6-7__定积分在经济学中的应用汇总
- 格式:ppt
- 大小:613.50 KB
- 文档页数:32
定积分在医学和经济学中的应用
定积分在医学和经济学中的应用
一、定积分在医学的应用
1、采用定积分法求出体积密度的温度指数
定积分法是一种用来衡量体积密度的温度指数的有效方法,它通过推算出物体某一温度下的体积密度,再用这个温度值求出体积密度的温度指数。
2、定积分法求解医学中人体的各种比热容和抵抗力
定积分法可以帮助医学研究人员求解出人体各种比热容和抵抗力,这些数据可以用于研究人体对环境变化的反应。
3、定积分用于细胞学研究
定积分法可以用于细胞学研究,其中,可以推算出细胞的朗道数量。
朗道数量是衡量细胞活动能力的重要标志,对于病理的预测和研究有重要意义。
二、定积分在经济学中的应用
1、获得投资回报率和投资风险的指标
定积分法可以用来衡量一项投资的回报率,以及投资风险的大小。
如果某个项目的回报率较高,可以判定这个投资项目较为稳健,而投资风险较低。
2、分析市场消费者群体行为模式
定积分法可以用来分析市场消费者群体的行为模式,可以推算出消费者群体的消费习惯,再根据消费习惯进行市场细分。
3、定积分法求解企业的长期成长趋势
定积分法可以用来求解企业的长期成长趋势,可以精确进行企业财务成绩的预测,从而为企业管理决策提供依据。
定积分在经济中的应用一、由经济函数的边际,求经济函数在区间上的增量根据边际成本,边际收入,边际利润以及产量x 的变动区间[,]a b 上的改变量(增量)就等于它们各自边际在区间[,]a b 上的定积分:()()()ba Rb R a R x dx '-=⎰ (1)()()()baC b C a C x dx '-=⎰ (2)()()()baL b L a L x dx '-=⎰ (3)例 1 已知某商品边际收入为0.0825x -+(万元/t ),边际成本为5(万元/t ),求产量x 从250t 增加到300t 时销售收入()R x ,总成本C ()x ,利润()I x 的改变量(增量)。
解 首先求边际利润()()()0.082550.0820L x R x C x x x '''=-=-+-=-+所以根据式(1)、式(2)、式(3),依次求出:300250(300)(250)()R R R x dx '-=⎰300250(0.0825)x dx =-+⎰=150万元300300250250(300)(250)()C C C x dx dx '-==⎰⎰=250万元300300250250(300)(250)()(0.0820)L L L x dx x dx '-==-+⎰⎰=-100万元二、由经济函数的变化率,求经济函数在区间上的平均变化率设某经济函数的变化率为()f t ,则称2121()t t f t dtt t -⎰为该经济函数在时间间隔21[,]t t 内的平均变化率。
例2 某银行的利息连续计算,利息率是时间t (单位:年)的函数:()0.08r t =+求它在开始2年,即时间间隔[0,2]内的平均利息率。
解 由于22()(0.08r t dt dt =+⎰⎰20.160.010.16=+=+所以开始2年的平均利息率为2()0.0820r t dtr ==+-⎰0.094≈例3 某公司运行t (年)所获利润为()L t (元)利润的年变化率为()310L t '=⨯/年)求利润从第4年初到第8年末,即时间间隔[3,8]内年平均变化率解 由于3885852333()310210(1)3810L t dt t '=⨯=⨯⋅+=⨯⎰⎰所以从第4年初到第8年末,利润的年平均变化率为853()7.61083L t dt '=⨯-⎰(元/年)即在这5年内公司平均每年平均获利57.610⨯元。
定积分在经济中的应用一、由经济函数的边际,求经济函数在区间上的增量根据边际成本,边际收入,边际利润以及产量x 的变动区间[,]a b 上的改变量(增量)就等于它们各自边际在区间[,]a b 上的定积分:()()()ba Rb R a R x dx '-=⎰ (1) ()()()ba Cb C a C x dx '-=⎰ (2) ()()()ba Lb L a L x dx '-=⎰ (3) 例1 已知某商品边际收入为0.0825x -+(万元/t ),边际成本为5(万元/t ),求产量x 从250t 增加到300t 时销售收入()R x ,总成本C ()x ,利润()I x 的改变量(增量)。
解 首先求边际利润()()()0.082550.0820L x R x C x x x '''=-=-+-=-+所以根据式(1)、式(2)、式(3),依次求出:300250(300)(250)()R R R x dx '-=⎰300250(0.0825)x dx =-+⎰=150万元 300300250250(300)(250)()C C C x dx dx '-==⎰⎰=250万元 300300250250(300)(250)()(0.0820)L L L x dx x dx '-==-+⎰⎰=-100万元二、由经济函数的变化率,求经济函数在区间上的平均变化率 设某经济函数的变化率为()f t ,则称2121()t t f t dt t t -⎰ 为该经济函数在时间间隔21[,]t t 内的平均变化率。
例2 某银行的利息连续计算,利息率是时间t (单位:年)的函数:()0.08r t =+求它在开始2年,即时间间隔[0,2]内的平均利息率。
解 由于2200()(0.08r t dt dt =+⎰⎰20.160.010.16=+=+所以开始2年的平均利息率为20()0.0820r t dtr ==+-⎰0.094≈例3 某公司运行t (年)所获利润为()L t (元)利润的年变化率为()310L t '=⨯/年)求利润从第4年初到第8年末,即时间间隔[3,8]内年平均变化率解 由于3885852333()310210(1)3810L t dt t '=⨯=⨯⋅+=⨯⎰⎰所以从第4年初到第8年末,利润的年平均变化率为853()7.61083L t dt'=⨯-⎰(元/年)即在这5年内公司平均每年平均获利57.610⨯元。
积分在经济问题中的应用主要有以下几个方面:
一、货币政策
积分可以作为货币政策的一种手段来调节经济,通过提高或降低基准利率来影响贷款市场,从而调节经济的走势。
二、财政政策
积分可以用来调节财政政策,比如减税、增税等,通过调节财政政策来影响消费者的支出、投资活动及国家的财政收入。
三、货币供应
积分可以用来调节货币供应,即调节中央银行发行货币的数量,以影响经济的发展趋势。
四、汇率政策
积分也可以用来调节汇率政策,比如调整国家的汇率
政策,以促进国际贸易的发展,影响国内外市场的竞争力。
定积分在经济学中的应用定积分在经济学中的应用摘要:定积分是微积分中重要内容,它是解决许多实际问题的重要工具,在经济学中有着广泛的应用,而且内容十分丰富。
文中通过具体事例研究了定积分在经济学中的应用,如求总量生产函数、投资决策、消费者剩余和生产者剩余等方面的应用。
关键词:定积分;原函数;边际函数;最大值最小值;总量生产函数;投资;剩余引言积分学是微分学和积分学的总称。
由于函数概念的产生和应用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。
微积分学这门学科在数学发展中的地位是十分重要的。
可以说是继欧氏几何后,全部数学中最大的一个创造。
微积分是与应用联系着并发展起来的。
定积分推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。
并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展。
本文将重点介绍定积分在经济学中的应用。
1 利用定积分求原经济函数问题在经济管理中, 由边际函数求总函数( 即原函数) , 一般采用不定积分来解决,或求一个变上限的定积分。
可以求总需求函数,总成本函数, 总收入函数以及总利润函数。
设经济应用函数u( x ) 的边际函数为)(x u ' ,则有dx x u u x u x)()0()(0⎰'+=例1 生产某产品的边际成本函数为100143)(2+-='x x x c , 固定成本C (0) =10000, 求出生产x 个产品的总成本函数。
解 总成本函数dx x c c x c x ⎰'+='0)()0()(=dx x x x )100143(1000002+-+⎰=x x x x 02_3|]1007[10000++ =x x x 10071000023+-+2 利用定积分由变化率求总量问题如果求总函数在某个范围的改变量, 则直接采用定积分来解决。
定积分在经济学中的应用摘要:定积分是微积分中重要内容,它是解决许多实际问题的重要工具,在经济学中有着广泛的应用,而且内容十分丰富。
文中通过具体事例研究了定积分在经济学中的应用,如求总量生产函数、投资决策、消费者剩余和生产者剩余等方面的应用。
关键词:定积分;原函数;边际函数;最大值最小值;总量生产函数;投资;剩余引言积分学是微分学和积分学的总称。
由于函数概念的产生和应用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。
微积分学这门学科在数学发展中的地位是十分重要的。
可以说是继欧氏几何后,全部数学中最大的一个创造。
微积分是与应用联系着并发展起来的。
定积分推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。
并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展。
本文将重点介绍定积分在经济学中的应用。
1 利用定积分求原经济函数问题在经济管理中, 由边际函数求总函数( 即原函数) , 一般采用不定积分来解决,或求一个变上限的定积分。
可以求总需求函数,总成本函数, 总收入函数以及总利润函数。
设经济应用函数u( x ) 的边际函数为)(x u ' ,则有dx x u u x u x)()0()(0⎰'+=例1 生产某产品的边际成本函数为100143)(2+-='x x x c , 固定成本C (0) =10000, 求出生产x 个产品的总成本函数。
解 总成本函数dx x c c x c x ⎰'+='0)()0()(=dx x x x )100143(1000002+-+⎰=x x x x 02_3|]1007[10000++ =x x x 10071000023+-+2 利用定积分由变化率求总量问题如果求总函数在某个范围的改变量, 则直接采用定积分来解决。
论定积分在经济中的应⽤2019-09-08摘要:随着社会主义市场经济的不断发展,如何运⽤定积分的分析⽅法与现代经济建设中的问题分析相结合显得尤为重要,因⽽定积分在经济管理中有了⼴泛的应⽤。
⽂章对定积分在经济分析中的应⽤,进⾏详细探讨。
关键词:定积分数学模型经济分析应⽤中图分类号:F224 ⽂献标识码:A⽂章编号:1004-4914(2012)01-075-02随着社会主义市场经济体系和现代企业制度的建⽴,经济数学成为经济分析中的重要⼯具,尤其定积分在企业管理和经济学中有着多种应⽤,它的应⽤已经涉及到各种经济量的总量、总成本、总收⼊和总利润以及它们之间的关系。
本⽂从定积分⼯具出发,以数学建模的形式分析经济活动中的问题。
⼀、定积分与数学模型概念及其意义2.数学模型的概念。
数学模型是对实际问题的⼀种数学表述,是对于⼀个特定的对象为了⼀个特定⽬标,根据特有的内在规律,作出⼀些必要的简化假设,运⽤适当的数学⼯具,得到的⼀个数学结构。
数学不仅是⼀门理论科学,也是⼀门应⽤⼴泛的应⽤科学,没有数学模型的辅助分析,任何的定性分析都还有⼀定的不⾜。
在国际上,数学建模的分析结果更让⼈相信,⽇本更是如此,他们对问题的分析总是要通过量化来论证,定性分析被放到次要的位置。
实践也证明,数学模型对经济问题所作的定量分析是严谨的和慎密的,尤其在于重要经济的时间和数量等量化问题的决策上,是⾮常科学的。
3.在经济中的意义。
数学是⼀门⾼度抽象的理论性学科,⼜是⼀门应⽤⼴泛的⼯具性学科,如何将抽象的数学理论应⽤到具体的实践中去,以使数学这门古⽼、严谨、深刻的经典科学和现代数学理论找到崭新的应⽤市场,这在⾼等数学的教学过程以及经济学的研究过程中,都是⾄关重要的。
实践证明,⽤数学模型的⽅法对经济问题所作的定性分析和定量分析是严谨的、慎密的,可信的,⽐较直观、严谨,反应迅速,具有重要的意义。
⼆、定积分在现代企业经济管理中的应⽤定积分在企业管理和经济中有着多种应⽤,都要涉及到各种经济量的总量、平均值等问题得到充分的应⽤。
定积分在经济学中的应用"定积分在经济学中的应用"定积分是数学中的一种重要概念,它通常用来解决连续函数的积分问题。
在经济学中,定积分也有着广泛的应用。
首先,定积分可以用来解决经济问题。
例如,在解决资本的无效配置问题时,可以使用定积分来求出资本的最优配置方案。
其次,定积分也可以用来解决生产函数问题。
通过对生产函数的定积分,可以得出生产总量与资本、劳动的函数关系,为企业决策提供参考。
此外,定积分还可以用来解决成本函数问题。
对成本函数进行定积分,可以得出成本总量与生产量的函数关系,为企业制定成本管理策略提供依据。
另外,定积分还可以用来解决供求函数问题。
通过对供求函数进行定积分,可以得出市场供需平衡的价格区间,为市场调节提供参考。
此外,定积分还可以用来解决效用函数问题。
对效用函数进行定积分,可以得出个体的效用曲线,为决策者制定1. 定积分的概念及其求法"1. 定积分的概念及其求法"定积分是数学中的一种重要概念,它是指在给定的区间内对一个连续函数的定义域进行积分的过程。
首先,定义定积分的概念。
设函数f(x)在区间[a,b]上连续,则函数f(x)在区间[a,b]上的定积分,记作∫a^b f(x) dx,称为函数f(x)在区间[a,b]上的定积分。
其次,介绍定积分的求法。
常用的求定积分的方法有两种,一种是定义求积公式法,另一种是定积分的简单逼近法。
定义求积公式法是指根据函数f(x)的性质,使用一些特殊的函数求出f(x)在区间[a,b]上的定积分。
例如,当f(x)为常数时,f(x)在区间[a,b]上的定积分就是f(x)的常数值乘以区间[a,b]的长度。
定积分的简单逼近法是指使用一些简单的函数来逼近函数f(x),然后求出这些简单函数的定积分,最后用这些定积分的和来近似求出f(x)在区间[a,b]上的定积分。
常用的简单逼近法有梯形公式法和 Simpson 公式法。
总之,定积分是数学中的一种重要概念2. 定积分在解决经济问题中的应用"2. 定积分在解决经济问题中的应用"定积分是数学中的一种重要概念,它在解决经济问题中也有着广泛的应用。