绥化市2014年中考数学试题及答案(图片版)
- 格式:doc
- 大小:1.37 MB
- 文档页数:12
二○二二年绥化市初中毕业学业考试数学试题一、单项选择题(本题共12个小题,每小题3分,共36分)1. 化简12-,下列结果中,正确的是( ) A. 12 B. 12- C. 2 D. -2【答案】A【解析】【分析】根据绝对值的运算法则,求出绝对值的值即可. 【详解】解:1122-= 故选:A .【点睛】本题考查根据绝对值的意义求一个数的绝对值,求一个数的绝对值:①当a 是正数时,│a │=a ;②当a 是负数时,│a │=-a ;③当a =0时,│0│=0.掌握求一个数的绝对值的方法是解答本题的关键.2. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D. 【答案】D【解析】【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故本选项不符合题意; B .是轴对称图形,不是中心对称图形,故本选项不符合题意;C .不是轴对称图形,是中心对称图形,故本选项不符合题意;D .既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D .【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3. 下列计算中,结果正确的是( )A. 22423x x x +=B. ()325x x = 2=- D.2=±【答案】C【解析】【分析】根据合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,即可一一判定.【详解】解:A.22223x x x +=,故该选项不正确,不符合题意;B.()326x x =,故该选项不正确,不符合题意;2=-,故该选项正确,符合题意;2=,故该选项不正确,不符合题意;故选:C . 【点睛】本题考查了合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,熟练掌握和运用各运算法则是解决本题的关键.4. 下列图形中,正方体展开图错误的是( )A. B. C. D.【答案】D【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】D 选项出现了“田字形”,折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,A 、B 、C 选项是一个正方体的表面展开图.故选:D .【点睛】此题考查了几何体的展开图,只要有“田”“凹”字的展开图都不是正方体的表面展开图.5. 2x -+在实数范围内有意义,则x 的取值范围是( )A. 1x >-B. 1x -…C. 1x -…且0x ≠D. 1x -…且0x ≠【答案】C【解析】 【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可;【详解】解:由题意得:x +1≥0且x ≠0,∴x ≥-1且x ≠0,故选: C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键. 6. 下列命题中是假命题的是( )A. 三角形的中位线平行于三角形的第三边,并且等于第三边的一半B. 如果两个角互为邻补角,那么这两个角一定相等C. 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角D. 直角三角形斜边上的中线等于斜边的一半【答案】B【解析】【分析】利用三角形的中位线定理、邻补角性质、切线长定理以及直角三角形斜边上的中线的性质分别判断后即可确定正确的选项.【详解】解:A. 三角形的中位线平行于三角形的第三边,并且等于第三边的一半,是真命题,故此选项不符合题意;B. 如果两个角互为邻补角,那么这两个角不一定相等,故此选项是假命题,符合题意;C. 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角,是真命题,故此选项不符合题意;D. 直角三角形斜边上的中线等于斜边的一半,是真命题,故此选项不符合题意; 故选:B【点睛】考查了命题与定理的知识,解题的关键是了解三角形的中位线定理、邻补角性质、切线长定理以及直角三角形斜边上的中线的性质.7. 如图,线段OA 在平面直角坐标系内,A 点坐标为()2,5,线段OA 绕原点O 逆时针旋转90°,得到线段OA ',则点A '的坐标为( )A. ()5,2-B. ()5,2C. ()2,5-D. ()5,2-【答案】A【解析】【分析】如图,逆时针旋转90°作出OA ',过A 作AB x ⊥轴,垂足为B ,过A '作A B x ''⊥轴,垂足为B ',证明()A OB BOA AAS '∠ ≌,根据A 点坐标为()2,5,写出5AB =,2OB =,则5OB '=,2A B '=,即可写出点A 的坐标.【详解】解:如图,逆时针旋转90°作出OA ',过A 作AB x ⊥轴,垂足为B ,过A '作A B x ''⊥轴,垂足为B ',∴90A BO ABO ∠'=∠=︒,OA OA '=,∵18090A OB AOB A OA '∠+∠=︒-∠'=︒,90AOB A ∠+∠=︒,∴A OB A ∠'=∠,∴()A OB BOA AAS '∠ ≌,∴OB AB '=,A B OB '=,∵A 点坐标为()2,5,∴5AB =,2OB =,∴5OB '=,2A B '=,∴()5,2A '-,故选:A .【点睛】本题考查旋转的性质,证明A OB BOA '∠ ≌是解答本题的关键.8. 学校组织学生进行知识竞赛,5名参赛选手的得分分别为:96,97,98,96,98.下列说法中正确的是( )A. 该组数据的中位数为98B. 该组数据的方差为0.7C. 该组数据的平均数为98D. 该组数据的众数为96和98 【答案】D【解析】【分析】首先对数据进行重新排序,再根据众数,中位数,平均数,方差的定义进行求值计算即可.【详解】解:数据重新排列为:96,96,97,98, 98,∴数据的中位数为:97,故A 选项错误; 该组数据的平均数为9696979898975++++= ,故C 选项错误; 该组数据的方差为:()()()()()22222196979697979798979897=0.85⎡⎤-+-+-+-+-⎣⎦,故B 选项错误;该组数据的众数为:96和98,故D 选项正确;故选:D .【点睛】本题主要考查数据中名词的理解,掌握众数,中位数,平均数,方差的定义及计算方法是解题的关键.9. 有一个容积为243m 的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟,设细油管的注油速度为每分钟x 3m ,由题意列方程,正确的是( )A. 1212304x x +=B. 1515244x x +=C. 3030242x x +=D. 1212302x x+= 【答案】A【解析】【分析】由粗油管口径是细油管的2倍,可知粗油管注水速度是细油管的4倍.可设细油管的注油速度为每分钟x 3m ,粗油管的注油速度为每分钟4x 3m ,继而可得方程,解方程即可求得答案.【详解】解:∵细油管的注油速度为每分钟x 3m ,∴粗油管的注油速度为每分钟4x 3m , ∴1212304x x+=. 故选:A .【点睛】此题考查了分式方程的应用,准确找出数量关系是解题的关键.10. 已知二次函数2y ax bx c =++的部分函数图象如图所示,则一次函数24y ax b ac =+-与反比例函数42a b c y x++=在同一平面直角坐标系中的图象大致是( )A. B.C. D.【答案】B【解析】【分析】根据2y ax bx c =++的函数图象可知,0a >,240b ac ->,即可确定一次函数图象,根据2x =时,420y a b c =++>,即可判断反比例函数图象,即可求解.【详解】解:∵二次函数2y ax bx c =++的图象开口向上,则0a >,与x 轴存在2个交点,则240b ac ->,∴一次函数24y ax b ac =+-图象经过一、二、三象限,二次函数2y ax bx c =++的图象,当2x =时,420y a b c =++>,∴反比例函数42a b c y x++=图象经过一、三象限 结合选项,一次函数24y ax b ac =+-与反比例函数42a b c y x++=在同一平面直角坐标系中的图象大致是B 选项故选B 【点睛】本题考查了一次函数,二次函数,反比例函数的图象与性质,掌握二次函数的图象与系数的关系是解题的关键.11. 小王同学从家出发,步行到离家a 米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y (单位:米)与出发时间x (单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为( )A. 2.7分钟B. 2.8分钟C. 3分钟D. 3.2分钟【答案】C【解析】【分析】先根据题意求得A 、D 、E 、F 的坐标,然后再运用待定系数法分别确定AE 、AF 、OD 的解析式,再分别联立OD 与AE 和AF 求得两次相遇的时间,最后作差即可.【详解】解: 如图:根据题意可得A (8,a ),D (12,a ),E (4,0),F (12,0) 设AE 的解析式为y =kx +b ,则048k b a k b =+⎧⎨=+⎩ ,解得4a k b a⎧=⎪⎨⎪=-⎩ ∴直线AE 的解析式为y =4a x -3a 同理:直线AF 的解析式为:y =-4a x +3a ,直线OD 的解析式为:y =12a x 联立124a y x a y x a ⎧=⎪⎪⎨⎪=-⎪⎩,解得62x a y =⎧⎪⎨=⎪⎩ 联立1234a y x a y x a ⎧=⎪⎪⎨⎪=-+⎪⎩,解得934x a y =⎧⎪⎨=⎪⎩ 两人先后两次相遇的时间间隔为9-6=3min .故答案为C .【点睛】本题主要考查了一次函数的应用,根据题意确定相关点的坐标、求出直线的解析式成为解答本题的关键.12. 如图,在矩形ABCD 中,P 是边AD 上的一个动点,连接BP ,CP ,过点B 作射线,交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =,其中25x <….则下列结论中,正确的个数为( )(1)y 与x 的关系式为4y x x =-;(2)当4AP =时,ABP DPC ∽;(3)当4AP =时,3tan 5EBP ∠=.A. 0个B. 1个C. 2个D. 3个【答案】C【解析】 【分析】(1)证明ABM APB ∽,得AB AM AP AB=,将2AB =,AP x =,PM y =代入,即可得y 与x 的关系式; (2)利用两组对应边成比例且夹角相等,判定ABP DPC ∽;(3)过点M 作MF BP ⊥垂足为F ,在Rt APB △中,由勾股定理得BP 的长,证明FPM APB ∽,求出MF ,PF ,BF 的长,在Rt BMF △中,求出tan EBP ∠的值即可.【详解】解:(1)∵在矩形ABCD 中,∴AD BC ∥,90A D ∠=∠=︒,5BC AD ==,2AB DC ==, ∴APB CBP ∠=∠,∵ABE CBP =∠∠,∴ABE APB ∠=∠,∴ABM APB ∽, ∴AB AM AP AB=, ∵2AB =,AP x =,PM y =, ∴22x y x -=, 解得:4y x x =-, 故(1)正确;(2)当4AP =时,541DP AD AP =-=-=, ∴12DC DP AP AB ==, 又∵90A D ∠=∠=︒,∴ABP DPC ∽,故(2)正确;(3)过点M 作MF BP ⊥垂足为F ,∴90A MFP MFB ∠=∠=∠=︒,∵当4AP =时,此时4x =,4413y x x =-=-=, ∴3PM =,在Rt APB 中,由勾股定理得:222BP AP AB =+,∴BP ===,∵FPM APB ∠=∠,∴FPM APB ∽, ∴MF PF PM AB AP PB==,∴24MF PF ==∴MF =,PF =∴BF BP PF =-=-=∴3tan 4MF EBP BF ∠=== 故(3)不正确;故选:C .【点睛】本题主要考查相似三角形的判定和性质,勾股定理的应用,矩形的性质,正确找出相似三角形是解答本题的关键.二、填空题(本题共10个小题,每小题3分,共30分)13. 一个不透明的箱子中有5个红球和若干个黄球,除颜色外无其它差别.若任意摸出一个球,摸出红球的概率为14,则这个箱子中黄球的个数为______个. 【答案】15【解析】【分析】设黄球个数为x 个,根据概率计算公式列出方程,解出x 即可.【详解】解:设:黄球的个数为x 个, 5154x =+ 解得:15x =,检验:将15x =代入520x +=,值不为零,∴15x =是方程的解,∴黄球的个数为15个,故答案为:15.【点睛】本题考查概率计算公式,根据题意列出分式方程并检验是解答本题的关键. 的14. 因式分解:()()269m n m n +-++=________.【答案】()23m n +-【解析】【分析】将()m n +看做一个整体,则9等于3得的平方,逆用完全平方公式因式分解即可.【详解】解:()()269m n m n +-++ ()()22233m n m n =+-⨯⨯++()23m n =+-.【点睛】本题考查应用完全平方公式进行因式分解,整体思想,能够熟练逆用完全平方公式是解决本题的关键.15. 不等式组360x x m ->⎧⎨>⎩的解集为2x >,则m 的取值范围为_______. 【答案】m ≤2【解析】【分析】先求出不等式①的解集,再根据已知条件判断m 范围即可. 【详解】解:360x x m ->⎧⎨>⎩①②, 解①得:2x >,又因为不等式组的解集为x >2∵x >m ,∴m ≤2,故答案为:m ≤2.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出m 的范围是解此题的关键.16. 已知圆锥的高为8cm ,母线长为10cm ,则其侧面展开图的面积为_______.【答案】60πcm 2【解析】【分析】利用勾股定理易得圆锥的底面半径,那么圆锥的侧面积=底面周长×母线长÷2.【详解】解:圆锥的高为8cm ,母线长为10cm ,由勾股定理得,底面半径=6cm ,底面周长=12πcm ,侧面展开图的面积=12×12π×10=60πcm 2.故答案为:60πcm 2.【点睛】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.17. 设1x 与2x 为一元二次方程213202x x ++=的两根,则()212x x -的值为________. 【答案】20【解析】【分析】利用公式法求得一元二次方程的根,再代入求值即可; 【详解】解:∵213202x x ++= △=9-4=5>0,∴13x =-+23x =-,∴()212x x -=((223320-++==,故答案为:20;【点睛】本题考查了一元二次方程的解,掌握公式法解一元二次方程是解题关键. 18. 定义一种运算;sin()sin cos cos sin αβαβαβ+=+,sin()sin cos cos sin αβαβαβ-=-.例如:当45α=︒,30β=︒时,()sin 4530︒+︒=12=,则sin15︒的值为_______.【解析】 【分析】根据sin()sin cos cos sin αβαβαβ-=-代入进行计算即可.【详解】解:sin15sin(4530)︒=︒-︒=sin 45cos30cos 45sin 30︒︒︒︒-12【点睛】此题考查了公式的变化,以及锐角三角函数值的计算,掌握公式的转化是解题的关键.,且有公共顶点A,则19. 如图,正六边形ABCDEF和正五边形AHIJK内接于O的度数为______度.BOH【答案】12【解析】【分析】连接AO,求出正六边形和正五边形的中心角即可作答.【详解】连接AO,如图,∵多边形ABCDEF是正六边形,∴∠AOB=360°÷6=60°,∵多边形AHIJK是正五边形,∴∠AOH=360°÷5=72°,∴∠BOH=∠AOH-∠AOB=72°-60°=12°,故答案为:12.【点睛】本题考查了正多边形的中心角的知识,掌握正多边形中心角的计算方法是解答本题的关键.20. 某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有______种购买方案.【答案】3##三【解析】【分析】设购买甲种奖品x 件,乙种奖品y 件,列出关系式,并求出3124y x =-,由于1≥x ,1y ≥且x ,y 都是正整数,所以y 是4的整数倍,由此计算即可.【详解】解:设:购买甲种奖品x 件,乙种奖品y 件,4348x y +=,解得3124y x =-, ∵1≥x ,1y ≥且x ,y 都是正整数,∴y 是4的整数倍,∴4y =时,341294x ⨯=-=, 8y =时,381264x ⨯=-=, 12y =时,3121234x ⨯=-=, 16y =时,3161204x ⨯=-=,不符合题意, 故有3种购买方案,故答案为:3.【点睛】本题考查列关系式,根据题意判断出y 是4的整数倍是解答本题的关键. 21. 如图,60AOB ∠=︒,点1P 在射线OA 上,且11OP =,过点1P 作11PK OA ⊥交射线OB 于1K ,在射线OA 上截取12PP ,使1211PPPK =;过点2P 作22P K OA ⊥交射线OB 于2K ,在射线OA 上截取23P P ,使2322P P P K =.按照此规律,线段20232023P K 的长为________.20221+【解析】【分析】解直角三角形分别求得11PK,22P K,33P K,……,探究出规律,利用规律即可解决问题.【详解】解:11PK OA⊥,11OPK∴△是直角三角形,在11Rt OPK中,60AOB∠=︒,11OP=,12111tan60PP PK OP∴==⋅︒=11PK OA⊥,22P K OA⊥,1122PK P K∴∥,2211OP K OPK∴△∽△,222111P K OPPK OP∴=,=221P K∴=,同理可得:2331P K =+,3441P K =,……, 11n n n P K -∴=+,2022202320231P K ∴=,20221.【点睛】本题考查了图形的规律,解直角三角形,平行线的判定,相似三角形的判定与性质,解题的关键是学会探究规律的方法.22. 在长为2,宽为x (12x <<)的矩形纸片上,从它的一侧,剪去一个以矩形纸片宽为边长的正方形(第一次操作);从剩下的矩形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x 的值为________. 【答案】65 或32【解析】【分析】分析题意,根据x 的取值范围不同,对剩下矩形的长宽进行讨论,求出满足题意的x 值即可.【详解】解:第一次操作后剩下的矩形两边长为2x - 和x , (2)22x x x --=- ,又12x <<Q ,220x ∴-> ,2x x ∴-> ,则第一次操作后,剩下矩形的宽为2x -,所以可得第二次操作后,剩下矩形一边为2x - ,另一边为:(2)22x x x --=- ,∵第三次操作后,剩下的纸片恰为正方形,∴第二次操作后剩下矩形的长是宽的2倍,分以下两种情况进行讨论:①当222x x --> ,即43x <时 ,第三次操作后剩下的矩形的宽为22x - ,长是2x - ,则由题意可知:22(22)x x -=- ,解得:65x = ; ②当222x x --< ,即43x >时, 第三次操作后剩下的矩形的宽为2x - ,长是22x - ,由题意得:222(2)x x -=- , 解得:32x = , 65x ∴= 或者32x = .故答案为:65 或32. 【点睛】本题考查了矩形的性质,正方形的性质以及分类讨论的数学思想方法,熟练掌握矩形,正方形性质以及分类讨论的方法是解题的关键.三、解答题(本题共6个小题,共54分)23. 已知:ABC .(1)尺规作图:用直尺和圆规作出ABC 内切圆的圆心O ;(只保留作图痕迹,不写作法和证明)(2)如果ABC 的周长为14cm ,内切圆的半径为1.3cm ,求ABC 的面积.【答案】(1)作图见详解(2)9.1【解析】【分析】(1)根据角平分线的性质可知角平分线的交点为三角形内切圆的圆心,故只要作出两个角的角平分线即可;(2)利用割补法,连接OA ,OB ,OC ,作OD ⊥AB ,OE ⊥BC ,OF ⊥AC ,这样将△ABC 分成三个小三角形,这三个小三角形分别以△ABC 的三边为底,高为内切圆的半径,利用提取公因式可将周长代入,进而求出三角形的面积.【小问1详解】解:如下图所示,O 为所求作点,【小问2详解】解:如图所示,连接OA ,OB ,OC ,作OD ⊥AB ,OE ⊥BC ,OF ⊥AC ,∵内切圆的半径为1.3cm ,∴OD =OF =OE =1.3,∵三角形ABC 的周长为14,∴AB +BC +AC =14, 则111222ABC AOB COB AOC S S S S AB OD BC OE AC OF =++=⋅⋅+⋅⋅+⋅⋅△△△△ 111.3() 1.3149.122AB BC AC =⨯⨯++=⨯⨯= 故三角形ABC 的面积为9.1.【点睛】本题考查三角形的内切圆,角平分线的性质,割补法求几何图形的面积,能够将角平分线的性质与三角形的内切圆相结合是解决本题的关键.24. 如图所示,为了测量百货大楼CD 顶部广告牌ED 的高度,在距离百货大楼30m 的A 处用仪器测得30DAC ∠=︒;向百货大楼的方向走10m ,到达B 处时,测得48EBC ∠=︒,仪器高度忽略不计,求广告牌ED 的高度.(结果保留小数点后一位)1.732≈,sin 480.743︒≈,cos 480.669︒≈,tan 48 1.111︒≈)【答案】4.9m【解析】【分析】先求出BC 的长度,再分别在Rt △ADC 和Rt △BEC 中用锐角三角函数求出EC 、DC ,即可求解.【详解】根据题意有AC =30m ,AB =10m ,∠C =90°,则BC =AC -AB =30-10=20,在Rt △ADC 中,tan 30tan 30DC AC A =⨯∠=⨯=o ,在Rt △BEC 中,tan 20tan 48EC BC EBC =⨯∠=⨯o ,∴20tan 48DE EC DC =-=⨯-o即20tan 4820 1.11110 1.732 4.9DE =⨯-≈⨯-⨯=o故广告牌DE 的高度为4.9m .【点睛】本题考查了解直角三角形的应用,掌握锐角三角函数的性质是解答本题的关键. 25. 在平面直角坐标系中,已知一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫ ⎪⎝⎭两点,且与反比例函数22k y x =的图象在第一象限内交于P ,K 两点,连接OP ,OAP △的面积为54.(1)求一次函数与反比例函数的解析式;(2)当21y y >时,求x 的取值范围;(3)若C 为线段OA 上的一个动点,当PC KC +最小时,求PKC 的面积.【答案】(1)115,22y x =-+22.y x= (2)01x <<或4x >,(3)65【解析】 【分析】(1)先运用待定系数法求出直线解析式,再根据OAP △的面积为54和直线解析式求出点P 坐标,从而可求出反比例函数解析式;(2)联立方程组并求解可得点K 的坐标,结合函数图象可得出x 的取值范围; (3)作点K 关于x 轴的对称点K ',连接KK ',PK '交x 轴于点C ,连接KC ,则PC +KC 的值最小,求出点C 的坐标,再根据PKC AKM KMC PAC S S S S ∆∆∆∆=--求解即可.【小问1详解】解:∵一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫ ⎪⎝⎭两点, ∴把()5,0A ,50,2B ⎛⎫ ⎪⎝⎭代入11y k x b =+得, 1505,2k b b +=⎧⎪⎨=⎪⎩,解得,11252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴一次函数解析式为115,22y x =-+ 过点P 作PH x ⊥轴于点H ,∵(5,0),A∴5, OA=又5,4PAOS∆=∴15 524PH⨯⨯=∴1,2 PH=∴151 222x-+=,∴4,x=∴1 (4,2 P∵1(4,2P在双曲线上,∴21 42,2k=⨯=∴22 .yx=【小问2详解】解:联立方程组得,15222y xyx⎧=-+⎪⎪⎨⎪=⎪⎩解得,111 2x y =⎧⎨=⎩,22412xy=⎧⎪⎨=⎪⎩∴(1,2),k根据函数图象可得,反比例函数图象直线上方时,有01x <<或4x >,∴当21y y >时,求x 的取值范围为01x <<或4x >,【小问3详解】解:作点K 关于x 轴的对称点K ',连接KK '交x 轴于点M ,则K '(1,-2),OM =1, 连接PK '交x 轴于点C ,连接KC ,则PC +KC 的值最小,设直线PK '的解析式为,y mx n =+ 把1(4,(1,2)2P K '-代入得,2142m n m n +=-⎧⎪⎨+=⎪⎩解得,56176m n ⎧=⎪⎪⎨⎪=-⎪⎩∴直线PK '的解析式为517,66y x =- 当0y =时,106657x -=,解得,751x =, ∴17(,0)5C ∴175OC = ∴17121,55MC OC OM =-=-= 178555AC OA OC =-=-= 514AM OA OM =-=-=,∴PKC AKM KMC PAC S S S S ∆∆∆∆=--1112181422225252=⨯⨯-⨯⨯-⨯⨯ 122455=-- 65= 【点睛】本题主要考查了反比例函数与一次函数的综合,正确作出辅助线是解答本题的关在键.26. 我们可以通过面积运算的方法,得到等腰三角形底边上的任意一点到两腰的距离之和与一腰上的高之间的数量关系,并利用这个关系解决相关问题.(1)如图一,在等腰ABC 中,AB AC =,BC 边上有一点D ,过点D 作DE AB ⊥于E ,DF AC ⊥于F ,过点C 作CG AB ⊥于G .利用面积证明:DE DF CG +=.(2)如图二,将矩形ABCD 沿着EF 折叠,使点A 与点C 重合,点B 落在B ′处,点G 为折痕EF 上一点,过点G 作GM FC ⊥于M ,GN BC ⊥于N .若8BC =,3BE =,求GM GN +的长.(3)如图三,在四边形ABCD 中,E 为线段BC 上的一点,EA AB ⊥,ED CD ⊥,连接BD ,且AB AE CD DE=,BC =,3CD =,6BD =,求ED EA +的长. 【答案】(1)证明见解析(2)4(3【解析】【分析】(1)根据题意,利用等面积法ABC ABD ACD S S S ∆∆∆=+,根据等腰ABC 中,AB AC =,即可得到结论;(2)根据题中条件,利用折叠性质得到AFE CFE ∠=∠,结合矩形ABCD 中AD BC ∥得到AFE FEC ∠=∠,从而有CFE FEC ∠=∠,从而确定EFC ∆是等腰三角形,从而利用(1)中的结论得到=GM GN FH +,结合勾股定理及矩形性质即可得到结论;(3)延长BA CD 、交于F ,连接EF ,过点B 作BG FC ⊥于G ,根据AB AE CD DE =,EA AB ⊥,ED CD ⊥,得到ABC ∆是等腰三角形,从而由(1)知ED EA BG +=,在Rt BCG ∆中,BG ==,在Rt BDG ∆中,6BD =,BG ==BG ==求解得1x =,从而得到结论.【小问1详解】证明:连接AD ,如图所示:在等腰ABC 中,AB AC =,BC 边上有一点D ,过点D 作DE AB ⊥于E ,DF AC ⊥于F ,过点C 作CG AB ⊥于G , ∴由ABC ABD ACD S S S ∆∆∆=+得111222AB CG AB ED AC FD ⋅=⋅+⋅, ∴DE DF CG +=;【小问2详解】解:连接CG ,过点F 作FH BC ⊥于H ,如图所示:根据折叠可知AFE CFE ∠=∠,在矩形ABCD 中,AD BC ∥,则AFE FEC ∠=∠,CFE FEC ∴∠=∠,即EFC ∆等腰三角形,是在等腰EFC ∆中,FC EC =,EF 边上有一点G ,过点G 作GM FC ⊥于M ,GN BC ⊥于N ,过点F 作FH BC ⊥于H ,由(1)可得=GM GN FH +,在Rt ABE ∆中,90B ∠=︒,3,835BE AE EC BC BE ===-=-=,则4AB ===,在四边形ABHF 中,90B BAF FHB ∠=∠=∠=︒,则四边形ABHF 为矩形, 4FH AB ∴==,即4GM GN FH AB +===;【小问3详解】解:延长BA CD 、交于F ,连接EF ,过点B 作BG FC ⊥于G ,在四边形ABCD 中,E 为线段BC 上的一点,EA AB ⊥,ED CD ⊥,则90BAE CDE ∠=∠=︒,又 AB AE CD DE=, ∴ABE DCE ∆∆ ,ABE C ∴∠=∠,即ABC ∆是等腰三角形,∴由(1)可得ED EA BG +=,设=GD x ,90EDC BGC ∠=∠=︒ ,BC =,3CD =,在Rt BCG ∆中,BG ==,在Rt BDG ∆中,6BD =,BG ==,∴BG ==1x =,BG ∴==ED EA BG +==【点睛】本题考查几何综合,涉及到等腰三角形的判定与性质、等面积求线段关系、折叠的性质、勾股定理求线段长、相似三角形的判定与性质等知识点,读懂题意,掌握(1)中的证明过程与结论并运用到其他情境中是解决问题的关键.27. 如图所示,在O 的内接AMN 中,90MAN ∠=︒,2AM AN =,作AB MN ⊥于点P ,交O 于另一点B ,C 是¼AM 上的一个动点(不与A ,M 重合),射线MC 交线段BA 的延长线于点D ,分别连接AC 和BC ,BC 交MN 于点E .(1)求证:CMA CBD △∽△.(2)若10MN =, MCNC =,求BC 的长. (3)在点C 运动过程中,当3tan 4MDB ∠=时,求ME NE 的值. 【答案】(1)证明见解析(2)(3)32【解析】【分析】(1)利用圆周角定理得到∠CMA =∠ABC ,再利用两角分别相等即可证明相似; (2)连接OC ,先证明MN 是直径,再求出AP 和NP 的长,接着证明COE BPE △∽△,利用相似三角形的性质求出OE 和PE ,再利用勾股定理求解即可; (3)先过C 点作CG ⊥MN ,垂足为G ,连接CN ,设出34GM x CG x ==,,再利用三角函数和勾股定理分别表示出PB 和PG ,最后利用相似三角形的性质表示出EG ,然后表示出ME 和NE ,算出比值即可.【小问1详解】解:∵AB ⊥MN ,∴∠APM =90°,∴∠D +∠DMP =90°,又∵∠DMP +∠NAC =180°,∠MAN =90°, ∴∠DMP +∠CAM =90°,∴∠CAM =∠D ,∵∠CMA =∠ABC ,∴CMA CBD △∽△.【小问2详解】连接OC ,∵90MAN ∠=︒,∴MN 是直径,∵10MN =,∴OM =ON =OC =5,∵2AM AN =,且222A M A N M N +=,∴AN AM == ∵1122AMN S AM AN MN AP =⋅=⋅△, ∴4AP =,∴4BP AP ==,∴2NP ==,∴523OP =-=,∵ MCNC =, ∴OC ⊥MN ,∴∠COE =90°,∵AB ⊥MN ,∴∠BPE =90°,∴∠BPE =∠COE ,又∵∠BEP =∠CEO ,∴COE BPE △∽△ ∴CO OE CE BP PE BE==, 即54OE CE PE BE == 由3OE PE OP +==,∴5433OE PE ==,,∴CE ===,BE ===∴BC =+=【小问3详解】过C 点作CG ⊥MN ,垂足为G ,连接CN , ∵MN 是直径,∴∠MCN =90°,∴∠CNM +∠DMP =90°,∵∠D +∠DMP =90°,∴∠D =∠CNM , ∵3tan 4MDB ∠=, ∴3tan 4CNM ∠=, 设34GM x CG x ==,,∴5CM x =, ∴203x CN =, ∴163x NG =,∴253x NM = ∴256x OM ON ==, ∵2AM AN =,且222A M A N M N +=,∴AN x =,AM x =, ∵1122AMN S AM AN MN AP =⋅=⋅△, ∴103AP x PB ==, ∴53NP x =, ∴16511333PG x x x =-=, ∵∠CGE =∠BPE =90°,∠CEG =∠BEP , ∴CGE BPE △∽△, ∴CG GE CE BP PE BE==, 即4103x GE CE PE BE x == ∴2GE x =,53PE x =∴5ME x =,103x NE =, ∴:3:2ME NE =, ∴ME NE 值为32. 的【点睛】本题考查了圆的相关知识、相似三角形的判定与性质、三角函数、勾股定理等知识,涉及到了动点问题,解题关键是构造相似三角形,正确表示出各线段并找出它们的关系,本题综合性较强,属于压轴题.28. 如图,抛物线2y ax bx c =++交y 轴于点()0,4A -,并经过点()6,0C ,过点A 作AB y ⊥轴交抛物线于点B ,抛物线的对称轴为直线2x =,D 点的坐标为()4,0,连接AD ,BC ,BD .点E 从A 点出发,以每秒个单位长度的速度沿着射线AD 运动,设点E 的运动时间为m 秒,过点E 作EF AB ⊥于F ,以EF 为对角线作正方形EGFH .(1)求抛物线的解析式;(2)当点G 随着E 点运动到达BC 上时,求此时m 的值和点G 的坐标;(3)在运动的过程中,是否存在以B ,G ,C 和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G 的坐标,如果不存在,请说明理由.【答案】(1)214433y x x =--(2)165m =,2412,55G ⎛⎫- ⎪⎝⎭ (3)368,55⎛⎫- ⎪⎝⎭或(3,-3)1216,55⎛⎫- ⎪⎝⎭或426,55⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)利用待定系数法求解析式即可;(2)求出直线BC 解析式,通过△EGF 为等腰直角三角形表示出G 点坐标,将G 点代入BC 解析式即可求得m 的值,从而求得G 点坐标;(3)将矩形转化为直角三角形,当△BGC 是直角三角形时,当△BCG 为直角三角形时,当△CBG 为直角三角形时,分情况讨论分别列出等式求得m 的值,即可求得G 点坐标.【小问1详解】将点A (0,-4)、C (6,0)代入解析式2y ax bx c =++中,以及直线对称轴2x =,可得4036622c a b c b a ⎧⎪-=⎪=++⎨⎪⎪-=⎩, 解得13434a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩, ∴抛物线的解析式为214433y x x =--; 【小问2详解】∵A (0,-4),D ()4,0,∴△AOD 为等腰直角三角形,∵AB y ⊥轴交抛物线于点B ,∴B (4,-4),设直线BC 解析式为y =kx +b ,将B (4,-4),C (6,0)代入解析式得, 4406k b k b -=+⎧⎨=+⎩,解得212k b =⎧⎨=-⎩, ∴直线BC 解析式为y =2x -12,由题意可得AE =,△ADB 为等腰直角三角形,∴AF EF AE m ===, ∵四边形EGFH 正方形,∴△EGF 为等腰直角三角形, ∴11,422G m m m ⎛⎫+-+ ⎪⎝⎭, 点G 随着E 点运动到达BC 上时,满足直线BC 解析式y =2x -12, ∴11421222m m m ⎛⎫-+=+- ⎪⎝⎭, ∴165m =,此时2412,55G ⎛⎫- ⎪⎝⎭; 【小问3详解】B (4,-4),C (6,0),11,422G m m m ⎛⎫+-+ ⎪⎝⎭, ∴()()222640420BC =-++=,22222313144442222BG m m m m ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,222223131604642222CG m m m m ⎛⎫⎛⎫⎛⎫⎛⎫=-++-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 要使以B ,G ,C 和平面内的另一点为顶点的四边形是矩形,需满足:当△BGC 是直角三角形时,222BG CG BC +=, 22223131464202222m m m m ⎛⎫⎛⎫⎛⎫⎛⎫-++-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 解得,1245m =,22m =, 此时G 368,55⎛⎫- ⎪⎝⎭或(3,-3); 当△BCG 为直角三角形时,222BC CG BG +=,22223131206442222m m m m ⎛⎫⎛⎫⎛⎫⎛⎫+-+-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 为解得,285m =, 此时G 426,55⎛⎫- ⎪⎝⎭; 当△CBG 为直角三角形时,222BC BG CG +=,22223131204642222m m m m ⎛⎫⎛⎫⎛⎫⎛⎫+-+=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 解得,85m =, 此时G 1216,55⎛⎫- ⎪⎝⎭; 综上所述:点G 坐标为368,55⎛⎫-⎪⎝⎭或(3,-3)1216,55⎛⎫- ⎪⎝⎭或426,55⎛⎫- ⎪⎝⎭. 【点睛】本题是二次函数的综合题,考查了待定系数法求解析式、等腰直角三角形的性质和判定,动点运动问题,存在矩形问题,利用数形结合,注意分情况讨论是解题的关键。
2024年黑龙江省绥化市中考数学试卷(附答案解析)一、单项选择题(本题共12个小题,每小题3分,共36分)1.(3分)实数﹣的相反数是()A.2025B.﹣2025C.﹣D.【解答】解:﹣的相反数是,故选:D.2.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形B.等腰三角形C.圆D.菱形【答案】B.分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.(3分)某几何体是由完全相同的小正方体组合而成,如图是这个几何体的三视图,那么构成这个几何体的小正方体的个数是()A.5个B.6个C.7个D.8个【答案】A.4.(3分)若式子有意义,则m的取值范围是()A.m≤B.m≥﹣C.m≥D.m≤﹣【解答】解:由题意得:2m﹣3≥0,解得:m≥,故选:C.5.(3分)下列计算中,结果正确的是()A.(﹣3)﹣2=B.(a+b)2=a2+b2C.=±3D.(﹣x2y)3=x6y3【解答】解:(﹣3)﹣2=,则A符合题意;(a +b )2=a 2+2ab +b 2,则B不符合题意;=3,则C 不符合题意;(﹣x 2y )3=﹣x 6y 3,则D 不符合题意;故选:A .6.(3分)小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是﹣2和﹣5.则原来的方程是()A .x 2+6x +5=0B .x 2﹣7x +10=0C .x 2﹣5x +2=0D .x 2﹣6x ﹣10=0【答案】B .7.(3分)某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:鞋码3637383940平均每天销售量/双1012201212如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的()A .平均数B .中位数C .众数D .方差【解答】解:因为众数是在一组数据中出现次数最多的数,又根据题意,每双鞋的销售利润相同,鞋店为销售额考虑,应关注卖出最多的鞋子的尺码,这样可以确定进货的数量,所以该店主最应关注的销售数据是众数.故选:C .8.(3分)一艘货轮在静水中的航速为40km /h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为()A .5km /hB .6km /hC .7km /hD .8km /h【解答】解:设江水的流速为x km /h ,则沿江顺流航行的速度为(40+x )km /h ,沿江逆流航行的速度为(40﹣x )km /h ,根据题意得:=,解得:x =8,∴江水的流速为8km /h .故选:D .【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.9.(3分)如图,矩形OABC各顶点的坐标分别为O(0,0),A(3,0),B(3,2),C(0,2),以原点O为位似中心,将这个矩形按相似比缩小,则顶点B在第一象限对应点的坐标是()A.(9,4)B.(4,9)C.(1,)D.(1,)【分析】根据位似变换的性质解答即可.【解答】解:∵以原点O为位似中心,将矩形OABC按相似比缩小,点B的坐标为(3,2),∴顶点B在第一象限对应点的坐标为(3×,2×),即(1,),故选:D.10.(3分)下列叙述正确的是()A.顺次连接平行四边形各边中点一定能得到一个矩形B.平分弦的直径垂直于弦C.物体在灯泡发出的光照射下形成的影子是中心投影D.相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等【分析】选项A根据中点四边形的定义以及矩形的判定方法解答即可;选项B根据垂径定理判断即可;选项C根据中心投影的定义判断即可;选项D根据圆心角、弧、弦、弦心距的关系定理判断即可.【答案】C.11.(3分)如图,四边形ABCD是菱形,CD=5,BD=8,AE⊥BC于点E,则AE的长是()A.B.6C.D.12【解答】解:∵四边形ABCD是菱形,CD=5,BD=8,∴BC=CD=5,BO=DO=4,OA=OC,AC⊥BD,∴∠BOC=90°,在Rt△OBC中,由勾股定理得:OC===3,∴AC=2OC=6,∵菱形ABCD的面积=AE•BC=BD×AC=OB•AC,∴AE===,故选:A.12.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,则下列结论中:①>0;②am2+bm≤a﹣b(m为任意实数);③3a+c<1;④若M(x1,y)、N(x2,y)是抛物线上不同的两个点,则x1+x2≤﹣3.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:由题意,∵抛物线开口向下,∴a<0.又抛物线的对称轴是直线x=﹣=﹣1,∴b=2a<0.又抛物线交y轴正半轴,∴当x=0时,y=c>0.∴<0,故①错误.由题意,当x=﹣1时,y取最大值为y=a﹣b+c,∴对于抛物线上任意的点对应的函数值都≤a﹣b+c.∴对于任意实数m,当x=m时,y=am2+bm+c≤a﹣b+c.∴am2+bm≤a﹣b,故②正确.由图象可得,当x=1时,y=a+b+c<0,又b=2a,∴3a+c<0<1,故③正确.由题意∵抛物线为y=ax2+bx+c,∴x1+x2=﹣=﹣=﹣2>﹣3,故④错误.综上,正确的有②③共2个.故选:B.二、填空题(本题共10个小题,每小题3分,共30分)13.(3分)我国疆域辽阔,其中领水面积约为370000km2,把370000这个数用科学记数法表示为.【解答】解:370000=3.7×105,故答案为:3.7×105.14.(3分)分解因式:2mx2﹣8my2=.【分析】先提取公因式再运用公式法进行因式分解即可得出答案.【解答】解:原式=2m(x2﹣4y2)=2m(x+2y)(x﹣2y).故答案为:2m(x+2y)(x﹣2y).15.(3分)如图,AB∥CD,∠C=33°,OC=OE.则∠A=°.【解答】解:∵OC=OE,∠C=33°,∴∠E=∠C=33°,∴∠DOE=∠E+∠C=66°,∵AB∥CD,∴∠A=∠DOE=66°,故答案为:66.16.(3分)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A测得该楼顶部点C的仰角为60°,测得底部点B的俯角为45°,点A与楼BC的水平距离AD=50m,则这栋楼的高度为m(结果保留根号).【解答】解:由题意得:AD⊥BC,在Rt△ACD中,∠CAD=60°,AD=50m,∴CD=AD•tan60°=50(m),在Rt△ABD中,∠BAD=45°,∴BD=AD•tan45°=50(m),∴BC=BD+CD=(50+50)m,∴这栋楼的高度为(50+50)m,故答案为:(50+50).17.(3分)化简:÷(x﹣)=.【解答】解:原式=÷=•=,故答案为:.18.(3分)用一个圆心角为126°,半径为10cm的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为__cm.【解答】解:扇形的弧长==7π(cm),故圆锥的底面半径为7π÷2π=(cm).故答案为:.19.(3分)如图,已知点A(﹣7,0),B(x,10),C(﹣17,y),在平行四边形ABCO中,它的对角线OB与反比例函数y=(k≠0)的图象相交于点D,且OD:OB=1:4,则k=.【分析】作BE⊥x轴,DG⊥x轴,根据点的坐标及相似三角形性质可求出点D坐标继而求出k值.【解答】解:如图,作BE⊥x轴,DG⊥x轴,垂足分别为E、G,∵点A(﹣7,0),B(x,10),C(﹣17,y),∴BE=10,OF=17,OA=7,∴EF=BC=OA=7,∴OE=17+7=24,∵BE∥DG,∴△ODG∽△OBE,∵OD:OB=1:4,∴=,∴,∴D(﹣,6),∵点D在反比例函数图象上,∴k=﹣=﹣15.故答案为:﹣15.20.(3分)如图,已知∠AOB=50°,点P为∠AOB内部一点,点M为射线OA、点N为射线OB上的两个动点,当△PMN的周长最小时,则∠MPN=.【解答】解:作P点关于OB的对称点E,连接EP,EO,EM;∴EM=MP,∠MPO=∠OEM,∠EOM=∠MOP,作P点关于OA的对称点F,连接NF,PF,OF,∴PN=FN,∠OPN=∠OFN,∠PON=∠NOF,∴PM+PN+MN=EM+NF+MN≥EF,当E,M,N,F共线时,△PMN周长最短,又∵∠EOF=∠EOM+∠MOP+∠PON+∠NOF,∠AOB=∠MOP+∠PON,∴∠EOF=2∠AOB,又∵∠AOB=50°,∴∠EOF=100°,∴在△EOF中,∠OEM+∠OFN+∠EOF=180°,∴∠OEM+∠OFN=180°﹣100°=80°,∵∠MPO=∠OEM,∠OPN=∠OFN,∴∠MPO+∠OPN=80°,∵∠MPN=∠MPO+OPN=80°,故答案为:80°.21.(3分)如图,已知A1(1,﹣),A2(3,﹣),A3(4,0),A4(6,0),A5(7,),A6(9,),A7(10,0),A8(11,﹣)…,依此规律,则点A2024的坐标为.【答案】(2891,).22.(3分)在矩形ABCD中,AB=4cm,BC=8cm,点E在直线AD上,且DE=2cm,则点E到矩形对角线所在直线的距离是或或cm.【解答】解:如图1,过点E作EF⊥BD于点F,∵四边形ABCD是矩形,∴∠BAD=∠ABC=∠ADC=90°,AC=BD,AD=BC,AB=CD,∵AB=4cm,BC=8cm,∴由勾股定理得cm,∴BD=cm,∵∠EFD=∠BAD=90°,∠EDF=∠BDA,∴△DEF∽△DBA,∴,∴,∴EF=cm;如图2,过点E作EM⊥AC于点M,∵AD=BC=8cm,DE=2cm,∴AE=6cm,∵∠AME=∠ADC=90°,∠EAM=∠CAD,∴△AEM∽△ACD,∴,∴∴EM=cm;如图3,过点E作EN⊥BD的延长线于点N,∴∠END=∠BAD=90°,∴∠EDN=∠BDA,∴△END∽△BAD,∴,∴,∴EN=cm;如图4,过点E作EH⊥AC的延长线于点H,∴∠AHE=∠ADC=90°,∴∠EAH=∠CAD,∴△AHE∽△ADC,∴,∵AD=BC=8cm,DE=2cm,∴AE=10cm,∴,∴EH=cm;综上,点E到矩形对角线所在直线的距离是cm或cm或cm,故答案为:或或.三、解答题(本题共6个小题,共54分)23.(7分)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5cm2,则△ABC的面积是cm2.【解答】解:(1)分别作出AB边和BC边的垂直平分线,与AB和BC边分别交于点N和点M,连接AM和CN,如图所示,点G即为所求作的点.(2)∵点G是△ABC的重心,∴AG=2MG,∵△ABG的面积等于5cm2,∴△BMG的面积等于2.5cm2,∴△ABM的面积等于7.5cm2.又∵AM是△ABC的中线,∴△ABC的面积等于15cm2.故答案为:15.24.(7分)为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动、为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图请根据统计图中的信息,解答下列问题:(1)参加本次问卷调查的学生共有人;(2)在扇形统计图中,A组所占的百分比是,并补全条形统计图.(3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示,请用树状图法或列表法,求选中的2个社团恰好是B和C的概率.【解答】解:(1)参加本次问卷调查的学生共有12÷20%=60(人).故答案为:60.(2)A组的人数为60﹣20﹣10﹣12=18(人),∴在扇形统计图中,A组所占的百分比是18÷60×100%=30%.故答案为:30%.补全条形统计图如图所示.(3)列表如下:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共有12种等可能的结果,其中选中的2个社团恰好是B和C的结果有:(B,C),(C,B),共2种,∴选中的2个社团恰好是B和C的概率为=.25.(9分)为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买A、B两种电动车.若购买A种电动车25辆、B种电动车80辆,需投入资金30.5万元;若购买A种电动车60辆、B 种电动车120辆,需投入资金48万元.已知这两种电动车的单价不变.(1)求A、B两种电动车的单价分别是多少元?(2)为适应共享电动车出行市场需求,该公司计划购买A、B两种电动车200辆,其中A种电动车的数量不多于B种电动车数量的一半.当购买A种电动车多少辆时,所需的总费用最少,最少费用是多少元?(3)该公司将购买的A、B两种电动车投放到出行市场后,发现消费者支付费用y元与骑行时间x min 之间的对应关系如图.其中A种电动车支付费用对应的函数为y1;B种电动车支付费用是10min之内,起步价6元,对应的函数为y2.请根据函数图象信息解决下列问题.①小刘每天早上需要骑行A种电动车或B种电动车去公司上班.已知两种电动车的平均行驶速度均为300m/min(每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的距离为8km,那么小刘选择B种电动车更省钱(填写A或B).②直接写出两种电动车支付费用相差4元时,x的值5或40.【解答】解:(1)设A、B两种电动车的单价分别为x元、y元,由题意得,,解得:,答:A、B两种电动车的单价分别为1000元、3500元.(2)设购买A种电动车m辆,则购买8种电动车(200﹣m)辆,m(200﹣m),解得:m≤,设所需购买总费用为w元,则w=1000m+3500(200﹣m)=﹣2500m+700000,∵﹣2500<0,∴w随着m的增大而减小,∵m取正整数,∴m=66时,w最少,=700000﹣2500x66=535000(元),∴w最少答:当购买A种电动车66辆时所需的总费用最少,最少费用为535000元.(3)①∵两种电动车的平均行驶速度均为300m/min,小刘家到公司的距离为8km,∴所用时间=26(分钟),根据函数图象可得当x>20时,y2<y1更省钱,∴小刘选择B种电动车更省钱,故答案为:B.②设y1=k1x,将(20,8)代入得,8=20k1,解得:k1=,∴y1=x,当0<x≤10时,y2=6,当x>10时,设y2=k2x+b2,将(10,6)、(20,8)代入得,,解得:,∴y2=x+4,依题意,当0<x<10时,y2﹣y1=4,即6﹣x=4,解得:x=5,当x>10时,|y2﹣y1|=4,即|x+4﹣x|=4,解得:x=0(舍去)或x=40,故答案为:5或40.【点评】本题考查了二元一次方程组的应用,一次函数的应用,找到等量关系是解题的关键.26.(10分)如图1,O是正方形ABCD对角线上一点,以O为圆心,OC长为半径的⊙O与AD相切于点E,与AC相交于点F.(1)求证:AB与⊙O相切;(2)若正方形ABCD的边长为+1,求⊙O的半径;(3)如图2,在(2)的条件下,若点M是半径OC上的一个动点,过点M作MN⊥OC交于点N.当CM:FM=1:4时,求CN的长.【解答】(1)证明:如图,连接OE,过点O作OG⊥AB于点G,∵⊙O与AD相切于点E,∴OE⊥AD,∵四边形ABCD是正方形,AC是正方形的对角线,∴∠BAC=∠DAC=45°,∴OE=OG,∵OE为⊙O的半径,∴OG为⊙O的半径,∵OG⊥AB,∴AB与⊙O相切;(2)解:如图,∵AC为正方形ABCD的对角线,∴∠DAC=45°,∵⊙O与AD相切于点E,∴∠AEO=90°,∴由(1)可知AE=OE,设AE=OE=OC=OF=R,在Rt△AEO中,∵AE2+EO2=AO2,∴AO2=R2+R2,∵R>0,∴,又∵正方形ABCD的边长为+1,在Rt△ADC中,∴,∵OA+OC=AC,∴,∴,∴⊙O的半径为;(3)解:如图,连接FN,ON,设CM=k,∵CM:FM=1:4,∴CF=5k,∴OC=ON=2.5k,∴OM=OC﹣CM=1.5k,在Rt△OMN中,由勾股定理得:MN=2k,在Rt△CMN中,由勾股定理得:,又∵,∴,∴.【点评】本题考查了圆的综合应用,其中掌握圆的相关知识点、正方形的性质、角平分线性质勾股定理的计算等知识点的应用是本题的解题关键.27.(10分)综合与实践问题情境在一次综合与实践课上,老师让同学们以两个全等的等腰直角三角形纸片为操作对象.纸片△ABC和△DEF满足∠ACB=∠EDF=90°,AC=BC=DF=DE=2cm.下面是创新小组的探究过程.操作发现(1)如图1,取AB的中点O,将两张纸片放置在同一平面内,使点O与点F重合.当旋转△DEF纸片交AC边于点H、交BC边于点G时,设AH=x(1<x<2),BG=y,请你探究出y与x的函数关系式,并写出解答过程.问题解决(2)如图2,在(1)的条件下连接GH,发现△CGH的周长是一个定值.请你写出这个定值,并说明理由.拓展延伸(3)如图3,当点F在AB边上运动(不包括端点A、B),且始终保持∠AFE=60°.请你直接写出△DEF纸片的斜边EF与△ABC纸片的直角边所夹锐角的正切值2+或2﹣(结果保留根号).【解答】解:(1)如图:∵∠ACB=∠EDF=90°,且AC=BC=DF=DE=2cm,∴∠A=∠B=∠DFE=45°,∴∠AFH+∠BFG=∠BFG+∠FGB=135°,∴∠AFH=∠FGB,∴△AFH∽△BGF,∴,∴AH•BG=AF•BF,在Rt△ACB中,AC=BC=2,∴,∵O是AB的中点,点O与点F重合,∴,∴,∴,∴y与x的函数关系式为;(2)△CGH的周长定值为2,理由如下:∵AC=BC=2,AH=x,BG=y,∴CH=2﹣x,CG=2﹣y,在Rt△HCG中,∴===,将(1)中xy=2代入得:=,∵1<x<2,y=,∴1<y<2,∴x+y>2,∴GH=x+y﹣2,∴△CHG的周长=CH+CG+GH=2﹣x+2﹣y+x+y﹣2=2;(3)①过点F作FN⊥AC于点N,作FH的垂直平分线交FN于点M,连接MH,如图:∵∠AFE=60°,∠A=45°,∴∠AHF=75°,∴FM=MH,∵∠FNH=90°,∴∠NFH=15°,∵FM=MH,∴∠NFH=∠MHF=15°,∴∠NMH=30°,在Rt△MNH中,设NH=k,∴MH=MF=2k,∴MN==k,∴FN=MF+MN=(2+)k,在Rt△FNH中,;②过点F作FN⊥BC于点N,作FG的垂直平分线交BG于点M,连接FM,∵∠AFE=60°,∠B=45°,∴∠FGB=∠AFE﹣∠B=15°,∵GM=MF,∴∠FGB=∠GFM=15°,∴∠FMB=30°,在Rt△FNM中,设FN=k,∴GM=MF=2k,由勾股定理得MN==k,∴GN=GM+MN=(2+)k,在Rt△FNG中,,综上所述,tan或,故答案为:2+或2﹣.【点评】本题考查几何变换综合应用,涉及相似三角形判定与性质,等腰直角三角形性质及应用,锐角三角函数,勾股定理及应用等知识,解题的关键是作辅助线,构造直角三角形解决问题.28.(11分)综合与探究如图,在平面直角坐标系中,已知抛物线y=﹣x2+bx+c与直线相交于A,B两点,其中点A(3,4),B (0,1).(1)求该抛物线的函数解析式;(2)过点B作BC∥x轴交抛物线于点C.连接AC,在抛物线上是否存在点P使tan∠BCP=tan∠ACB.若存在,请求出满足条件的所有点P的坐标;若不存在,请说明理由.(提示:依题意补全图形,并解答)(3)将该抛物线向左平移2个单位长度得到y1=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点D,点E为原抛物线对称轴上的一点,F是平面直角坐标系内的一点,当以点B,D,E,F为顶点的四边形是菱形时,请直接写出点F的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c过点A(3,4),B(0,1),∴,解得:,∴该抛物线的函数解析式为y=﹣x2+4x+1;(2)存在.理由如下:∵BC∥x轴,且B(0,1),∴点C的纵坐标为1,∴1=﹣x2+4x+1,解得:x1=0(舍去),x2=4,∴C(4,1),过点A作AQ⊥BC于Q,设直线CP交y轴于点M,如图,在Rt△ACQ中,∵A(3,4),∴Q(3,1),∵tan∠BCP=tan∠ACB,∴tan∠BCP=×=×=,∵BC=4,∠CBM=90°,∴=tan∠BCP=,∴BM=BC=×4=2,∴|y M﹣1|=2,∴y M=3或﹣1,∴M1(0,3),M2(0,﹣1),∴直线CM1的解析式为y=﹣x+3,直线CM2的解析式为y=x﹣1,由,解得,(舍去),由,解得,(舍去),∴P1(,),P2(﹣,﹣),综上所述,满足条件的点P的坐标为P1(,),P2(﹣,﹣);(3)∵y=﹣x2+4x+1=﹣(x﹣2)2+5,∴原抛物线的对称轴为直线x=2,顶点坐标为(2,5),∵将该抛物线向左平移2个单位长度得到新抛物线y′,∴y′=﹣x2+5,联立得,解得:,∴D(1,4),又B(0,1),设E(2,t),F(m,n),当BD、EF为对角线时,则,解得:,∴F(﹣1,3);当BE、DF为对角线时,则,解得:或,∴F(1,4)与点D重合,不符合题意,舍去,或F(1,﹣2);当BF、DE为对角线时,则,解得:或,∴F(3,4﹣)或F(3,4+);综上所述,点F的坐标为(﹣1,3)或(1,﹣2)或(3,4﹣)或(3,4+).。
2014年黑龙江省绥化市中考数学试卷参考答案与试题解析一、填空题(每小题3分,满分33分)1.(3分)(2014?绥化)﹣2014的相反数2014.考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得答案.解答:解:∵﹣2014的相反数是2014,故答案为:2014.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2014?绥化)使二次根式有意义的x的取值范围是x≥﹣3.考点:二次根式有意义的条件.分析:二次根式有意义,被开方数为非负数,列不等式求解.解答:解:根据二次根式的意义,得x+3≥0,解得x≥﹣3.[来源:Z§xx§]点评:用到的知识点为:二次根式的被开方数是非负数.3.(3分)(2014?绥化)如图,AC、BD相交于点0,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是AB=CD(填出一个即可).考点:全等三角形的判定.专题:开放型.分析:添加条件是AB=CD,根据SAS推出两三角形全等即可.解答:解:AB=CD,理由是:∵在△AOB和△DOC中∴△AOB≌△DOC,故答案为:AB=CD.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.[来源学_科_网Z_X_X_K]4.(3分)(2014?绥化)布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.考点:概率公式.分析:根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.解答:解:∵一个布袋里装有3个红球和6个白球,∴摸出一个球摸到红球的概率为:=.故答案为.点评:此题主要考查了概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.5.(3分)(2014?绥化)化简﹣的结果是﹣.考点:分式的加减法.专题:计算题.分析:原式通分并利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣=﹣=﹣.故答案为:﹣.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)(2014?绥化)如图,直线a、b被直线c所截,a∥b,∠1+∠2的度数是180°.考点:平行线的性质.分析:根据平行线的性质得出∠1=∠3,求出∠2+∠3=180°,代入求出即可.解答:解:∵a∥b,∴∠1=∠3,∵∠2+∠3=180°,∴∠1+∠2=180°,故答案为:180°.点评:本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.7.(3分)(2014?绥化)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多120元.考点:一元一次方程的应用.分析:设这款服装每件的进价为x元,根据利润=售价﹣进价建立方程求出x的值就可以求出结论.解答:解:设这款服装每件的进价为x元,由题意,得300×0.8﹣x=60,解得:x=180.∴标价比进价多300﹣180=120元.故答案为:120.点评:本题考查了列一元一次方程解实际问题的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.8.(3分)(2014?绥化)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为3π(结果保留π)考点:扇形面积的计算.专题:计算题;压轴题.分析:根据扇形公式S扇形=,代入数据运算即可得出答案.解答:解:由题意得,n=120°,R=3,故S扇形===3π.故答案为:3π.点评:此题考查了扇形的面积计算,属于基础题,解答本题的关键是熟练掌握扇形的面积公式,另外要明白扇形公式中,每个字母所代表的含义.9.(3分)(2014?绥化)分解因式:a 3﹣4a 2+4a=a (a ﹣2)2.考点:提公因式法与公式法的综合运用.分析:观察原式a 3﹣4a 2+4a ,找到公因式a ,提出公因式后发现a 2﹣4a+4是完全平方公式,利用完全平方公式继续分解可得.解答:解:a 3﹣4a 2+4a ,=a (a 2﹣4a+4),=a (a ﹣2)2.点评:考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法(完全平方公式).要求灵活运用各种方法进行因式分解.10.(3分)(2014?绥化)如图,在平面直角坐标系中,已知点A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A →B →C →D →A …的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是(﹣1,﹣1).考点:规律型:点的坐标.分析:根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答:解:∵A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD 一周的细线长度为2+3+2+3=10,2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即线段BC 的中间位置,点的坐标为(﹣1,﹣1).故答案为:(﹣1,﹣1).点评:本题主要考查了点的变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2014个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.11.(3分)(2014?绥化)矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为3或6.考点:翻折变换(折叠问题).专题:分类讨论.分析:分①∠EFC=90°时,先判断出点F在对角线AC上,利用勾股定理列式求出AC,设BE=x,表示出CE,根据翻折变换的性质可得AF=AB,EF=BE,然后在Rt△CEF中,利用勾股定理列出方程求解即可;②∠CEF=90°时,判断出四边形ABEF是正方形,根据正方形的四条边都相等可得BE=AB.解答:解:①∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=8,∴BC=AD=8,在Rt△ABC中,AC===10,设BE=x,则CE=BC﹣BE=8﹣x,由翻折的性质得,AF=AB=6,EF=BE=x,∴CF=AC﹣AF=10﹣6=4,在Rt△CEF中,EF2+CF2=CE2,即x2+42=(8﹣x)2,解得x=3,即BE=3;②∠CEF=90°时,如图2,由翻折的性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=6,综上所述,BE的长为3或6.故答案为:3或6.点评:本题考查了翻折变化的性质,勾股定理,正方形的判定与性质,此类题目,利用勾股定理列出方程求解是常用的方法,本题难点在于分情况讨论,作出图形更形象直观.二、单项选择题(每题3分,满分21分)12.(3分)(2014?绥化)下列运算正确的是()A.(a3)2=a6B.3a+3b=6ab C.a6÷a3=a2D.a3﹣a=a2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据幂的乘方,可判断A,根据合并同类项,可判断B,根据同底数幂的除法,可判断C、D.解答:解:A、底数不变指数相乘,故A正确;B、不是同类项不能合并,故B错误;C、底数不变指数相减,故C错误;D、不是同底数幂的除法,指数不能相减,故D错误;故选:A.点评:本题考查了幂的运算,根据法则计算是解题关键.13.(3分)(2014?绥化)下列图形中,既是中心对称图形又是轴对称图形的是()A.角B.等边三角形C.平行四边形D.圆考点:中心对称图形;轴对称图形.专题:常规题型.分析:根据轴对称及中心对称的定义,结合选项所给图形的特点即可作出判断.解答:解:A、角是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、平行四边形不轴对称图形,是中心对称图形,故本选项错误;D、圆既是轴对称图形也是中心对称图形,故本选项正确;故选D.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.(3分)(2014?绥化)分式方程的解是()A.x=﹣2 B.x=2 C.x=1 D.x=1或x=2考点:解分式方程.专题:方程思想.分析:观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣2),得2x﹣5=﹣3,解得x=1.检验:当x=1时,(x﹣2)=﹣1≠0.∴原方程的解为:x=1.故选C.点评:考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.15.(3分)(2014?绥化)如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图.分析:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图右3列,从左到右分别是1,3,2个正方形.解答:解:由俯视图中的数字可得:主视图右3列,从左到右分别是1,3,2个正方形.故选C.点评:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.16.(3分)(2014?绥化)如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S2考点:反比例函数系数k的几何意义.分析:根据题意,易得AB两点关与原点对称,可设A点坐标为(m,n),则B的坐标为(﹣m,﹣n);在Rt△EOF中,由AE=AF,可得A为EF中点,分析计算可得S2,矩形OCBD中,易得S1,比较可得答案.解答:解:设A点坐标为(m,n),过点O的直线与双曲线y=交于A、B两点,则A、B两点关与原点对称,则B的坐标为(﹣m,﹣n);矩形OCBD中,易得OD=﹣n,OC=m;则S1=﹣mn;在Rt△EOF中,AE=AF,故A为EF中点,由中位线的性质可得OF=﹣2n,OE=2m;则S2=OF×OE=﹣4mn;故2S1=S2.故选B.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.[来源学§科§网Z§X§X§K]17.(3分)(2014?绥化)如图是二次函数y=ax 2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A.b2>4ac B.ac>0 C.a﹣b+c>0 D.4a+2b+c<0考点:二次函数图象与系数的关系.专题:数形结合.分析:根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向下得a<0,由抛物线与y轴的交点在x轴上方得c>0,则可对B进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可C选项进行判断;由于x=2时,函数值小于0,则有4a+2b+c>0,于是可对D选项进行判断.解答:解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项正确;∵抛物线开口向下,∴a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac<0,所以B选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以C选项错误;∵当x=2时,y>0,∴4a+2b+c>0,所以D选项错误.故选A.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac <0,抛物线与x轴没有交点.18.(3分)(2014?绥化)如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE 于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个考点:矩形的性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质.分析:根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE 和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;再求出∠AHB=67.5°,∠DOH=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;再求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF 全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;根据全等三角形对应边相等可得DF=HE,然后根据DH=DC﹣CF整理得到BC﹣2CF=2HE,判断出④错误;判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.解答:解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠DOH=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DOH=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵DF=DC﹣CF=BC﹣CF,∴BC﹣2CF=2DF,∴BC﹣2CF=2HE,故④错误;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③共3个.故选B.点评:本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也本题的难点.三、解答题(满分66分)19.(5分)(2014?绥化)计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:分别进行二次根式的化简、特殊角的三角函数值、零指数幂、负整数指数幂等运算,然后按照实数的运算法则计算即可.解答:解:原式=2﹣2×+1﹣8=.点评:本题考查了实数的运算,涉及了二次根式的化简、特殊角的三角函数值、零指数幂、负整数指数幂等知识,属于基础题.20.(6分)(2014?绥化)某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数和中位数;(3)估计这240名学生共植树多少棵?考点:条形统计图;用样本估计总体;中位数;众数.专题:图表型.分析:(1)求出D类的人数,然后补全统计图即可;(2)根据众数的定义解答,根据中位数的定义,找出第10人和第11人植树的棵树,然后解答即可;(3)求出20人植树的平均棵树,然后乘以总人数240计算即可得解.解答:解:(1)D类的人数为:20﹣4﹣8﹣6=20﹣18=2人,补全统计图如图所示;(2)由图可知,植树5棵的人数最多,是8人,所以,众数为5,按照植树的棵树从少到多排列,第10人与第11人都是植5棵数,所以,中位数是5;(3)==5.3(棵),240×5.3=1272(棵).答:估计这240名学生共植树1272棵.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(6分)(2014?绥化)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B (3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.考点:作图-位似变换;作图-平移变换.分析:(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.解答:解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××20=10平方单位.故答案为:10.点评:此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.22.(6分)(2014?绥化)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD.(1)求证:CB∥PD;(2)若BC=3,sin∠BPD=,求⊙O的直径.考点:圆周角定理;垂径定理;解直角三角形.分析:(1)根据圆周角定理和已知求出∠D=∠BCD,根据平行线的判定推出即可;(2)根据垂径定理求出弧BC=弧BD,推出∠A=∠P,解直角三角形求出即可.解答:(1)证明:∵∠D=∠1,∠1=∠BCD,∴∠D=∠BCD,∴CB∥PD;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴弧BD=弧BC,∴∠BPD=∠CAB,∴sin∠CAB=sin∠BPD=,[来源学§科§网Z§X§X§K]即=,∵BC=3,∴AB=5,即⊙O的直径是5.点评:本题考查了圆周角定理,解直角三角形,垂径定理,平行线的判定的应用,主要考查学生的推理能力.23.(8分)(2014?绥化)在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:(1)A、C两村间的距离为120km,a=2;(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;(3)乙在行驶过程中,何时距甲10km?考点:一次函数的应用.分析:(1)由图可知与y轴交点的坐标表示A、C两村间的距离为120km,再由0.5小时距离C村90kM,形式120﹣90=30km,速度为60km/h,求得a=2;(2)求得y1,y2两个函数解析式,建立方程求得点P坐标,表示在什么时间相遇以及距离C 村的距离;(3)由(2)中的函数解析式根据距甲10km建立方程;探讨得出答案即可.解答:解:(1)A、C两村间的距离120km,a=120÷[(120﹣90)÷0.5]=2;(2)设y1=k1x+120,代入(2,0)解得y1=﹣60x+120,y2=k2x+90,代入(3,0)解得y1=﹣30x+90,由﹣60x+120=﹣30x+90解得x=1,则y1=y2=60,所以P(1,60)表示经过1小时甲与乙相遇且距C村60km.(3)当y1﹣y2=10,即﹣60x+120﹣(﹣30x+90)=10解得x=,当y2﹣y1=10,即﹣30x+90﹣(﹣60x+120)=10解得x=,当甲走到C地,而乙距离C地10km时,﹣30x+90=10解得x=;综上所知当x=h,或x=h,或x=h乙距甲10km.点评:此题考查一次函数的运用,一次函数与二元一次方程组的运用,解答时认真分析图象求出解析式是关键,注意分类思想的渗透.24.(8分)(2014?绥化)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?考点:一元一次不等式组的应用.专题:应用题;压轴题.分析:(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.解答:解:(1)设购进A种商品x件,B种商品y件,根据题意得[来源:Z。
2024年黑龙江绥化市中考数学试题+答案详解(试题部分)考生注意:1.考试时间120分钟2.本试题共三道大题,28个小题,总分120分3.所有答案都必须写在答题卡上所对应的题号后的指定区域内 一、单项选择题(本题共12个小题,每小题3分,共36分) 请在答题卡上用2B 铅笔将你的选项所对应的方框涂黑1. 实数12025−的相反数是( )A. 2025B. 2025−C. 12025−D.120252. 下列所述图形中,是轴对称图形但不是中心对称图形的是( ) A. 圆B. 菱形C. 平行四边形D. 等腰三角形3. 某几何体是由完全相同的小正方体组合而成,下图是这个几何体的三视图,那么构成这个几何体的小正方体的个数是( )A. 5个B. 6个C. 7个D. 8个4.有意义,则m 的取值范围是( ) A. 23m ≤B. 32m ≥−C. 32m ≥D. 23m ≤−5. 下列计算中,结果正确的是( ) A. ()2139−−=B. ()222a b a b +=+C.3=±D. ()3263x yx y −=6. 小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是2−和5−.则原来的方程是( ) A. 2650x x ++= B. 27100x x −+= C. 2520x x −+=D. 26100x x −−=7. 某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的( ) A. 平均数B. 中位数C. 众数D. 方差8. 一艘货轮在静水中的航速为40km /h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为( ) A. 5km /hB. 6km /hC. 7km /hD. 8km /h9. 如图,矩形OABC 各顶点的坐标分别为()0,0O ,()3,0A ,()3,2B ,()0,2C ,以原点O 为位似中心,将这个矩形按相似比13缩小,则顶点B 在第一象限对应点的坐标是( )A. ()9,4B. ()4,9C. 31,2⎛⎫⎪⎝⎭D. 21,3⎛⎫⎪⎝⎭10. 下列叙述正确的是( )A. 顺次连接平行四边形各边中点一定能得到一个矩形B. 平分弦的直径垂直于弦C. 物体在灯泡发出的光照射下形成的影子是中心投影D. 相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等11. 如图,四边形ABCD 是菱形,5CD =,8BD =,AE BC ⊥于点E ,则AE 的长是( )A.245B. 6C.485D. 1212. 二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线=1x −,则下列结论中: ①0bc> ②2am bm a b +≤−(m 为任意实数) ③31a c +< ④若()1,M x y 、()2,N x y 是抛物线上不同的两个点,则123x x +≤−.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本题共10个小题,每小题3分,共30分) 请在答题卡上把你的答案写在所对应的题号后的指定区域内13. 中国的领水面积约为370 000 km 2,将数370 000用科学记数法表示为:__________. 14. 分解因式:2228mx my −=______.15. 如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠=______︒.16. 如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为______m (结果保留根号).17. 计算:22x y xy y x x x ⎛⎫−−÷−= ⎪⎝⎭_________. 18. 用一个圆心角为126︒,半径为10cm 的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为______cm .19. 如图,已知点()7,0A −,(),10B x ,()17,C y −,在平行四边形ABCO 中,它的对角线OB 与反比例函数()0ky k x=≠的图象相交于点D ,且:1:4OD OB =,则k =______.20. 如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠=______.21. 如图,已知(11,A ,(23,A ,()34,0A ,()46,0A ,(5A ,(6A ,()710,0A ,(811,A …,依此规律,则点2024A 的坐标为______.22. 在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是______cm .三、解答题(本题共6个小题,共54分)请在答题卡上把你的答案写在所对应的题号后的指定区域内23. 已知:ABC .(1)尺规作图:画出ABC的重心G.(保留作图痕迹,不要求写作法和证明)5cm,则ABC的面积是______(2)在(1)的条件下,连接AG,BG.已知ABG的面积等于22cm.24. 为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动.为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图.请根据统计图中的信息,解答下列问题:(1)参加本次问卷调查的学生共有______人.(2)在扇形统计图中,A组所占的百分比是______,并补全条形统计图.(3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示.请用树状图法或列表法,求选中的2个社团恰好是B和C的概率.25. 为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买A、B两种电动车.若购买A种电动车25辆、B种电动车80辆,需投入资金30.5万元;若购买A种电动车60辆、B种电动车120辆,需投入资金48万元.已知这两种电动车的单价不变.(1)求A、B两种电动车的单价分别是多少元?(2)为适应共享电动车出行市场需求,该公司计划购买A、B两种电动车200辆,其中A种电动车的数量不多于B种电动车数量的一半.当购买A种电动车多少辆时,所需的总费用最少,最少费用是多少元?x (3)该公司将购买的A、B两种电动车投放到出行市场后,发现消费者支付费用y元与骑行时间min 之间的对应关系如图.其中A种电动车支付费用对应的函数为1y;B种电动车支付费用是10min之内,起步价6元,对应的函数为2y.请根据函数图象信息解决下列问题.①小刘每天早上需要骑行A 种电动车或B 种电动车去公司上班.已知两种电动车的平均行驶速度均为300m /min (每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的距离为8km ,那么小刘选择______种电动车更省钱(填写A 或B ).②直接写出两种电动车支付费用相差4元时,x 的值______.26. 如图1,O 是正方形ABCD 对角线上一点,以O 为圆心,OC 长为半径的O 与AD 相切于点E ,与AC 相交于点F .(1)求证:AB 与O 相切.(2)若正方形ABCD 1+,求O 的半径.(3)如图2,在(2)的条件下,若点M 是半径OC 上的一个动点,过点M 作MN OC ⊥交CE 于点N .当:1:4CM FM =时,求CN 的长.27. 综合与实践 问题情境在一次综合与实践课上,老师让同学们以两个全等的等腰直角三角形纸片为操作对象. 纸片ABC 和DEF 满足90ACB EDF ∠=∠=︒,2cm AC BC DF DE ====. 下面是创新小组的探究过程. 操作发现(1)如图1,取AB 的中点O ,将两张纸片放置在同一平面内,使点O 与点F 重合.当旋转DEF 纸片交AC 边于点H 、交BC 边于点G 时,设()12AH x x =<<,BG y =,请你探究出y 与x 的函数关系式,并写出解答过程. 问题解决(2)如图2,在(1)的条件下连接GH ,发现CGH 的周长是一个定值.请你写出这个定值,并说明理由. 拓展延伸(3)如图3,当点F 在AB 边上运动(不包括端点A 、B ),且始终保持60AFE ∠=︒.请你直接写出DEF 纸片的斜边EF 与ABC 纸片的直角边所夹锐角的正切值______(结果保留根号).28. 综合与探究如图,在平面直角坐标系中,已知抛物线2y x bx c =−++与直线相交于A ,B 两点,其中点()3,4A ,()0,1B .(1)求该抛物线的函数解析式.(2)过点B 作BC x ∥轴交抛物线于点C ,连接AC ,在抛物线上是否存在点P 使1tan tan 6BCP ACB ∠=∠.若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.(提示:依题意补全图形,并解答)(3)将该抛物线向左平移2个单位长度得到()2111110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点D ,点E 为原抛物线对称轴上的一点,F 是平面直角坐标系内的一点,当以点B 、D 、E 、F 为顶点的四边形是菱形时,请直接写出点F 的坐标.2024年黑龙江绥化市中考数学试题+答案详解(答案详解)考生注意:1.考试时间120分钟2.本试题共三道大题,28个小题,总分120分3.所有答案都必须写在答题卡上所对应的题号后的指定区域内 一、单项选择题(本题共12个小题,每小题3分,共36分) 请在答题卡上用2B 铅笔将你的选项所对应的方框涂黑1. 实数12025−的相反数是( )A. 2025B. 2025−C. 12025−D.12025【答案】D 【解析】【分析】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键. 【详解】解:实数12025−的相反数是12025,故选:D .2. 下列所述图形中,是轴对称图形但不是中心对称图形的是( ) A. 圆 B. 菱形C. 平行四边形D. 等腰三角形【答案】D 【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可. 【详解】A 、是轴对称图形,也是中心对称图形,故此选项错误; B 、是轴对称图形,也是中心对称图形,故此选项错误; C 、不是轴对称图形,是中心对称图形,故此选项错误; D 、是轴对称图形,不是中心对称图形,故此选项正确, 故选D .【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.3. 某几何体是由完全相同的小正方体组合而成,下图是这个几何体的三视图,那么构成这个几何体的小正方体的个数是( )A. 5个B. 6个C. 7个D. 8个【答案】A 【解析】【分析】此题主考查了三视图,由主视图易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图和左视图可得第二层立方体的个数,相加即可.【详解】解:由三视图易得最底层有3个正方体,第二层有2个正方体,那么共有325+=个正方体组成. 故选:A .4. 有意义,则m 的取值范围是( ) A. 23m ≤B. 32m ≥−C. 32m ≥D. 23m ≤−【答案】C 【解析】【分析】本题考查了二次根式有意义的条件,根据题意可得230m −≥,即可求解.有意义, ∴230m −≥, 解得:32m ≥, 故选:C .5. 下列计算中,结果正确的是( ) A. ()2139−−=B. ()222a b a b +=+C.3=±D. ()3263x yx y −=【答案】A 【解析】【分析】本题考查了负整数指数幂,完全平方公式,算术平方根,积的乘方,据此逐项分析计算,即可求解.【详解】解:A. ()2139−−=,故该选项正确,符合题意; B. ()2222a b a ab b +=++,故该选项不正确,不符合题意;C.3=,故该选项不正确,不符合题意;D. ()3263x yx y −=−,故该选项不正确,不符合题意;故选:A .6. 小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是2−和5−.则原来的方程是( ) A. 2650x x ++= B. 27100x x −+= C. 2520x x −+= D. 26100x x −−=【答案】B 【解析】【分析】本题考查了一元二次方程根与系数的关系,根据题意得出原方程中127x x +=,1210x x =,逐项分析判断,即可求解.【详解】解:∵小影在化简过程中写错了常数项,得到方程的两个根是6和1; ∴12617x x +=+=,又∵写错了一次项的系数,因而得到方程的两个根是2−和5−. ∴1210x x =A. 2650x x ++=中,126x x +=−,125x x =,故该选项不符合题意;B. 27100x x −+=中,127x x +=,1210x x =,故该选项符合题意;C. 2520x x −+=中,125x x +=,122x x =,故该选项不符合题意;D. 26100x x −−=中,126x x +=,1210x x =−,故该选项不符合题意; 故选:B .7. 某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的( )A. 平均数B. 中位数C. 众数D. 方差【答案】C【解析】【分析】此题主要考查统计的有关知识,了解平均数、中位数、众数、方差的意义;平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故老板最关注的销售数据的统计量是众数. 故选:C .8. 一艘货轮在静水中的航速为40km /h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为( )A. 5km /hB. 6km /hC. 7km /hD. 8km /h 【答案】D【解析】【分析】此题主要考查了分式方程的应用,利用顺水速=静水速+水速,逆水速=静水速-水速,设未知数列出方程,解方程即可求出答案.【详解】解:设江水的流速为km/h x ,根据题意可得: 120804040x x=+−, 解得:8x =,经检验:8x =是原方程的根,答:江水的流速为8km/h .故选:D .9. 如图,矩形OABC 各顶点的坐标分别为()0,0O ,()3,0A ,()3,2B ,()0,2C ,以原点O 为位似中心,将这个矩形按相似比13缩小,则顶点B 在第一象限对应点的坐标是( )A. ()9,4B. ()4,9C. 31,2⎛⎫ ⎪⎝⎭D. 21,3⎛⎫ ⎪⎝⎭【答案】D【解析】 【分析】本题考查了位似图形的性质,根据题意B 的坐标乘以13,即可求解. 【详解】解:依题意,()3,2B ,以原点O 为位似中心,将这个矩形按相似比13缩小,则顶点B 在第一象限对应点的坐标是21,3⎛⎫ ⎪⎝⎭故选:D .10. 下列叙述正确的是( )A. 顺次连接平行四边形各边中点一定能得到一个矩形B. 平分弦的直径垂直于弦C. 物体在灯泡发出的光照射下形成的影子是中心投影D. 相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等【答案】C【解析】【分析】本题考查了矩形的判定,垂径定理,中心投影,弧、弦与圆心角的关系,根据相关定理逐项分析判断,即可求解.【详解】A. 顺次连接平行四边形各边中点不一定能得到一个矩形,故该选项不正确,不符合题意;B. 平分弦(非直径)的直径垂直于弦,故该选项不正确,不符合题意;C. 物体在灯泡发出的光照射下形成的影子是中心投影,故该选项正确,符合题意;D. 在同圆或等圆 中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等,故该选项不正确,不符合题意;故选:C .11. 如图,四边形ABCD 是菱形,5CD =,8BD =,AE BC ⊥于点E ,则AE 的长是( )A. 245B. 6C. 485D. 12【答案】A【解析】【分析】本题考查了勾股定理,菱形的性质,根据勾股定理求得OC ,进而得出6AC =,进而根据等面积法,即可求解.【详解】解:∵四边形ABCD 是菱形,5CD =,8BD =, ∴142DO BD ==,AC BD ⊥,5BC CD ==,在Rt CDO △中,3CO ==, ∴26AC OC ==,∵菱形ABCD 的面积为12AC BD BC AE ⨯=⨯, ∴18624255AE ⨯⨯==, 故选:A .12. 二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线=1x −,则下列结论中: ①0b c> ②2am bm a b +≤−(m 为任意实数) ③31a c +< ④若()1,M x y 、()2,N x y 是抛物线上不同的两个点,则123x x +≤−.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】 【分析】本题考查了二次函数的图象的性质,根据抛物线的开口方向,对称轴可得a<0,20b a =<即可判断①,=1x −时,函数值最大,即可判断②,根据1x =时,0y <,即可判断③,根据对称性可得122x x +=−即可判段④,即可求解.【详解】解:∵二次函数图象开口向下∴a<0∵对称轴为直线=1x −, ∴12b x a=−=− ∴20b a =<∵抛物线与y 轴交于正半轴,则0c > ∴0b c<,故①错误, ∵抛物线开口向下,对称轴为直线=1x −,∴当=1x −时,y 取得最大值,最大值为a b c −+∴2am bm c a b c ++≤−+(m 为任意实数)即2am bm a b +≤−,故②正确;∵1x =时,0y <即0a b c ++<∵2b a =∴20a a c ++<即30a c +<∴31a c +<,故③正确;∵()1,M x y 、()2,N x y 是抛物线上不同的两个点,∴,M N 关于=1x −对称, ∴1212x x +=−即122x x +=−故④不正确正确的有②③故选:B二、填空题(本题共10个小题,每小题3分,共30分)请在答题卡上把你的答案写在所对应的题号后的指定区域内13. 中国的领水面积约为370 000 km 2,将数370 000用科学记数法表示为:__________.【答案】3.7×105【解析】【详解】科学记数法是指:a ×10n ,且1≤a <10,n 为原数的整数位数减一,370000=3.7×510. 故答案为:3.7×105.14. 分解因式:2228mx my −=______.【答案】()()222m x y x y +−【解析】【分析】本题考查了因式分解,先提公因式2m ,然后根据平方差公式因式分解,即可求解.【详解】解:2228mx my −=()2224m x y −=()()222m x y x y +−故答案为:()()222m x y x y +−.15. 如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠=______︒.【答案】66【解析】【分析】本题考查了平行线的性质,等边对等角,三角形外角的性质,根据等边对等角可得33E C ∠=∠=︒,根据三角形的外角的性质可得66DOE ∠=︒,根据平行线的性质,即可求解.【详解】解:∵OC OE =,33C ∠=︒,∴33E C ∠=∠=︒,∴66DOE E C ∠=∠+∠=︒,∵AB CD ∥,∴66A DOE =∠=︒∠,故答案为:66.16. 如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为______m (结果保留根号).【答案】(50+##()50【解析】【分析】本题考查解直角三角形—仰角俯角问题.注意准确构造直角三角形是解答此题的关键.根据题意得456050m BAD CAD AD ∠=︒∠=︒=,,,然后利用三角函数求解即可.【详解】解:依题意,456050m BAD CAD AD ∠=︒∠=︒=,,.在Rt △ABD 中,tan 4550150m BD AD =⋅︒=⨯=,在Rt ACD △中,tan 6050CD AD =⋅︒==,∴(m 50BC BD CD =+=+.故答案为:(50+. 17. 计算:22x y xy y x x x ⎛⎫−−÷−= ⎪⎝⎭_________. 【答案】1x y− 【解析】【分析】本题考查了分式的混合运算.先算括号内的减法,把除法变成乘法,再根据分式的乘法法则进行计算即可. 【详解】解:22x y xy y x x x ⎛⎫−−÷− ⎪⎝⎭ 222x y x xy y x x−−+=÷ 2()x y x x x y −=− 1x y=−,故答案为:1x y−. 18. 用一个圆心角为126︒,半径为10cm 的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为______cm . 【答案】72【解析】【分析】本题考查了弧长公式,根据圆锥的底面圆的周长等于侧面的弧长,代入数据计算,即可求解.【详解】解:设这个圆锥的底面圆的半径为cm R ,由题意得,12610π2π180R ⨯⨯= 解得:7cm 2R = 故答案为:72. 19. 如图,已知点()7,0A −,(),10B x ,()17,C y −,在平行四边形ABCO 中,它的对角线OB 与反比例函数()0k y k x=≠的图象相交于点D ,且:1:4OD OB =,则k =______.【答案】15−【解析】【分析】本题考查了反比例函数与平行四边形综合,相似三角形的性质与判定,分别过点,B D ,作x 的垂线,垂足分别为,F E ,根据平行四边形的性质得出()2410B −,,证明ODE OBF △∽△得出6OE =,2.5DE =,进而可得()6,2.5D −,即可求解.【详解】如图所示,分别过点,B D ,作x 的垂线,垂足分别为,F E ,∵四边形AOCB 是平行四边形,点()7,0A −,(),10B x ,()17,C y −,∴7OA BC ==,∴24x =−,即()2410B −,,则24OF =,10BF = ∵DE x ⊥轴,BF x ⊥轴,∴DE BF ∥∴ODE OBF △∽△ ∴14OE OD DE OF OB BF === ∴6OE =, 2.5DE =∴()6,2.5D −∴6 2.515k =−⨯=−故答案为:15−.20. 如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠=______.【答案】80︒##80度【解析】【分析】本题考查了轴对称-最短路线问题,等腰三角形的性质,三角形内角和定理的应用;作关于OA ,OB 的对称点12P P ,.连接12OP OP ,.则当M ,N 是12PP 与OA ,OB 的交点时,PMN 的周长最短,根据对称的性质可以证得:150OPM OPM ∠=∠=︒,12OP OP OP ==,根据等腰三角形的性质即可求解.【详解】解:作P 关于OA ,OB 的对称点12P P ,.连接12OP OP ,.则当M ,N 是12PP 与OA ,OB 的交点时,PMN 的周长最短,连接12PO P O 、,1PP 关于OA 对称,∴11112POP MOP OP OP PM PM OPM OPM ∠=∠==∠=∠,,,同理,222P OP NOP OP OP ∠=∠=,,12122(210)0POP POP P OP MOP NOP AOB ∴∠=∠+∠=∠+∠=∠=︒,12OP OP OP ==, ∴12POP △是等腰三角形.∴2140OP N OPM ∠=∠=︒, ∴2180MPN MPO NPO OP N OPM ∠=∠+∠=∠+∠=︒ 故答案为:80︒.21. 如图,已知(11,A ,(23,A ,()34,0A ,()46,0A ,(5A ,(6A ,()710,0A ,(811,A …,依此规律,则点2024A 的坐标为______.【答案】(2891,【解析】【分析】本题考查了点坐标的规律探究.解题的关键在于根据题意推导出一般性规律.根据题意可知7个点坐标的纵坐标为一个循环,7n A 的坐标为()10,0n ,据此可求得2024A 的坐标.【详解】解:∵(11,A ,(23,A ,()34,0A ,()46,0A ,(5A ,(6A ,()710,0A ,(811,A …,,∴可知7个点坐标的纵坐标为一个循环,7n A 的坐标为()10,0n ,(71101,n A n ++∵202472891÷=⋅⋅⋅,∴2023A 的坐标为()2890,0.∴2024A 的坐标为(2891,故答案为:(2891,.22. 在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是______cm .或5或【解析】【分析】本题考查了矩形的性质,解直角三角形,设,AC BD 交于点O ,点1E 在线段AD 上,2E 在AD 的延长线上,过点AC 作AC ,BD 的垂线,垂足分别为123,,F F F ,进而分别求得垂线段的长度,即可求解.【详解】解:∵四边形ABCD 是矩形,4AB =,8BC =,∴8AD BC ==,4CD AB ==,∴AC ===∴sin5CD CAD AC ∠===,cos 5CAD ∠==,41tan 82CAD ∠== 如图所示,设,AC BD 交于点O ,点1E 在线段AD 上,2E 在AD 的延长线上,过点AC 作AC ,BD 的垂线,垂足分别为123,,F F F∵AO DO =∴OAD ODA ∠=∠当E 在线段AD 上时,∴1826AE AD DE =−=−=在11Rt AE F 中个,111sin 655E F AE CAD =⋅∠== ∵OAD ODA ∠=∠在12Rt E F D 中,12112sin 255E F DE E DF =∠=⨯=; 当E 在射线AD 上时,在2Rt DCE 中,221tan 42DCE ∠== ∴CAD DCE ∠=∠∴90DCE DCA ∠+∠=︒∴2E C AC ⊥∴2E C ===在23Rt DE F 中,232232sin 55E F DE E DF DE =⨯∠=⨯=综上所述,点E 或5或或5或 三、解答题(本题共6个小题,共54分)请在答题卡上把你的答案写在所对应的题号后的指定区域内23. 已知:ABC.(1)尺规作图:画出ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知ABG的面积等于25cm,则ABC的面积是______ 2cm.【答案】(1)见解析(2)15【解析】【分析】本题考查了三角形重心的性质,画垂线;(1)分别作,BC AC的中线,交点即为所求;(2)根据三角形重心的性质可得23ABGABDSS=,根据三角形中线的性质可得2215cmABC ABDS S==【小问1详解】解:作法:如图所示①作BC的垂直平分线交BC于点D②作AC的垂直平分线交AC于点F③连接AD、BF相交于点G④标出点G,点G即为所求【小问2详解】解:∵G是ABC的重心,∴23 AG AD=∴23 ABGABDSS=∵ABG 的面积等于25cm ,∴27.5cm ABD S =又∵D 是BC 的中点,∴2215cm ABC ABD S S ==故答案为:15.24. 为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动.为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图.请根据统计图中的信息,解答下列问题:(1)参加本次问卷调查的学生共有______人.(2)在扇形统计图中,A 组所占的百分比是______,并补全条形统计图.(3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示.请用树状图法或列表法,求选中的2个社团恰好是B 和C 的概率.【答案】(1)60(2)30%,作图见解析(3)16【解析】【分析】本题考查了条形统计图与扇形统计图信息关联,列表法或画树状图法求概率;(1)根据D 组的人数除以占比得出总人数;(2)根据总人数求得A 组的人数,进而求得占比,以及补全统计图;(3)根据列表法或画树状图法求概率,即可求解.【小问1详解】解:参加本次问卷调查的学生共有1220%60÷=(人);【小问2详解】解:A组人数为6020101218−−−=人A组所占的百分比为:18100%30% 60⨯=补全统计图如图所示,【小问3详解】画树状图法如下图列表法如下图由树状图法或列表法可以看出共有12种结果出现的可能性相等,选中的2个社团恰好是B和C的情况有两种.∴P(选中的2个社团恰好是B和C)21 126 ==.25. 为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买A、B两种电动车.若购买A种电动车25辆、B种电动车80辆,需投入资金30.5万元;若购买A种电动车60辆、B种电动车120辆,需投入资金48万元.已知这两种电动车的单价不变.(1)求A 、B 两种电动车的单价分别是多少元?(2)为适应共享电动车出行市场需求,该公司计划购买A 、B 两种电动车200辆,其中A 种电动车的数量不多于B 种电动车数量的一半.当购买A 种电动车多少辆时,所需的总费用最少,最少费用是多少元? (3)该公司将购买的A 、B 两种电动车投放到出行市场后,发现消费者支付费用y 元与骑行时间min x 之间的对应关系如图.其中A 种电动车支付费用对应的函数为1y ;B 种电动车支付费用是10min 之内,起步价6元,对应的函数为2y .请根据函数图象信息解决下列问题.①小刘每天早上需要骑行A 种电动车或B 种电动车去公司上班.已知两种电动车的平均行驶速度均为300m /min (每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的距离为8km ,那么小刘选择______种电动车更省钱(填写A 或B ).②直接写出两种电动车支付费用相差4元时,x 的值______.【答案】(1)A 、B 两种电动车的单价分别为1000元、3500元(2)当购买A 种电动车66辆时所需的总费用最少,最少费用为535000元(3)①B ②5或40【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用;(1)设A 、B 两种电动车的单价分别为x 元、y 元,根据题意列二元一次方程组,解方程组,即可求解;(2)设购买A 种电动车m 辆,则购买B 种电动车()200m −辆,根据题意得出m 的范围,进而根据一次函数的性质,即可求解;(3)①根据函数图象,即可求解;②分别求得12,y y 的函数解析式,根据214y y −=,解方程,即可求解.【小问1详解】解:设A 、B 两种电动车的单价分别为x 元、y 元由题意得,258030500060120480000x y x y +=⎧⎨+=⎩ 解得10003500x y =⎧⎨=⎩答:A 、B 两种电动车的单价分别为1000元、3500元【小问2详解】设购买A 种电动车m 辆,则购买8种电动车()200m −辆,由题意得:()12002m m ≤− 解得:2003m ≤ 设所需购买总费用为w 元,则()100035002002500700000w m m m =+−=−+25000−<,w 随着 m 的增大而减小, m 取正整数66m ∴=时,w 最少∴700000250066535000w =−⨯=最少 (元)答:当购买A 种电动车66辆时所需的总费用最少,最少费用为535000元【小问3详解】解:①∵两种电动车的平均行驶速度均为300m /min ,小刘家到公司的距离为8km , ∴所用时间为80002263003=分钟, 根据函数图象可得当20x >时,21y y <更省钱,∴小刘选择B 种电动车更省钱,故答案为:B .②设11y k x =,将()20,8代入得,1820k = 解得:25k =∴125y x =; 当010x <≤时,26y =,当10x >时,设222y k x b =+,将()10,6,()20,8代入得,2222610820k b k b =+⎧⎨=+⎩解得:22154k b ⎧=⎪⎨⎪=⎩ ∴2145y x =+ 依题意,当010x <<时,214y y −= 即2645x −= 解得:5x =当10x >时,214y y −= 即124455x x +−= 解得:0x =(舍去)或40x =故答案为:5或40.26. 如图1,O 是正方形ABCD 对角线上一点,以O 为圆心,OC 长为半径的O 与AD 相切于点E ,与AC 相交于点F .(1)求证:AB 与O 相切.(2)若正方形ABCD1+,求O 的半径.(3)如图2,在(2)的条件下,若点M 是半径OC 上的一个动点,过点M 作MN OC ⊥交CE 于点N .当:1:4CM FM =时,求CN 的长.【答案】(1)证明见解析(2(3)5【解析】【分析】(1)方法一:连接OE ,过点O 作OG AB ⊥于点G ,四边形ABCD 是正方形,AC 是正方形的对角线,得出OE OG =,进而可得OG 为O 的半径,又OG AB ⊥,即可得证;方法二:连接OE ,过点O 作OG AB ⊥于点G ,根据正方形的性质证明()AAS AOE AOG ≌得出OE OG =,同方法一即可得证;方法三:过点O 作OG AB ⊥于点G ,连接OE .得出四边形AEOG 为正方形,则OE OG =,同方法一即可得证;(2)根据O 与AD 相切于点E ,得出90AEO ∠=︒,由(1)可知AE OE =,设AE OE OC OF R ====,在Rt AEO △中,勾股定理得出AO =,在Rt ADC 中,勾股定理求得AC ,进而根据OA OC AC +=建立方程,解方程,即可求解.(3)方法一:连接ON ,设CM k =,在Rt OMN △中,由勾股定理得:2MN k =,在Rt CMN 中,由勾股定理得:CN =,结合题意522FC k R ====5k =,即可得出CN ;方法二:连接FN ,证明CNM CFN ∽△△得出2CN CM CF =⋅,进而可得155CM CF ==,同理可得CN 方法三:连接FN ,证明CNM CFN ∽△△得出2NC MC FC =⋅,设CM k =,则5FC k =,进而可得NC =,进而同方法一,即可求解.【小问1详解】方法一:证明:连接OE ,过点O 作OG AB ⊥于点G , O 与AD 相切于点E ,。
姓名 考号试卷类型A2014年呼伦贝尔市初中毕业生学业考试数 学温馨提示:1.本试卷共6页,满分120分.考试时间120分钟.2.答卷前务必将自己的姓名、考号、座位号、试卷类型(A 或B )涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色字迹签字笔直接答在答题卡上.在试卷上作答无效.3.请将姓名与考号填写在本试卷相应位置上. 4.考试结束,将试卷、答题卡和草纸一并交回.一、选择题(下列各题的四个选项中只有一个正确.共12小题,每小题3分,共36分) 1.13-的倒数是A .3B .3-C .13-D .132.用3个相同的立方块搭成的几何体如图所示,它的主视图是A B C D正面3.下列各式计算正确的是A .532x x x -=B .336()mn mn =C .222)(b a b a +=+D .624p p p ÷=(0)p ≠4.在正方形、等腰三角形、矩形、菱形中,既是中心对称图形又是轴对称图形的有 A .1个B .2个C .3个D .4个5.下列事件是随机事件的是A .通常情况温度降到0℃以下,纯净的水结冰;B .随意翻到一本书的某页,这页的页码是偶数;C .度量三角形的内角和,结果是360°;D .测量某天的最低气温,结果为-180℃.6.如图,已知AB ∥CD ,∠2=120°,则∠1的度数是A .30°B .60°C .120°D .150°7.一个多边形的每个内角均为108°,则这个多边形是A .七边形B .六边形C .五边形D .四边形8.九年级某班十名同学进行定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为 A .4,5B .5,4C .4,4D .5,59.将点A (-2,-3)向右平移3个单位长度得到点B ,则点B 所处6 题图21 DCBA15题图O DCBA的象限是A .第一象限B .第二象限C .第三象限D .第四象限 10.一元二次方程220x x --=的解是A .1221x x ==,B .1221x x =-=,C .1221x x ==-,D .1221x x =-=-,11.如图,在水平地面上,由点A 测得旗杆BC 顶点C 的仰角为60°,点A 到旗杆的距离AB =12米,则旗杆的高度为A .63米B .6米C .123米D .12米12.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是A .34πB .38πC .32πD .316π二、填空题(本题5个小题,每小题3分,共15分)13.在函数324y x =-中,自变量x 的取值范围是 .14.分解因式:293025a a -+= .15.如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,6AC =,则OD = .16.用一个圆心角为120︒,半径为4的扇形作一个圆锥的侧面,则这60°11题图CBA12题图个圆锥底面圆的周长为 . 17.一组等式:22221223++=,22222367++=,2222341213++=,2222452021++=……请观察它们的构成规律,用你发现的规律写出第9个等式 .三、解答题(本题4个小题,每小题6分,共24分) 18.计算:201()122tan60(3)2π--+︒+-19.先化简,再求值:211(1)22x x x -+÷--,其中3x = 20.把形状、大小、质地完全相同的4张卡片分别标上数字-1、-4、0、2,将这4张卡片放入不透明的盒子中搅匀.求下列事件的概率:(1)从中随机抽取一张卡片,卡片上的数字是负数;(2)先从盒子中随机抽取一张卡片不放回,再随机抽取一张,两张卡片上的数字之积为0(用列表法或树形图).21.如图,在平面直角坐标系中,已知一次函数y kx b =+的图象经过点A (1,0),与反比例函数m y x=(x >0)的图象相交于点B (2,1).(1)求m 的值和一次函数y kx b =+的解析式;yx121题图OBA 12(2)结合所给图象直接写出:当x >0时,不等式kx b >m x的解集.四、(本题7分)22.某中学九(2)班同学为了了解2013年某小区家庭月均用水情况,随机调查了该小区的部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整; (2)求被调查的家庭中,用水量不超过15吨的家庭占总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20吨的家庭大约有多少户?月均用水量x (吨) 频数 频率0﹤x ≤5 6 0.12 5﹤x ≤10 0.24 10﹤x ≤15 16 0.32 15﹤x ≤20 10 0.20 20﹤x ≤25 4 25﹤x ≤30 2 0.04 月均用水量(吨)频数5 10 15 20 25 3016 12 8 4 0五、(本题7分)23.从甲地到乙地的路有一段上坡,一段下坡.如果上坡平均每分钟走50米,下坡平均每分钟走100米,那么从甲地走到乙地需要25分钟,从乙地走到甲地需要20分钟.甲地到乙地上坡与下坡的路程各是多少?六、(本题8分)24.如图,在ABC ∆中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且1,2,3ME AM AE ===.(1)求证:BC 是⊙O 的切线;(2)求⊙O 的半径.七、(本题10分)25.某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w (元)与每件涨价x (元)之间的NABCM E O24题图DCFE F图2图1DCAO(E)ABO B函数关系式;(2)求销售单价为多少元时,该商品每天的销售利润最大; (3)商场的营销部在调控价格方面,提出了A ,B 两种营销方案.方案A :每件商品涨价不超过5元; 方案B :每件商品的利润至少为16元. 请比较哪种方案的最大利润更高,并说明理由.八、(本题13分)26.以AB 为直径作半圆O ,AB =10,点C 是该半圆上一动点,连接AC 、BC ,延长BC 至点D ,使DC =BC ,过点D 作DE⊥AB 于点E ,交AC于点F ,在点C 运动过程中:(1)如图1,当点E 与点O 重合时,连接OC ,试判断COB ∆的形状,并证明你的结论;(2)如图2,当DE =8时,求线段EF 的长;(3)当点E 在线段OA 上时,是否存在以点E 、O 、F 为顶点的三角形与ABC ∆相似?若存在,请求出此时线段OE 的长;若不存在,请说明理由.2014年呼伦贝尔市初中毕业生学业考试数学答案及评分标准试卷类型A一、选择题(每小题3分,共36分)试卷类型B一、选择题(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A D C B A C B D A D D C二、填空题(每小题3分,共15分)13.2≠x 14.2(35)a - 15.3 16.38π 17.22229190109=++三、解答题(每小题6分,共24分)18.解:原式132324++-= …………(4分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案B C D C B B C A D C C B5=…………(6分)19.解:原式2)1)(1()212(--+÷-+-=x x x x x …………(2分))1)(1(221-+-⨯--=x x x x x …………(3分)11+=x…………(4分)当3=x 时 原式41131=+=…………(6分)20.解:(1)设抽到卡片上的数字是负数记为事件A ,则21()42P A == …………(2分)(2)依题意列表(树形图)如下:…………(4分)故所有等可能结果有12种,其中两张卡片上的数字之积是0的结果有6种,设两张卡片上的数字之积是0为事件B ,则61()122P B == …………(6分)21.解:(1) 反比例函数)0(>=x xmy 的图象经过点B (2,1) 12m∴=∴2=m…………(1分)又 一次函数b kx y +=的图象经过A (1,0), B (2,1)∴⎩⎨⎧+=+=bk bk 210…………(3分)-1 -4 0 21- 4 0 -2 4-4 0 -80 00 2-2-8-8-2-84-20004积第二张-1-122-1200000-4-4-42-4-1第一张第一张第二张解得:⎩⎨⎧-==11b k ∴一次函数的解析式为:1y x =-…………(4分)(2)2>x…………(6分)四、(本题满分7分)22.解:(1)…………(3分) (2)%68%10024101612616126=⨯+++++++答:被调查的家庭中,用水量不超过15吨的家庭占总数的百分比是68%月均用水量xxx 频频0﹤x ≤5 6 0.15﹤x ≤10 12 0.210﹤x ≤15 16 0.315﹤x ≤20 10 0.220﹤x ≤25 4 0.025﹤x ≤30 2 0.0…………(5分) (3)120100024101612624=⨯++++++(户)答:该小区月均用水量超过20吨的家庭大约有120户. …………(7分) 五、(本题满分7分)23.解:设甲地到乙地上坡路x 米,下坡路y 米. …………(1分)根据题意,得25501002050100xy y x ⎧+=⎪⎪⎨⎪+=⎪⎩ …………(5分) 解得1000500x y =⎧⎨=⎩…………(6分) 答:甲地到乙地上坡路1000米,下坡路500米. …………(7分)六、(本题满分8分)24.(1)证明:∵在AME ∆中=AM 2 ,ME =1,3=AE∴222AE ME AM +=, ∴AME ∆是直角三角形∴︒=∠90AEM …………24题图O E M CBAN(2分)又 MN ∥BC∴︒=∠90ABC …………(3分)∴BC AB ⊥ 又 AB 是直径∴BC 是⊙O 的切线…………(4分)(2)解:连接OM ,设⊙O 的半径是r …………(5分)在OEMRt ∆中3OE r =- …………(6分)∴222(3)1r r =-+ …………(7分)∴233r =…………(8分)七、(本题满分10分)25.解:(1)根据题意得:(2520)(25010)w x x =+-- …………(2分)即:)250(1250200102≤≤++-=x x x w 或210(10)2250(025)w x x =--+≤≤ …………(3分)(2) 010<-,抛物线开口向下,二次函数有最大值 当10)10(22002=-⨯-=-=a b x 时,销售利润最大 此时销售单价为:10+25=35(元)答: 销售单价为35元时,该商品每天的销售利润最大.…………(5分)(3)由(2)可知,抛物线对称轴是直线10=x ,开口向下,对称轴左侧w 随x的增大而增大,对称轴右侧w 随x 的增大而减小方案A :根据题意得, 5≤x ∴50≤≤x 当5=x 时,利润最大最大利润为2000125052005102=+⨯+⨯-=w (元)………(7分)方案B :根据题意得,162025≥-+x∴11≥x ∴2511≤≤x∴当x =11时,利润最大最大利润为224012501120011102=+⨯+⨯-=w (元)……(9分)20002240>∴综上所述,方案B 最大利润更高…………(10分) 八、(本题满分13分)26.(1)答:COB ∆是等边三角形 …………(1分)证明: AB DE ⊥∴︒=∠90DOB又 DC BC =∴BC OC = …………(2分)∴OB BC OC ==∴COB ∆是等边三角形…………(3分)(2)解:连接AD…………(4分)AB 为圆O 的直径∴︒=∠90ACB又 DC BC = ∴10==AB AD∴68102222=-=-=DE AD AE∴4EB = …………(5分)又 ︒=∠+∠︒=∠+∠90,90BDE B BAC B ∴BDE BAC ∠=∠F图1DC O(E)ABBO A图2EFCD∴AEF ∆∽DEB ∆ …………(6分)∴DEAE EB EF = …………(7分)∴864=EF ∴3=EF …………(8分)(3)答;存在当OEF ∆和ABC ∆相似时 ①如图3,若FOE CAB ∠=∠ 则AF OF = 又 AB DE ⊥ ∴252===OA AE OE …………(10分)②如图4,若CBA EOF ∠=∠ 则OF ∥BD∴21=BC OF ………(11分)∴41=BD OF ∴41==BD OF BE OE …………(12分)∴415=+OE OE ∴35=OE综上所述:OE 的长为25或35…………(13分)。
2015年黑龙江省绥化市中考数学试题一、选择题1.下列图案中 ,既是中心对称又是轴对称图形的个数有( )A. 1个B. 2个C. 3个D. 4个2. 左下图是一些完全相同的小正方体搭成的几何体的三视图 。
这个几何体只能是( )A. B. C. D. 3. 从长度分别为1、3、5、7的四条线段中任选三条作边 ,能构成三角形的概率为( )A. 21B. 31C. 41D.51 4. 石墨烯是现在世界上最薄的纳米材料 ,其理论厚度仅是0.00000000034m ,这个数用科学记 数法表示正确的是( )A. 3.4×109-B. 0.34×109-C. 3.4×1010-D. 3.4×1011-5. 将一副三角尺按如图方式进行摆放 ,∠1、∠2不一定互补的是( )A. B. C. D.6. 在实数0 、π 、722 、2 、9 - 中 ,无理数的个数有( ) A. 1个 B. 2个 C. 3个 D. 4个7. 如图,反比例函数y =xk (x <0)的图象经过点P ,则k 的值为( ) A . -6 B . -5 C . 6 D . 58. 关于x 的不等式组⎩⎨⎧1a x >>x 的解集为x >1 ,则a 的取值范围是( ) A . a >1 B . a <1 C . a ≥1 D . a ≤19. 如图 ,在矩形ABCD 中 ,AB =10 , BC =5 . 若点M 、N 分别是线段ACAB 上的两个动点,则BM +MN 的最小值为( )A . 10B . 8C . 53D . 610. 如图□ABCD 的对角线ACBD 交于点O ,平分∠BAD 交BC 于点E ,且∠ADC =600,AB =21BC ,连接OE .下列 结论:①∠CAD =300 ② S□ABCD=AB •AC ③ OB =AB ④ OE =41BC 成立的个数有( )A. 1个B. 2个C. 3个D. 4个二、填空题(每题3分 ,满分33分)11.计算:=⎪⎭⎫ ⎝⎛2-21-4-3_________. 12. 在函数y =02x 2x 1)(-++中 ,自变量x 的取值范围是____________. 13. 点A (-3 ,2)关于x 轴的对称点A '的坐标为__________.14. 若代数式6265 x2-+-x x的值等于0 ,则x=_________.15. 若关于x的一元二次方程ax2+2x-1=0无解,则a的取值范围是____________.16. 把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为_____________.17.在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是________.18. 如图正方形ABCD的对角线相交于点O,△CEF是正三角形,则∠CEF=__________.19. 如图,将一块含300角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切。
2009绥化市直线y=-34x+6与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线D →B →A 运动.(1)直接写出A 、B 两点的坐标;(2)设点Q 的运动时间为t(秒),△OPQ 的面积为S ,求出S 与t 之间的函数关系式:(3)当S=485时,求出点P 的坐标,并直接写出以点0、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.2010.如图,在平面直角坐标系中,函数y =2x +12的图象分别交x 轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.△ABP △AOB(1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.2011已知直线y= x+4 与x 轴、y 轴分别交于A 、B 两点,∠ABC=60°,BC 与x 轴交于点C .(1)试确定直线BC 的解析式.(2)若动点P 从A 点出发沿AC 向点C 运动(不与A 、C 重合),同时动点Q 从C 点出发沿CBA 向点A 运动(不与C 、A 重合),动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.设△APQ 的面积为S ,P 点的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,当△APQ 的面积最大时,y 轴上有一点M ,平面内是否存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形?若存在,请直接写出N 点的坐标;若不存在,请说明理由.2012•绥化如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).(1)求G点坐标;(2)求直线EF解析式;(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.2013如图,直线MN 与x 轴,y 轴分别相交于A ,C 两点,分别过A ,C 两点作x 轴,y 轴的垂线相交于B 点,且OA ,OC(OA >OC )的长分别是一元二次方程x 2﹣14x+48=0的两个实数根.(1)求C 点坐标;(2)求直线MN 的解析式;(3)在直线MN 上存在点P ,使以点P ,B ,C 三点为顶点的三角形是等腰三角形,请直接写出P 点的坐标.2014如图 ,在平面直角坐标系中 ,已知矩形AOBC 的顶点C 的坐标是(2 ,4) ,动点P 从点A 出发 ,沿线段AO 向终点O 运动 ,同时动点Q 从点B 出发 ,沿线段BC 向终点C 运动 。
2014年黑龙江省绥化市中考数学试卷一、填空题(每小题3分,满分33分)1.(3分)(2014•绥化)﹣2014的相反数.2.(3分)(2014•绥化)使二次根式有意义的x的取值范围是.3.(3分)(2014•绥化)如图,AC、BD相交于点0,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是(填出一个即可).4.(3分)(2014•绥化)布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.5.(3分)(2014•绥化)化简﹣的结果是.6.(3分)(2014•绥化)如图,直线a、b被直线c所截,a∥b,∠1+∠2的度数是.7.(3分)(2014•绥化)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多元.8.(3分)(2014•绥化)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为(结果保留π)9.(3分)(2014•绥化)分解因式:a3﹣4a2+4a=.10.(3分)(2014•绥化)如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C (﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是.11.(3分)(2014•绥化)矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.二、单项选择题(每题3分,满分21分)12.(3分)(2014•绥化)下列运算正确的是()A.(a3)2=a6B.3a+3b=6ab C.a6÷a3=a2D.a3﹣a=a2 13.(3分)(2014•绥化)下列图形中,既是中心对称图形又是轴对称图形的是()A.角B.等边三角形C.平行四边形D.圆14.(3分)(2014•绥化)分式方程的解是()A.x=﹣2 B.x=2 C.x=1 D.x=1或x=2 15.(3分)(2014•绥化)如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.16.(3分)(2014•绥化)如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S2 17.(3分)(2014•绥化)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A.b2>4ac B.a c>0 C.a﹣b+c>0 D.4a+2b+c<0 18.(3分)(2014•绥化)如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个三、解答题(满分66分)19.(5分)(2014•绥化)计算:.20.(6分)(2014•绥化)某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数和中位数;(3)估计这240名学生共植树多少棵?21.(6分)(2014•绥化)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.22.(6分)(2014•绥化)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD.(1)求证:CB∥PD;(2)若BC=3,sin∠BPD=,求⊙O的直径.23.(8分)(2014•绥化)在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:(1)A、C两村间的距离为km,a=;(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;(3)乙在行驶过程中,何时距甲10km?24.(8分)(2014•绥化)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?25.(8分)(2014•绥化)如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C 点,点D在抛物线上且横坐标为3.(1)求tan∠DBC的值;(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.26.(9分)(2014•绥化)在菱形ABCD和正三角形BGF中,∠ABC=60°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,易证:PG=PC.(不必证明)(2)如图2,当点F在AB的延长线上时,线段PC、PG有怎样的数量关系,写出你的猜想,并给与证明;(3)如图3,当点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,写出你的猜想(不必证明).27.(10分)(2014•绥化)如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为1个单位,运动时间为t秒.过点P作PE⊥AO 交AB于点E.(1)求直线AB的解析式;(2)设△PEQ的面积为S,求S与t时间的函数关系,并指出自变量t的取值范围;(3)在动点P、Q运动的过程中,点H是矩形AOBC内(包括边界)一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出t值和与其对应的点H的坐标.2014年黑龙江省绥化市中考数学试卷参照解答与试题解析一、填空题(每小题3分,满分33分)1.(3分)(2014•绥化)﹣2014的相反数2014.考点:相反数.解析:根据只有符号不同的两个数互为相反数,可得解答.解答:解:∵﹣2014的相反数是2014,故解答为:2014.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2014•绥化)使二次根式有意义的x的取值范围是x≥﹣3.考点:二次根式有意义的条件.解析:二次根式有意义,被开方数为非负数,列不等式求解.解答:解:根据二次根式的意义,得x+3≥0,解得x≥﹣3.点评:用到的知识点为:二次根式的被开方数是非负数.3.(3分)(2014•绥化)如图,AC、BD相交于点0,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是AB=CD(填出一个即可).考点:全等三角形的判定.专题:开放型.解析:添加条件是AB=CD,根据SAS推出两三角形全等即可.解答:解:AB=CD,理由是:∵在△AOB和△DOC中∴△AOB≌△DOC,故解答为:AB=CD.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,解答不唯一.4.(3分)(2014•绥化)布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.考点:概率公式.解析:根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.解答:解:∵一个布袋里装有3个红球和6个白球,∴摸出一个球摸到红球的概率为:=.故解答为.点评:此题主要考查了概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.5.(3分)(2014•绥化)化简﹣的结果是﹣.考点:分式的加减法.专题:计算题.解析:原式通分并利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣=﹣=﹣.故解答为:﹣.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)(2014•绥化)如图,直线a、b被直线c所截,a∥b,∠1+∠2的度数是180°.考点:平行线的性质.解析:根据平行线的性质得出∠1=∠3,求出∠2+∠3=180°,代入求出即可.解答:解:∵a∥b,∴∠1=∠3,∵∠2+∠3=180°,∴∠1+∠2=180°,故解答为:180°.点评:本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.7.(3分)(2014•绥化)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多120元.考点:一元一次方程的应用.解析:设这款服装每件的进价为x元,根据利润=售价﹣进价建立方程求出x的值就可以求出结论.解答:解:设这款服装每件的进价为x元,由题意,得300×0.8﹣x=60,解得:x=180.∴标价比进价多300﹣180=120元.故解答为:120.点评:本题考查了列一元一次方程解实际问题的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.8.(3分)(2014•绥化)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为3π(结果保留π)考点:扇形面积的计算.专题:计算题;压轴题.解析:根据扇形公式S扇形=,代入数据运算即可得出解答.解答:解:由题意得,n=120°,R=3,故S扇形===3π.故解答为:3π.点评:此题考查了扇形的面积计算,属于基础题,解答本题的关键是熟练掌握扇形的面积公式,另外要明白扇形公式中,每个字母所代表的含义.9.(3分)(2014•绥化)分解因式:a3﹣4a2+4a=a(a﹣2)2.考点:提公因式法与公式法的综合运用.解析:观察原式a3﹣4a2+4a,找到公因式a,提出公因式后发现a2﹣4a+4是完全平方公式,利用完全平方公式继续分解可得.解答:解:a3﹣4a2+4a,=a(a2﹣4a+4),=a(a﹣2)2.点评:考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法(完全平方公式).要求灵活运用各种方法进行因式分解.10.(3分)(2014•绥化)如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是(﹣1,﹣1).考点:规律型:点的坐标.解析:根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定解答.解答:解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即线段BC的中间位置,点的坐标为(﹣1,﹣1).故解答为:(﹣1,﹣1).点评:本题主要考查了点的变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2014个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.11.(3分)(2014•绥化)矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为3或6.考点:翻折变换(折叠问题).专题:分类讨论.解析:分①∠EFC=90°时,先判断出点F在对角线AC上,利用勾股定理列式求出AC,设BE=x,表示出CE,根据翻折变换的性质可得AF=AB,EF=BE,然后在Rt△CEF中,利用勾股定理列出方程求解即可;②∠CEF=90°时,判断出四边形ABEF是正方形,根据正方形的四条边都相等可得BE=AB.解答:解:①∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=8,∴BC=AD=8,在Rt△ABC中,AC===10,设BE=x,则CE=BC﹣BE=8﹣x,由翻折的性质得,AF=AB=6,EF=BE=x,∴CF=AC﹣AF=10﹣6=4,在Rt△CEF中,EF2+CF2=CE2,即x2+42=(8﹣x)2,解得x=3,即BE=3;②∠CEF=90°时,如图2,由翻折的性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=6,综上所述,BE的长为3或6.故解答为:3或6.点评:本题考查了翻折变化的性质,勾股定理,正方形的判定与性质,此类题目,利用勾股定理列出方程求解是常用的方法,本题难点在于分情况讨论,作出图形更形象直观.二、单项选择题(每题3分,满分21分)12.(3分)(2014•绥化)下列运算正确的是()A.(a3)2=a6B.3a+3b=6ab C.a6÷a3=a2D.a3﹣a=a2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.解析:根据幂的乘方,可判断A,根据合并同类项,可判断B,根据同底数幂的除法,可判断C、D.解答:解:A、底数不变指数相乘,故A正确;B、不是同类项不能合并,故B错误;C、底数不变指数相减,故C错误;D、不是同底数幂的除法,指数不能相减,故D错误;故选:A.点评:本题考查了幂的运算,根据法则计算是解题关键.13.(3分)(2014•绥化)下列图形中,既是中心对称图形又是轴对称图形的是()A.角B.等边三角形C.平行四边形D.圆考点:中心对称图形;轴对称图形.专题:常规题型.解析:根据轴对称及中心对称的定义,结合选项所给图形的特点即可作出判断.解答:解:A、角是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、平行四边形不轴对称图形,是中心对称图形,故本选项错误;D、圆既是轴对称图形也是中心对称图形,故本选项正确;故选D.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.(3分)(2014•绥化)分式方程的解是()A.x=﹣2 B.x=2 C.x=1 D.x=1或x=2考点:解分式方程.专题:方程思想.解析:观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣2),得2x﹣5=﹣3,解得x=1.检验:当x=1时,(x﹣2)=﹣1≠0.∴原方程的解为:x=1.故选C.点评:考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.15.(3分)(2014•绥化)如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图.解析:俯视图中的每个数字是该位置小立方体的个数,解析其中的数字,得主视图右3列,从左到右分别是1,3,2个正方形.解答:解:由俯视图中的数字可得:主视图右3列,从左到右分别是1,3,2个正方形.故选C.点评:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.16.(3分)(2014•绥化)如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S2考点:反比例函数系数k的几何意义.解析:根据题意,易得AB两点关与原点对称,可设A点坐标为(m,n),则B的坐标为(﹣m,﹣n);在Rt△EOF中,由AE=AF,可得A为EF中点,解析计算可得S2,矩形OCBD中,易得S1,比较可得解答.解答:解:设A点坐标为(m,n),过点O的直线与双曲线y=交于A、B两点,则A、B两点关与原点对称,则B的坐标为(﹣m,﹣n);矩形OCBD中,易得OD=﹣n,OC=m;则S1=﹣mn;在Rt△EOF中,AE=AF,故A为EF中点,由中位线的性质可得OF=﹣2n,OE=2m;则S2=OF×OE=﹣4mn;故2S1=S2.故选B.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.17.(3分)(2014•绥化)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A.b2>4ac B.a c>0 C.a﹣b+c>0 D.4a+2b+c<0考点:二次函数图象与系数的关系.专题:数形结合.解析:根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向下得a<0,由抛物线与y轴的交点在x轴上方得c>0,则可对B进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可C选项进行判断;由于x=2时,函数值小于0,则有4a+2b+c>0,于是可对D选项进行判断.解答:解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项正确;∵抛物线开口向下,∴a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac<0,所以B选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以C选项错误;∵当x=2时,y>0,∴4a+2b+c>0,所以D选项错误.故选A.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac <0,抛物线与x轴没有交点.18.(3分)(2014•绥化)如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个考点:矩形的性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质.解析:根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE 和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;再求出∠AHB=67.5°,∠DOH=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;再求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF 全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;根据全等三角形对应边相等可得DF=HE,然后根据DH=DC﹣CF整理得到BC﹣2CF=2HE,判断出④错误;判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.解答:解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠DOH=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DOH=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵DF=DC﹣CF=BC﹣CF,∴BC﹣2CF=2DF,∴BC﹣2CF=2HE,故④错误;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③共3个.故选B.点评:本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细解析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也本题的难点.三、解答题(满分66分)19.(5分)(2014•绥化)计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.解析:分别进行二次根式的化简、特殊角的三角函数值、零指数幂、负整数指数幂等运算,然后按照实数的运算法则计算即可.解答:解:原式=2﹣2×+1﹣8=.点评:本题考查了实数的运算,涉及了二次根式的化简、特殊角的三角函数值、零指数幂、负整数指数幂等知识,属于基础题.20.(6分)(2014•绥化)某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数和中位数;(3)估计这240名学生共植树多少棵?考点:条形统计图;用样本估计总体;中位数;众数.专题:图表型.解析:(1)求出D类的人数,然后补全统计图即可;(2)根据众数的定义解答,根据中位数的定义,找出第10人和第11人植树的棵树,然后解答即可;(3)求出20人植树的平均棵树,然后乘以总人数240计算即可得解.解答:解:(1)D类的人数为:20﹣4﹣8﹣6=20﹣18=2人,补全统计图如图所示;(2)由图可知,植树5棵的人数最多,是8人,所以,众数为5,按照植树的棵树从少到多排列,第10人与第11人都是植5棵数,所以,中位数是5;(3)==5.3(棵),240×5.3=1272(棵).答:估计这240名学生共植树1272棵.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(6分)(2014•绥化)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.考点:作图-位似变换;作图-平移变换.解析:(1)利用平移的性质得出平移后图象进而得出解答;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.解答:解:(1)如图所示:C1(2,﹣2);故解答为:(2,﹣2);(2)如图所示:C2(1,0);故解答为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××20=10平方单位.故解答为:10.点评:此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.22.(6分)(2014•绥化)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD.(1)求证:CB∥PD;(2)若BC=3,sin∠BPD=,求⊙O的直径.考点:圆周角定理;垂径定理;解直角三角形.解析:(1)根据圆周角定理和已知求出∠D=∠BCD,根据平行线的判定推出即可;(2)根据垂径定理求出弧BC=弧BD,推出∠A=∠P,解直角三角形求出即可.解答:(1)证明:∵∠D=∠1,∠1=∠BCD,∴∠D=∠BCD,∴CB∥PD;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴弧BD=弧BC,∴∠BPD=∠CAB,∴sin∠CAB=sin∠BPD=,即=,∵BC=3,∴AB=5,即⊙O的直径是5.点评:本题考查了圆周角定理,解直角三角形,垂径定理,平行线的判定的应用,主要考查学生的推理能力.23.(8分)(2014•绥化)在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:(1)A、C两村间的距离为120km,a=2;(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;(3)乙在行驶过程中,何时距甲10km?考点:一次函数的应用.解析:(1)由图可知与y轴交点的坐标表示A、C两村间的距离为120km,再由0.5小时距离C村90kM,形式120﹣90=30km,速度为60km/h,求得a=2;(2)求得y1,y2两个函数解析式,建立方程求得点P坐标,表示在什么时间相遇以及距离C 村的距离;(3)由(2)中的函数解析式根据距甲10km建立方程;探讨得出解答即可.解答:解:(1)A、C两村间的距离120km,a=120÷[(120﹣90)÷0.5]=2;(2)设y1=k1x+120,代入(2,0)解得y1=﹣60x+120,y2=k2x+90,代入(3,0)解得y1=﹣30x+90,由﹣60x+120=﹣30x+90解得x=1,则y1=y2=60,所以P(1,60)表示经过1小时甲与乙相遇且距C村60km.(3)当y1﹣y2=10,即﹣60x+120﹣(﹣30x+90)=10解得x=,当y2﹣y1=10,即﹣30x+90﹣(﹣60x+120)=10解得x=,当甲走到C地,而乙距离C地10km时,﹣30x+90=10解得x=;综上所知当x=h,或x=h,或x=h乙距甲10km.点评:此题考查一次函数的运用,一次函数与二元一次方程组的运用,解答时认真解析图象求出解析式是关键,注意分类思想的渗透.24.(8分)(2014•绥化)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?考点:一元一次不等式组的应用.专题:应用题;压轴题.解析:(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.解答:解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和120件.(2)由于A商品购进400件,获利为(1380﹣1200)×400=72000(元)从而B商品售完获利应不少于81600﹣72000=9600(元)设B商品每件售价为z元,则120(z﹣1000)≥9600解之得z≥1080所以B种商品最低售价为每件1080元.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.准确的解不等式组是需要掌握的基本能力.25.(8分)(2014•绥化)如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.(1)求tan∠DBC的值;(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.考点:二次函数综合题.解析:(1)如图,连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则易推知CD∥AB,所以∠BCD=∠ABC=45°.利用直角等腰直角三角形的性质和图中相关线段间的和差关系求得BC=4,BE=BC﹣DE=.由正切三角函数定义知tan∠DBC==;(2)过点P作PF⊥x轴于点F.由点B、D的坐标得到BD⊥x轴,∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).解答:解:(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,解得x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).当x=3时,y=﹣32+3×3+4=4,∴D(3,4).如图,连接CD,过点D作DE⊥BC于点E.∵C(0,4),∴CD∥AB,∴∠BCD=∠ABC=45°.在直角△OBC中,∵OC=OB=4,∴BC=4.在直角△CDE中,CD=3.∴CE=ED=,∴BE=BC﹣DE=.∴tan∠DBC==;(2)过点P作PF⊥x轴于点F.∵∠CBF=∠DBP=45°,∴∠PBF=∠DBC,∴tan∠PBF=.设P(x,﹣x2+3x+4),则=,解得x1=﹣,x2=4(舍去),∴P(﹣,).点评:本题主要考查了二次函数综合型题目,其中涉及到了坐标与图形性质,勾股定理,锐角三角函数定义以及二次函数图象上点的坐标特征等知识点.解题时,要注意数形结合的数学思想方法.26.(9分)(2014•绥化)在菱形ABCD和正三角形BGF中,∠ABC=60°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,易证:PG=PC.(不必证明)(2)如图2,当点F在AB的延长线上时,线段PC、PG有怎样的数量关系,写出你的猜想,并给与证明;(3)如图3,当点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,写出你的猜想(不必证明).考点:四边形综合题.解析:(1)延长GP交DC于点E,利用△PED≌△PGF,得出PE=PG,DE=FG,得到CE=CG,CP是EG的中垂线,在RT△CPG中,∠PCG=60°,所以PG=PC.(2)延长GP交DA于点E,连接EC,GC,先证明△DPE≌△FPG,再证得△CDE≌△CBG,利用在RT△CPG中,∠PCG=60°,所以PG=PC.(3)延长GP到H,使PH=PG,连接CH、DH,作ME∥DC,先证△GFP≌△HDP,再证得△HDC≌△GBC,在在RT△CPG中,∠PCG=60°,所以PG=PC.。
黑龙江省龙东地区2014年中考数学真题试题一、填空题(每题3分,满分30分)1. 数据显示,今年高校毕业生规模达到727表示为 人。
2. 函数x y -=3中,自变量x 的取值范围是 。
3. 如图,梯形ABCD 中,AD ∥BC,点M 是AD 的中点,不添加辅助线,梯形满足 条件时,有MB =MC (只填一个即可)。
4. 三张扑克牌中只有一张黑桃,三位同学依次抽取,第一位同学抽到黑桃的概率为 。
5. 不等式组2≤3x -7<8的解集为 。
6. 直径为10cm 的⊙O中,弦AB =5cm,则弦AB 所对的圆周角是 。
7. 小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买 支。
8. △ABC 中,AB =4,BC =3,∠BAC =30°,则△ABC 的面积为 。
9. 如图,菱形ABCD 中,对角线AC=6,BD =8,M 、N 分别是BC 、CD 的中点,P 是线段BD 上的一个动点,则PM +PN 的最小值是 。
10.如图,等腰Rt △ABC 中,∠ACB=90°,AC =BC =1,且AC 边在直线a 上,将△ABC 绕点A 顺时针旋转到位置①可得到点P 1 ,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2, 此时AP 2=1+2;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=2+2;……,按此规律继续旋转,直至得到点P 2014为止。
则AP 2014= 。
二、选择题(每题3分,满分30分)11.下列各运算中,计算正确的是 ( ) A. 22422=-a a B. 532)(a a = C. 963a a a =⋅ D. 226)3(a a = 12.下列交通标志中,成轴对称图形的是 ( )B C A aP 1 P 2P 3 P 4① ② ③ 第3题图第9题图第10题图AB D NM CPA B C D13.由若干个相同的小正方体搭成的一个几何体的俯视图如图所示,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是 ( )俯视图 A B C D14.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表。