4.1411log 9+1511log 3= A .lg3B .–lg3C .1lg3D .–1lg3【答案】C 【解析】原式=191log 4+131log 5=131log 2+131log 5=131log 10=log 310=1lg3.故选C .5.若x =12log 16,则x = A.–4 B .–3 C .3 D .4【答案】A【解析】∵x =12log 16,∴2–x =24,∴–x =4,解得x =–4.故选A .6.log 8127等于A .34B .43C .12D .13【答案】A【解析】log 8127=3lg334lg34=.故选A . 7.计算lg (103–102)的结果为A .1B .32C .90D .2+lg9【答案】D8.若x log 34=1,则4x +4–x 的值为A .3B .4C .174D .103【答案】D【解析】∵x log 34=1,∴43log x =1,则4x =3,∴4x +4–x =3+11033=,故选D . 9.273log 16log 4的值为 A .2 B .32 C .1 D .23【答案】D【解析】原式=164332734433log 2log log 23log log 3==.故选D .二、填空题10.已知log 3(log 2x )=1,那么x 的值为__________.【答案】8【解析】由log 3(log 2x )=1,得log 2x =3,解得x =8.故答案为:8.11.已知lg2=a ,lg3=b ,用a ,b 的代数式表示lg12=__________.【答案】2a +b【解析】lg12=lg (3×4)=lg3+2lg2=2a +b .故答案为:2a +b .12.求值:2log 510+log 50.25–log 39=__________.【答案】0【解析】原式=()25log 100.25⨯–2=25log 5–2=2–2=0.故答案为:0.13.若lg2=a ,lg3=b ,则log 418=__________.(用含a ,b 的式子表示)【答案】22a b a+14.若log 32=log 23x ,则x =__________.【答案】223(log ) 【解析】∵log 32=log 23x ,∴32321log log x =,∴223(log )x =.故答案为:223(log ). 三、解答题15.计算(log 43+log 83)(log 32+log 92)的值.【解析】(log 43+log 83)(log 32+log 92)=lg3lg3lg2lg2lg4lg8lg3lg9⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=lg3lg3lg2lg22lg23lg2lg32lg3⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ =1111524364+++=. 16.解方程:log 2(x –1)+log 2x =1.【解析】∵log 2(x –1)+log 2x =1,∴log 2(x –1)x =1, ∴x (x –1)=2,解得x =–1或x =2,经检验,得x =–1是增根,x =2是原方程的解,∴x =2.17.计算:(1)lg 12–lg 58+lg12.5–log 89•log 34+0.5log 32; (2)0.21log 35-–(log 43+log 83)(log 32+log 92).(2)0.21log 35-–(log 43+log 83)(log 32+log 92) =5÷51log 35–(log 6427+log 649)(log 94+log 92)=15–5362lg3lg2lg2lg3⨯ =15–1512=554. 18.解关于x 的方程:lg (x 2+1)–2lg (x +3)+lg2=0.【解析】∵lg (x 2+1)–2lg (x +3)+lg2=0,∴()2221lg (3)x x ++=0,∴()2221(3)x x ++=1,解得x =–1或x =7,经检验满足条件.∴方程的根为:x =–1或x =7.。
高中数学人教A版必修一 2.2.1对数与对数运算同步练习A卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)若,则()A . a>b>cB . b>a>cC . c>a>bD . b>c>a2. (2分) (2016高一上·芒市期中) 若loga =﹣2,则a=()A . 2B . 4C .D .3. (2分) (2018高三上·吉林月考) 若集合,则()A .B .C .D .4. (2分) (2018高二下·邯郸期末) 设函数 ,()A . 3B . 6C . 9D . 125. (2分) (2016高一上·佛山期中) 令a=0.20.1 , b=log0.20.1,则有()A . b>1>aB . a>1>bC . a>b>1D . 1>b>a6. (2分)的值属于区间()A .B .C .D .二、填空题 (共4题;共4分)7. (1分)已知集合M={(a,b)|a≤﹣1,且 0<b≤m},其中m∈R.若任意(a,b)∈M,均有alog2b﹣b ﹣3a≥0,求实数m的最大值________8. (1分) (2017高一上·唐山期末) 若lg25+lg2lg50的值为________.9. (1分) (2017高一上·张家港期中) 计算() +(π﹣1)0+2log31﹣lg2﹣lg5=________.10. (1分) (2019高一上·盘山期中) ________.三、解答题 (共3题;共40分)11. (10分) (2016高一上·蕲春期中) 计算(1)计算:;(2)已知a=lg2,10b=3,用a,b表示.12. (20分)把下列对数式写成指数式:(1) log39=2;(2) log5125=3;(3) log2 =﹣2;(4) log3 =﹣4.13. (10分) (2016高一上·武城期中) 计算(1) log3 +lg25+lg4+log772;(2)()﹣(﹣0.96)0﹣() +()﹣2.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共4题;共4分)7-1、8-1、9-1、10-1、三、解答题 (共3题;共40分)11-1、11-2、12-1、12-2、12-3、12-4、13-1、13-2、。
2.2.1 对数与对数的运算练习一一、选择题1、 25)(log 5a -(a ≠0)化简得结果是( ) A 、-a B 、a 2C 、|a |D 、a2、 log 7[log 3(log 2x )]=0,则21-x等于( ) A 、31B 、321C 、221D 、331 3、 n n ++1log (n n -+1)等于( )A 、1B 、-1C 、2D 、-24、 已知32a =,那么33log 82log 6-用表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、 23a a -5、 2log (2)log log a a a M N M N -=+,则N M 的值为( ) A 、41 B 、4 C 、1 D 、4或1 6、 若log m 9<log n 9<0,那么m,n 满足的条件是( )A 、m>n>1B 、n>m>1C 、0<n<m<1D 、0<m<n<17、 若1<x<b,a=log 2b x,c=log a x,则a,b,c 的关系是( )A 、a<b<cB 、 a<c<bC 、c<b<aD 、c<a<b二、填空题8、 若log a x =log b y =-21log c 2,a ,b ,c 均为不等于1的正数,且x >0,y >0,c =ab ,则xy =________ 9 、若lg2=a ,lg3=b ,则log 512=________10、 3a =2,则log 38-2log 36=__________11、 若2log 2,log 3,m n a a m n a+===___________________ 12、 lg25+lg2lg50+(lg2)2=三、解答题13、 222522122(lg )lg lg (lg )lg +⋅+-+ 14、 若lga 、lgb 是方程01422=+-x x 的两个实根,求2)(lg )lg(b a ab ⋅的值。
必修一 2.2.1 对数与对数运算专题训练基础巩固一、选择题1.下列语句正确的是( )①对数式log a N =b 与指数式a b=N 是同一关系的两种不同表示方法. ②若a b=N (a >0且a ≠1,N >0),则a log a N=N 一定成立.③对数的底数可以为任意正实数. ④log a a b=b 对一切a >0且a ≠1恒成立.A .①②③④B .①②④C .①③④D .②③④2.下列指数式与对数式互化不正确的一组是( )A .e 0=1与ln1=0 B .log 39=2与912 =3 C .8-13 =12与log 812=-13D .log 77=1与71=73.若log a 7b =c (a >0,且a ≠1,b >0),则有( ) A .b =a 7cB .b 7=a cC .b =7a cD .b =c 7a4.把对数式x =lg2化成指数式为( )A .10x =2B .x 10=2C .x 2=10D .2x=10 5.方程2log 3x =14的解是( ) A .x =19 B .x =33 C .x = 3 D .x =96.如果f (10x)=x ,则f (3)等于( )A .log 310B .lg3C .103D .310二、填空题7.计算:823 ×3log 32lne +log 4164=________.8.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,-x ,x >1,若f (x )=2,则x =________.三、解答题9.求下列各式的值:(1)log 464; (2)log 31; (3)log 927; (4)2log 2π.10.求下列各式中的x :(1)log x 27=32; (2)log 2x =-23;(3)log x (3+22)=-2; (4)log 5(log 2x )=0; (5)x =log 2719; (6)x =log 1216.能力提升一、选择题1.在b =log (3a -1)(3-2a )中,实数a 的取值范围是( )A .a >32或a <13 B.13<a <23或23<a <32 C.13<a <32 D.23<a <322.log 5[log 3(log 2x )]=0,则x -12等于( )A.66B.39C.24D.233.若log a 3=2log 230,则a 的值为( )A .2B .3C .8D .94.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3x 2-1x ≥2,则f [f (2)]的值为( )A .0B .1C .2D .3二、填空题5.若log a 2=m ,log a 3=n ,则a 2m +n=________.6.已知a 23 =49(a >0),则log 23a =________.三、解答题7.求下列各式中x 的值:(1)x =log 224; (2)x =log 93; (3)x =71-log 75;(4)log x 8=-3; (5)log 12x =4.8.设x =log 23,求23x-2-3x2x -2-x 的值.必修一 2.2.1 对数与对数运算专题训练答案基础巩固一、选择题1.下列语句正确的是( )①对数式log a N =b 与指数式a b=N 是同一关系的两种不同表示方法. ②若a b=N (a >0且a ≠1,N >0),则a log a N=N 一定成立.③对数的底数可以为任意正实数. ④log a a b =b 对一切a >0且a ≠1恒成立.A .①②③④B .①②④C .①③④D .②③④ [答案] B[解析] ③中对数的底数限制条件为大于0且不等于1的实数.2.(2015·盘锦高一检测)下列指数式与对数式互化不正确的一组是( )A .e 0=1与ln1=0 B .log 39=2与912 =3 C .8-13 =12与log 812=-13D .log 77=1与71=7[答案] B[解析] log 39=2化为指数式为32=9,故选B. 3.若log a 7b =c (a >0,且a ≠1,b >0),则有( ) A .b =a 7cB .b 7=a cC .b =7a cD .b =c 7a[答案] A[解析] ∵log a 7b =c ,∴a c=7b . ∴(a c )7=(7b )7.∴a 7c=b .4.把对数式x =lg2化成指数式为( )A .10x =2B .x 10=2C .x 2=10D .2x=10 [答案] A[解析] 由指数、对数的互化可得x =lg2⇔10x=2,故选A. 5.方程2log 3x =14的解是( )A .x =19B .x =33 C .x = 3 D .x =9[答案] A [解析] ∵2log 3x=2-2,∴log 3x =-2,∴x =3-2=19.6.如果f (10x)=x ,则f (3)等于( )A .log 310B .lg3C .103D .310[答案] B[解析] 令10x=3,∴x =lg3.故选B. 二、填空题7.计算:823 ×3log 32lne +log 4164=________.[答案] -4[解析] 原式=2323 ×21+log 44-3=22×21-3=-4. 8.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,-x ,x >1,若f (x )=2,则x =________.[答案] log 32[解析] 由⎩⎪⎨⎪⎧x ≤1,3x=2⇒x =log 32,或⎩⎪⎨⎪⎧x >1-x =2⇒x =-2无解.三、解答题9.求下列各式的值:(1)log 464; (2)log 31; (3)log 927; (4)2log 2π.[解析] (1)设log 464=x ,则4x=64, ∵64=43,∴x =3,∴log 464=3. (2)设log 31=x ,则3x=1, ∵1=30,∴x =0,∴log 31=0. (3)设log 927=x ,则9x =27即32x =33, ∴2x =3即x =32,∴log 927=32.(4)设2log 2π=x ,则log 2π=log 2x =u ,∴π=2u ,x =2u,∴x =π,即2log 2π=π.10.求下列各式中的x :(1)log x 27=32;(2)log 2x =-23;(3)log x (3+22)=-2;(4)log 5(log 2x )=0; (5)x =log 2719;(6)x =log 1216.[解析] (1)由log x 27=32,得x 32 =27,∴x =2723 =9.(2)由log 2x =-23,得x =2-23 =322.(3)由log x (3+22)=-2,得3+22=x -2, ∴x =(3+22)-12 =2-1.(4)由log 5(log 2x )=0,得log 2x =1,∴x =21=2.(5)由log 2719=x ,得27x =19,33x =3-2,∴3x =-2,∴x =-23.(6)由log 12 16=x ,得(12)x =16,即2-x =24,∴x =-4.[点评] 求未知数x 时可以先将对数式转化为指数式,然后再求值.能力提升一、选择题1.在b =log (3a -1)(3-2a )中,实数a 的取值范围是( )A .a >32或a <13 B.13<a <23或23<a <32 C.13<a <32 D.23<a <32[答案] B[解析] 要使式子b =log (3a -1)(3-2a )有意义,则 ⎩⎪⎨⎪⎧3a -1>0,3a -1≠1,3-2a >0即13<a <23或23<a <32,故选B. 2.log 5[log 3(log 2x )]=0,则x -12等于( )A.66 B.39 C.24 D.23[答案] C[解析] ∵log 5[log 3(log 2x )]=0,∴log 3(log 2x )=1, ∴log 2x =3,∴x =23=8, ∴x-12 =8-12 =18=122=24,故选C. 3.若log a 3=2log 230,则a 的值为( )A .2B .3C .8D .9 [答案] B [解析] ∵log a 3=2log 230=20=1,∴a =3,故选B.4.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3x 2-1,x ≥2,则f [f (2)]的值为( )A .0B .1C .2D .3 [答案] C[解析] f (2)=log 3(22-1)=log 33=1,则f [f (2)]=2. 二、填空题5.若log a 2=m ,log a 3=n ,则a 2m +n=________.[答案] 12[解析] ∵log a 2=m ,∴a m=2,∴a 2m =4,又∵log a 3=n ,∴a n =3,∴a 2m +n=a 2m ·a n=4×3=12.6.已知a 23 =49(a >0),则log 23a =________.[答案] 3[解析] 设log 23a =x ,则a =(23)x.又∵a 23 =49,∴[(23)x ]23 =(23)2,即(23)23 x =(23)2,∴23x =2,解得x =3. 三、解答题7.求下列各式中x 的值:(1)x =log 224; (2)x =log 93; (3)x =71-log 75;(4)log x 8=-3; (5)log 12x =4.[解析] (1)由已知得(22)x=4, ∴2-x2 =22,-x 2=2,x =-4.(2)由已知得9x=3,即32x=312 .∴2x =12,x =14.(3)x =7÷7log 75=7÷5=75.(4)由已知得x -3=8, 即(1x )3=23,1x =2,x =12. (5)由已知得x =(12)4=116.8.设x =log 23,求23x-2-3x2x -2-x 的值.[解析] 由x =log 23,得2-x =13,2x=3,∴23x-2-3x2x -2-x =2x3-2-x 32x -2-x =(2x )2+1+(2-x )2=32+1+(13)2=919.。