极软岩洞室特大变形特性分析及应对措施
- 格式:pdf
- 大小:301.94 KB
- 文档页数:3
防治问题在隧道软岩大变形的探讨摘要:千枚岩等软弱围岩引发的大变形是隧道施工中的难题,国内外对其形成机理及对策已有较多研究。
拉林铁路拍拉隧道地处藏南山谷地区,地震活动频繁,岩层为炭质绢云千枚岩夹长石石英粉砂岩且有偏压、断层、富水影响,施工难度较大。
为了安全快速的完成施工任务,我单位在预设计图纸的指导下,优化设计参数和施工工艺,加强隧道超前地质预报和监控量测,圆满地完成了施工任务,为以后遇到类似的施工问题提供了宝贵的参考指导。
关键词:防治问题;软岩;大变形;探讨伴随着我国铁路建设的不断发展和完善,目前对于铁路建设中存在隧道施工穿越软岩大变形地层已能够有效处理。
在施工隧道时穿越高地应力软岩,容易使围岩发生较大程度的变形,加大隧道施工的难度。
软岩大变形隧道处理风险大、工期时间长、治理费用高。
对此,采用隧道施工变形控制方法可以有效地解决以上情况,提高围岩的坚固性和稳定性,为高质量的建成隧道创造条件[1]。
笔者将在下文中以拍拉隧道工程施工为例,详细分析防治问题在隧道软岩大变形的探讨。
一、施工情况隧道进口工区在当年雨季施工至D3K224+260~D3K224+365段预计中等大变形段时发生了较大变形,主要为拱顶严重下沉,最大变形值42cm,边墙强烈内挤,喷射混凝土局部开裂,压碎脱落,格栅钢架扭曲变形,结合监控量测资料分析其特征主要为:变形量大,初始变形速率大且不易收敛,变形持续时间长,变形破坏不均匀。
二、隧道软岩大变形分析(一)岩性拍拉隧道D3K224+260~D3K+365段通过粉砂质绢云千枚岩夹变长石石英粉砂岩地层,围岩本身自承重能力差、自稳时间短、来压快、容易变形,且变形量大、快、时间长。
千枚岩隧道的自稳时间仅为几十分钟到几个小时,变形速度从5~100mm/d不等,变形持续时间一般为25~60d。
(二)应力影响受隧道埋深、构造应力和集中应力作用的影响,隧道的围岩应力水平很高,岩体内残余应力较大,这就使得隧道四面受压,不仅有顶压、侧压,还有底压,容易发生底鼓等变形。
隧道软岩大变形处治与控制方法探讨【摘要】某公路隧道穿越软岩破碎带时发生大变形,本文在分析大变形的原因的基础上总结出了软岩大变形防治措施,优化了支护参数,取得了良好的效果。
【关键词】隧道施工;软岩变形;防治措施1、工程概况某特长公路隧道设计为分离式单向双车道,隧道左线6848m,右线全长6868m,隧道洞深最大埋深470m,线间距42m,施工时从隧道两端掘进。
未设斜井及竖井等辅助坑道。
施工中均采用复合衬砌,钻爆法施工,该隧道地处祁吕弧形断褶带等构造体系的交汇部分,地处祁连多字型构造的槽地,隧道所处区段构造单元属安远断坳,被夹持于古浪断褶带与乌鞘岭断褶带之间,隧道途经安远拉分盆地、西北缘活动断裂(F9)大断层构成的“挤压构造带”,在此带中分布的地层为线红色,淡红色砂岩、砾岩。
粉砂岩、页岩、碳质页岩,灰岩加碳质页岩交汇互层,三叠系砂岩夹页岩及薄层煤,及断层带中的构造碎裂岩,泥砾岩层、工程地质条件复杂,隧道掘进至ZK2403+365、YK2403+385薄层煤、F9次生断裂带等软弱围岩地段时发生了大变形,单侧最大变形达到600mm,见表1)致使初期支护破坏并严重侵入隧道衬砌净空。
为确保隧道衬砌净空,将初砌支护开裂。
未侵占二衬段落进行加固处理,对已侵占二衬的段落全部或部分拆除重做,并对该变形段落的二次衬砌钢筋进行加强。
对还未施工段落的初期支护进行加强,工程严重受阻,进度滞后。
因此,分析隧道软岩围岩大变形原因,及大变形防治技术对隧道施工具有重要意义。
2、软岩大变形整治针对该隧道软岩大变形情况,经共同研究,并吸取国内外整治大变形的经验,提出如下整治措施:2.1用8m长Φ28自进式注浆锚杆对两侧拱腰及边墙部进行加固.间距75cm (纵向)×100(环)拱墙范围每环14根,锚杆长度8m。
该锚杆自带钻头、在发生坍孔时仍能钻进孔位,且杆体为中空、水泥浆从锚杆头涌出,尾部带有止浆塞,可保证注浆饱满,注浆压力可达到 2.0Mpa,浆液压入岩层裂隙范围大,加固围岩的效果优于普通锚杆。
隧道软岩大变形应急预案1. 背景隧道工程是现代城市交通建设的重要组成部分,而软岩地层在隧道工程中被广泛遇到。
然而,软岩地层的不稳定性和易变形性使得软岩隧道在施工和运营过程中存在一定的风险。
为了应对隧道软岩大变形事件,制定一套有效的应急预案是至关重要的。
2. 目标本文件旨在提供一套全面且实用的隧道软岩大变形应急预案,以确保在发生大变形事件时能够有效应对,最大程度减少损失。
3. 识别风险在制定应急预案之前,我们需要对隧道软岩大变形事件的潜在风险进行全面的识别。
以下是一些常见的隧道软岩大变形风险: - 地质变形:软岩地层容易发生地质变形,如地裂缝、岩体滑移等。
- 围岩开裂:软岩地层的围岩容易发生开裂现象,从而导致隧道结构的损坏。
- 地下水涌入:由于软岩地层的渗透性较大,地下水涌入隧道的风险较高,可能导致隧道失稳。
- 隧道变形:隧道内的支护结构和土体可能出现变形,增加了隧道的风险。
4. 应急预案4.1 现场监测与报警系统为了及时掌握隧道变形情况,安装一套完善的现场监测与报警系统是必要的。
该系统应包括以下内容: - 地震监测仪:用于感知地震对隧道结构的影响,及时报警。
- 地质变形监测仪:用于监测地层的变形情况,如地裂缝、滑移等,及时预警并采取相应措施。
- 沉降监测仪:用于监测隧道的沉降情况,预警可能引起结构损坏的情况。
- 支护结构监测仪:用于监测隧道内支护结构的变形情况,及时发现问题并采取补救措施。
4.2 预警机制与应急响应在监测到隧道软岩大变形的预警信号后,需要建立一套完善的预警机制与应急响应措施,包括以下内容: - 预警信号接收:建立24小时值班制度,及时接收和处理预警信号。
- 应急响应团队:组建一支应急响应团队,人员包括地质专家、结构工程师、隧道管理人员等,确保能够迅速响应和应对突发事件。
- 预警级别划分:根据不同的预警信号级别,制定相应的行动计划和措施。
- 疏散和救援方案:制定隧道疏散和救援方案,确保人员的安全和福祉。
隧道软岩大变形施工技术隧道施工是现代城市建设中不可或缺的一部分,而软岩地层的隧道施工则是一项技术难度较高的工程。
软岩地层的特点是强度低、变形大,因此在软岩地层中施工隧道需要采取特殊的技术手段,以确保施工的安全和顺利进行。
本文将介绍隧道软岩大变形施工技术的相关内容。
一、软岩地层特点软岩地层是指岩石中固结程度较差、抗压强度较低的一类地层。
软岩地层的主要特点包括:岩体强度低,岩石容易破碎;岩体的固结程度较差,容易发生滑坡、坍塌等地质灾害;岩体中含有大量的地下水,地下水的压力对隧道施工造成很大的影响。
二、隧道软岩大变形施工技术1. 地质勘探与预测在隧道软岩大变形施工前,必须进行详细的地质勘探和预测工作。
通过地质勘探,了解软岩地层的分布、厚度、倾角等信息,为后续的施工工作提供准确的地质数据。
2. 支护技术软岩地层中,隧道的支护工作是非常重要的一环。
常用的支护技术包括喷锚、喷浆、预应力锚杆等。
喷锚技术通过在软岩地层中注入混凝土,增加地层的强度,提高隧道的稳定性。
喷浆技术则是通过注入浆液,填充地层的裂缝和空隙,增强地层的连续性。
预应力锚杆则是在软岩地层中埋设钢筋,并施加预应力,增加地层的承载能力。
3. 掘进技术软岩地层的掘进工作需要采用合适的机械设备和施工方法。
常用的掘进机械包括盾构机、液压钻头等。
盾构机是一种专门用于软岩地层中的掘进设备,具有高效、安全的特点。
液压钻头则是通过注入高压液体,将软岩地层冲击破碎,实现隧道的掘进。
4. 预防措施在软岩地层的隧道施工中,需要采取一系列的预防措施,以确保施工的安全性。
例如,应加强对地层的监测,及时掌握地层的变形和水位变化情况;加强对施工人员的培训,提高他们的安全意识和应急处理能力;加强对施工设备的维护和检修,确保设备的正常运行,减少事故的发生。
三、隧道软岩大变形施工技术的应用案例1. 某城市地铁隧道施工在某城市地铁隧道施工中,软岩地层的掘进工作采用了盾构机和液压钻头相结合的方式。
隧道软岩大变形是指隧道在施工过程中,由于地质条件复杂、施工技术不当等因素导致隧道围岩发生较大变形的现象。
为确保隧道施工安全,预防和减少软岩大变形对隧道工程的影响,特制定本预案。
二、预案目的1. 提高隧道施工人员的安全意识,加强隧道软岩大变形的预防和控制。
2. 明确隧道软岩大变形的应急响应流程,确保在发生紧急情况时能够迅速、有效地进行处置。
3. 最大限度地减少软岩大变形对隧道工程的影响,保障工程进度和质量。
三、预案适用范围本预案适用于隧道施工过程中发生的软岩大变形应急情况。
四、应急组织机构及职责1. 成立隧道软岩大变形应急指挥部,负责组织、协调和指挥隧道软岩大变形应急工作。
2. 应急指挥部下设以下小组:(1)现场处置组:负责现场应急响应和处置工作。
(2)技术支持组:负责提供技术支持,对隧道软岩大变形原因进行分析,制定应对措施。
(3)物资保障组:负责应急物资的采购、储备和调配。
(4)信息联络组:负责应急信息的收集、整理和上报。
(5)安全防护组:负责现场安全防护措施的落实。
五、应急响应流程1. 发生软岩大变形时,现场处置组应立即向应急指挥部报告。
2. 应急指挥部接到报告后,立即启动应急预案,组织相关小组开展应急处置工作。
3. 现场处置组对变形原因进行分析,采取以下措施:(1)暂停隧道施工,确保人员安全。
(2)对变形区域进行监测,掌握变形情况。
(3)对变形区域进行加固处理,防止进一步变形。
(4)对施工方案进行调整,优化施工工艺。
4. 技术支持组对变形原因进行分析,提出以下建议:(1)优化隧道施工方案,调整施工参数。
(2)采用新技术、新材料、新工艺,提高隧道围岩稳定性。
(3)加强监测,实时掌握隧道变形情况。
5. 物资保障组根据应急指挥部要求,及时调配应急物资。
6. 信息联络组将应急情况及时上报上级主管部门。
7. 安全防护组对现场进行安全防护,确保人员安全。
六、应急响应级别1. Ⅰ级应急响应:发生重大软岩大变形,严重影响隧道施工进度和质量,可能对人员生命财产安全造成威胁。
软岩大变形机理和处治方法的研究摘要:大变形问题在隧道修建过程中非常常见,目前对该问题的研究也较多,因此存在不同的处治思路和方法。
现阶段此类问题的主要处治原则是加强围岩、控制变形。
针对火山隧道出口端K397+220-K396+880(ZK397+365-ZK396+860)段,由于岩体稳定性差,隧道层间结合力差,自稳性差。
基于此,本文通过分析软岩大变形的分类与发生机理,结合实际案例提出相应的处治方法,旨在降低软岩大变形给施工带来的不良影响。
关键词:围岩大变形;大变形机理;处治方法引言近年来,随着地下工程建设的快速发展,涌现出大量深埋长大隧道。
众所周知,地球的地壳运动始终在运动,从未停歇,46亿多年来,火山岩、沉积岩、变质岩在地壳的运动中相互交织融合形成软硬不均、高低不平的江河湖海、平川大山。
软质岩是多形态岩性中的一种,然而,隧道掘进遇到软岩则是一道难题。
复杂的工程地质条件与特殊的围岩力学性质致使隧道围岩大变形问题十分突出,严重制约隧道工程的施工建设安全与长期运营稳定。
为采取精准有效的应对措施,对围岩大变形加以防控,需要认真分析软岩大变形的机理并提出相应的处治方法,保障施工安全。
1.构造软岩大变形分类与发生机理1.1断层型大变形断层型大变形主要发生在区域断层带,围岩一般处于较高应力状态。
在隧道开挖前,断层中破碎带在较高围压的作用下紧密闭合。
隧道开挖后,断层中破碎带在水平构造应力与重力的时效作用下,发生塑性挤出、结构流变,最终发展为断层型大变形。
1.2碎裂型大变形碎裂型大变形是发生在构造节理发育带的构造软岩大变形,如节理密集带、褶皱核部及转折端。
大变形发生段围岩呈碎裂状,在处于原岩应力状态时受到高围压的作用,整体较稳定。
隧道开挖后,围岩应力重分布,结构面之间发生错动,碎裂的结构体产生滑移,围岩整体强度大幅度下降,持续扩容松弛,有显著结构流变体的特征,在强烈构造应力的作用下发展为大变形。
1.3小夹角型大变形小夹角型大变形是主要发生在顺层和缓倾岩层中,以隧道轴线与岩层面小角度相交为特点的构造软岩大变形。
软岩隧道大变形特征与支护对策研究摘要:对某工程大变形问题进行研究,分析了隧道施工过程中的软岩大变形特征,基于软岩大变形特征提出了相对应的支护体系,对类似项目提供参考。
关键词:软岩大变形;隧道施工;支护体系。
1.引言软岩隧道建设过程中极易遇到大变形问题,近年来针对于软岩隧道大变形问题的研究越来越多,其中,周伟涛[1]结合现场变形特征,制定了可行的施工方案,提出了针对于单线隧道大变形双层套拱初期支护的施工技术方法。
张海太[2]研究了薄层炭质板岩地层隧道大变形特征及其相对应的支护方法。
冉飞[3]利用数值模拟手段研究了高地应力条件下软岩隧道大变形的支护技术,提出了解决软岩隧道大变形问题的合理方案;王英帆[4]基于高地应力软岩隧道的大变形监测数据来制定适用的支护体系。
弱胶结软岩隧道大变形现象突出,高发征[5]通过数值模拟手段分析了六盘山隧道洞口大变形特征,获得了掘进过程中隧道断面位移变化特征。
本文通过分析隧道大变形特征,基于大变形特征来选取合适的支护方案。
2.地质概况隧址区属于高山山原地貌。
隧道进出口微地貌为山体斜坡地貌。
隧道进口坡体地形较平缓,坡度为20~30°;隧道出口坡体地形陡峭,坡度为15~30°。
地形整体起伏较大,隧道最大埋深约247m。
进口与等高线近斜交,出口与等高线近正交。
地层有第四系全新统地层及三叠系上统西康群侏倭组(T3zh)、三迭系上统西康群新都桥组(T3x)板岩、页岩及板岩、页岩互层。
隧址区新构造运动以上升运动为主,新构造运动微弱。
3.隧道大变形特征分析3.1.案例一隧道围岩岩性以板岩、页岩、千枚岩等软岩或极软岩为主,岩层破碎,节理裂隙发育,地下水发育,围岩软化效应明显,产生形变压力,围岩持续变形造成支护变形、开裂。
隧道出口端变形部位主要在路线右侧,变形时间集中在刚立架3天内,以及开挖中下导接腿(三台阶法)过程中,仰拱成环后变化较小。
进口段侵限部位无规律性,变形一般出现在围岩极破碎或出现过塌方的位置。
论防治隧道软岩大变形的技术研究摘要:随着我国社会的不断飞速发展,人们对隧道施工技术提供了更多的要求,尤其是针对隧道修筑过程当中的一些高地应力区,其非常容易造成隧道软岩大变形等诸多问题的出现。
因此,研究防治隧道软岩大变形的技术就具有非常重大的现实意义。
本文主要分析了隧道软岩大变形的原因,提出了软岩隧道大变形防治的一些相关的措施。
关键词:防治;隧道软岩;大变形;技术研究前言目前,随着我国铁路建筑事业的不断快速发展,人们对铁路建设的要求的关注也越来越多,其要求也越来越高。
但是,我国现阶段铁路建设的隧道也随着人们生活要求的提高,以及社会的迅猛发展也越来越多,并且隧道软岩大变形的问题在我国铁路建设的过程当中也是经常的发生,为了解决铁路建设过程之中的隧道软岩大变形等问题就显得至关重要,也是目前我国铁路建设过程之中一个迫在眉睫、尚待解决的关键性问题。
由于隧道软岩大变形会导致支护系统的进一步破坏,甚至会发生隧道坍塌等现象,进而严重影响隧道的安全性和施工进度。
通过本文,笔者一方面希望能够起到一个抛砖引玉的作用,另一方面希望能够给相关人员起到一定的指导作用。
一、隧道软岩大变形原因分析1.1地应力场对隧道变形的影响隧道的横截面积一般比较的大,使得隧道地段处的应力也很大。
尤其是对于软岩隧道而言,其地应力场对隧道变形的影响更加明显。
软岩隧道通过变形而形成炭质岩,进而容易产生严重的变形,还会导致隧道岩体出现破坏现象。
因此,高地应力是隧道发生变形的主要前提。
1.2地下水对隧道变形的影响地下水的存在对隧道岩体会产生静力作用,进而会导致隧道发生变形。
地下水对岩体会造成损伤,主要是会导致岩体的强度下降。
同时,对于页岩等岩体,一旦遇到水就会出现软化等现象,这更加会对岩体造成损伤。
隧道局部位置处的水也会降低岩体的强度,进而就会加剧隧道的变形。
因此,地下水的存在是隧道发生变形的主要内在原因之一,也是最主要的原因之一。
1.3围岩强度对隧道变形的影响隧道软岩主要由砂质页岩、粉砂页岩和炭质页岩等诸多物质组成,其中,围岩对隧道的强度也具有一定的影响。
隧道软岩大变形的防治技术Xx(xxxxx大学,xx市000000)摘要:深埋隧道通过软岩和断层带时,在高的地应力和富水条件下通常产生大变形。
这种隧道围岩变形量大,而且位移速度也很大,一般可以达到数十厘米到数米,如果不支护或支护不当,收敛的最终趋势是隧道将被完全封死,如果发生在永久衬砌构筑以前,往往表现为初期支护严重破裂、扭曲,挤出面侵入限界。
这种大变形危害巨大,严重影响施工工期或者线路正常运营,而且整治费用高昂。
关键词:高地应力;软岩;大变形;防治措施引言:修建中的某隧道位于高地应力区,局部地段地下水发育,易产生软岩大变形。
在分析隧道围岩发生大变形原因的基础上,从设计和施工两方面讨论了隧道大变形的防治措施,优化了支护参数,取得了良好的效果。
1. 软弱围岩隧道地质特征软弱围岩一般是指岩质软弱、承载力低、节理裂隙发育、结构破碎的围岩,工程地质特点有:(1)岩体破碎松散、粘结力差:一般为土层、岩体全风化层、挤压破碎带等构成的围岩,由于结构破碎松散,岩体间的粘结力差,开挖洞室后,仅靠颗粒间的摩擦效应和微弱胶结作用成拱,这类岩体极不稳定,尤其是在浅埋地段容易发生坍塌冒顶。
(2)围岩强度低、遇水易软化:一般以页岩、泥岩、片岩、炭质岩、千枚岩等为代表的软质岩地层,由于其强度低、稳定性差,开挖暴露后易风化、遇水易软化,尤其是深埋地段受高应力影响容易发生塑性变形,造成洞室内挤。
(3)岩体结构面软弱、易滑塌:主要是存在于受结构面切割影响严重的块状岩体中,由于结构面的粘结强度较低,开挖后周边岩体极易沿结构面产生松弛、滑移和坠落等变形破坏现象。
2.发生围岩大变形的地质条件及隧道围岩大变形发生机理大变形目前还没有一个统一的定义,目前有的学者提出根据围岩变形是否超支护的预留变形量来定义大变形,即在隧道,如果初期支护发生了大于25 cm(单线隧道) 和50cm(双线隧道)的位移,则认为发生了大变形。
姜云、李永林等将隧道围岩大变形定义为:隧道及地下工程围岩的等一种具有累进性和明显时间效应的塑性变形破坏,它既区别于岩爆运动脆性破坏,又区别于围岩松动圈中受限于一定结构面控制的坍塌、滑动等破坏。