故障电弧探测装置实现方案
- 格式:doc
- 大小:701.37 KB
- 文档页数:20
电力系统电弧故障检测与定位方法电力系统是现代工业社会中不可或缺的基础设施,其运行稳定性和安全性对社会的稳定发展起着关键作用。
然而,电力系统在长期运行中难免会出现各种故障,其中电弧故障是一类常见但又具有较高危险性的故障。
本文将讨论电力系统电弧故障的检测与定位方法。
电弧故障是指电流在电力系统中通过非预期的路径,形成一段可能造成火灾、设备损坏甚至人员伤亡的电弧。
电弧故障通常由以下原因引起:设备缺陷、松脱的导线和绝缘破损等。
对于电力系统运营方而言,及时检测和定位电弧故障是确保系统稳定运行和保护设备的关键任务。
在电力系统中,电弧故障往往引起电压和电流的异常波动,因此通过监测和分析电压和电流的变化可以间接识别出电弧故障的存在。
目前,常见的电弧故障检测方法有以下几种:1. 电弧光谱分析法:电弧产生的光谱特征可以通过光谱仪进行检测和分析。
由于电弧的成分和条件不同,光谱特征也会有所差异。
因此,通过光谱分析可以准确识别电弧故障的类型和位置。
2. 电弧声音检测法:电弧故障产生的电磁噪声会引起空气振动,产生特定频率的声音波。
通过声音传感器对电力设备进行实时监测,可以快速检测到电弧故障并定位。
3. 热成像检测法:电弧故障产生的高温会导致附近设备或地面的温度升高,可以通过红外热像仪进行无接触式的实时监测和定位。
4. 振动检测法:电弧故障引起的电力设备振动会产生一定的频率和振幅,通过振动传感器监测和分析,可以判断电弧故障的位置和严重程度。
以上方法各具特点,适用于不同的电弧故障检测和定位场景。
在实际应用中,常常会结合多种方法,提高故障检测的准确性和可靠性。
除了检测电弧故障,定位电弧故障也是至关重要的。
准确地定位电弧故障可以快速采取措施修复和恢复电力系统的正常运行。
定位方法多种多样,其中比较常见的有以下几种:1. 电弧故障传输线路模型法:通过建立电力系统的传输线路模型,结合电弧故障波形信号,利用数学算法计算电弧故障的位置。
这种方法精度较高,但需要获取大量的系统参数和实时波形数据。
故障电弧探测器是什么原理的应用1. 引言故障电弧是一种常见的电力系统故障,容易引起火灾和人员伤亡。
因此,研究和应用故障电弧探测器成为电力系统安全保障的重要方面。
本文将介绍故障电弧探测器的原理及其应用。
2. 故障电弧探测器的原理故障电弧探测器是一种能够快速检测和识别电力系统中发生的故障电弧的设备。
它基于电弧产生的特性来进行检测。
故障电弧通常具有以下特点: - 高频率:电弧产生时会发出高频率的信号; - 高能量:故障电弧会释放大量的能量,产生高温和高压; - 特定频段:电弧频率通常在几千赫兹到几百千赫兹之间。
故障电弧探测器利用这些特点,通过传感器感知电力系统中的电弧信号,并进行信号处理和判别,从而判断是否发生故障电弧。
3. 故障电弧探测器的应用故障电弧探测器的应用十分广泛,主要包括以下几个方面:3.1 家庭电路故障电弧探测故障电弧在住宅和商业建筑的电气系统中经常发生。
家庭电路故障电弧探测器可以及时检测到电力线路中的故障电弧,并通过触发断路器等主动保护装置来切断电源,防止火灾的发生。
3.2 工业电力系统故障电弧探测在工业电力系统中,由于电气设备复杂多样,故障电弧频繁发生。
故障电弧探测器可以有效地监测和识别这些故障电弧,及时采取措施来保护设备和人员的安全。
3.3 太阳能电力系统故障电弧探测太阳能电力系统中也常常发生故障电弧,例如光伏逆变器中的电弧。
太阳能电力系统故障电弧探测器可以帮助及时发现这些故障电弧,减少系统故障的风险。
3.4 铁路电力系统故障电弧探测铁路电力系统中的故障电弧可能导致列车事故和电力线路故障。
故障电弧探测器可以在铁路电力系统中快速检测到故障电弧,并触发相应的保护装置,防止事故的发生。
4. 总结故障电弧探测器是一种利用故障电弧产生的特性进行电弧检测和识别的装置。
它在家庭电路、工业电力系统、太阳能电力系统和铁路电力系统等领域具有广泛的应用。
通过使用故障电弧探测器,我们能够及时发现故障电弧,并采取相应的措施来防止火灾和事故的发生,保障电力系统的安全稳定运行。
电力系统中的电弧故障检测与诊断方法概述:电力系统是现代社会的重要基础设施之一,然而,由于各种原因,如设备老化、故障等,电弧故障在电力系统中时有发生。
电弧故障可能导致电力系统的短路、过电压等问题,给系统的稳定运行带来巨大威胁。
因此,电弧故障的检测与诊断变得至关重要。
本文将介绍电力系统中的电弧故障检测与诊断方法。
一、传统的电弧故障检测与诊断方法传统的电弧故障检测与诊断方法主要基于电力系统的保护系统。
电力系统中的保护设备能够通过监测系统的电压和电流变化来判断是否发生电弧故障,并采取适当的措施。
然而,传统的保护设备对电弧故障的检测有一定的局限性。
首先,传统的保护设备主要通过监测电压和电流的变化来识别电弧故障,但是电弧故障的特征与正常工作状态的电压和电流变化差别不大,这就给电弧故障的检测带来了困难。
其次,传统的保护设备只能对电弧故障进行简单的概率识别,无法精确地诊断电弧故障的具体位置和原因。
因此,传统的电弧故障检测与诊断方法在实际应用中存在一定的局限性。
二、基于机器学习的电弧故障检测与诊断方法随着机器学习技术的不断发展,越来越多的研究者开始尝试将机器学习方法应用于电力系统中的电弧故障检测与诊断。
机器学习方法可以通过对大量的实验数据进行训练,学习出电弧故障的特征,从而能够更准确地检测和诊断电弧故障。
其中,深度学习是一种较为常见的机器学习方法,在电弧故障检测与诊断中具有较好的效果。
基于深度学习的电弧故障检测与诊断方法主要分为两步:特征提取和故障诊断。
特征提取是指将电力系统的实验数据转化为具有辨识度的特征向量,通常采用卷积神经网络(CNN)等方法。
故障诊断是指根据提取到的特征向量,经过训练的模型来判断电力系统是否发生了电弧故障,并诊断出故障的具体位置和原因。
三、基于数据融合的电弧故障检测与诊断方法在实际应用中,电力系统的故障数据往往具有多种类型,例如电压、电流、振动等。
传统的电弧故障检测与诊断方法往往只针对某一种类型的数据进行分析,无法全面地判断电力系统的故障情况。
故障电弧探测器1. 简介故障电弧探测器(Arc Fault Circuit Interrupter,简称AFCI)是一种用于检测和保护电路中故障电弧引起的火灾的装置。
它可以及时检测到电路中发生的异常电弧,并迅速切断电路供电,从而有效地防止电弧引发的火灾。
2. 工作原理故障电弧探测器基于对电流和电压波形的监测,通过检测电流和电压波形的特征变化来判断是否存在故障电弧。
当电路中发生故障电弧时,电弧会引起电流和电压波形的畸变,故障电弧探测器可以通过对比电流和电压波形的特征变化来判断是否存在故障电弧,并在检测到故障电弧时迅速切断电路。
3. 分类与应用故障电弧探测器可以分为插拔式和板式两种类型。
插拔式故障电弧探测器可以直接插入电路的插座上,方便安装和更换。
板式故障电弧探测器需要安装在电路的配电盒或开关箱中。
故障电弧探测器广泛应用于住宅、商业建筑和工业设施等电气系统中,特别是在需要高电力负载的地方。
它能够有效地检测到电气火灾的风险,提高电气安全性能。
4. 特点与优势故障电弧探测器具有以下特点和优势:•及时检测故障电弧:故障电弧探测器可以在电路中发生故障电弧时及时检测到,并切断电路供电,防止火灾的发生。
•高灵敏度:故障电弧探测器能够精确地检测到电路中微弱的故障电弧信号,提高了安全性能。
•误报率低:故障电弧探测器通过对比电流和电压波形的变化来判断是否存在故障电弧,减少了误报的可能性。
•安装方便:插拔式故障电弧探测器可以直接插入电路的插座上,安装简便,不需要对电路进行改造。
5. 注意事项在使用故障电弧探测器时,需要注意以下事项:•定期检测和维护:故障电弧探测器需要定期进行检测和维护,确保其正常工作。
•遵循使用规范:按照故障电弧探测器的使用说明书和相关标准,正确使用和安装故障电弧探测器。
•防止误触发:对于高灵敏度的故障电弧探测器,要避免外界电磁干扰,防止误触发。
6. 发展趋势随着人们对电气安全的重视,故障电弧探测器的应用也越来越广泛。
故障电弧探测器工作原理
故障电弧探测器是一种安全设备,用于监测发生在电力系统中的电弧故障。
其工作原理是基于电弧的物理特性。
电弧是一种电流在气体介质中不稳定的放电现象,其产生的温度可高达数千摄氏度,能够引起爆炸和火灾等危险。
故障电弧探测器通过感知电弧的特殊光谱辐射,实时监测电路中是否发生电弧故障。
当电路中出现电弧时,电弧会产生一种特殊的光谱辐射,其波长范围包括紫外、可见和红外等区域。
探测器通过接收电弧产生的光谱辐射信号,并根据特定的算法进行处理,确定电弧类型、位置、大小等参数,并在短时间内发出警报信号,以便及时采取措施避免事故的发生。
故障电弧探测器适用于各种电力系统,特别是高压电路中的电缆、开关、变压器等设备。
其工作原理灵敏、可靠,能够有效提高电力系统的安全性和可靠性。
电力传输线路的电弧故障检测与处理电力传输线路是现代社会中不可或缺的基础设施,然而,由于各种原因,例如不可避免的老化、磨损或外界环境因素,电力传输线路在运行过程中可能会出现电弧故障。
这种电弧故障不仅可能导致电力系统的中断,还可能造成严重的安全隐患,因此,电力传输线路的电弧故障检测与处理变得至关重要。
一、电弧故障检测技术电力传输线路的电弧故障检测技术包括两个方面,即电弧故障的检测和故障位置的确定。
对于电弧故障的检测,传统的方法主要依靠人工巡检或通过监测设备进行,这种方法存在着时间和空间上的限制,并且可能会导致检测结果的不准确。
然而,随着科技的进步,现代化的电力传输线路检测技术得到了广泛的应用,例如红外成像、超声波检测和电磁波检测等。
这些技术的应用大大提高了电弧故障的检测效率和准确性。
对于电弧故障位置的确定,常用的技术包括时序分析和波形分析。
时序分析主要通过比较电弧故障信号在不同位置的传输时间,确定故障位置。
而波形分析则是通过对故障信号的波形特征进行分析和比较,从而确定故障位置。
这两种方法各有优劣,可以根据具体情况选择合适的方法进行电弧故障位置的确定。
二、电弧故障处理技术电力传输线路出现电弧故障后,需要及时进行处理,以避免进一步的事故和损失。
电弧故障处理技术主要包括电弧灭弧技术和故障隔离技术。
电弧灭弧技术是指通过采取相应的措施和装置,将电弧灭除并恢复电力传输线路的正常工作状态。
常用的电弧灭弧技术包括电弧接地、电弧伸展、电弧隔离和电弧上下关断等。
这些技术都是通过对电弧进行控制,使其不再继续存在,从而实现电力传输线路的恢复和保护。
故障隔离技术则是指在电力传输线路出现电弧故障后,通过断开故障段或采取其他隔离措施,将故障隔离并保护其他正常工作的线路。
常用的故障隔离技术包括总断路器隔离、分段断路、地面断开和电源切换等。
这些技术的应用可以最大程度地减小故障对整个电力系统的影响,并且为后续的维修和修复工作提供了便利。
目录一、引言 (2)二、产品概述 (3)2.1现有电气火灾监控系统的组成 (3)2.2现有电气火灾监控系统的不足 (3)2.3故障电弧检测技术开始被重视 (4)2.4国家标准加快出台 (4)2.5家和物联在电气火灾监控领域的现状..................... 错误!未定义书签。
三、故障电弧分析 (5)3.1故障电弧的起因 (5)3.2电弧的基本性质 (6)四、故障电弧的检测原理 (14)4.1故障电弧的试验设备 (14)4.2故障电弧数据库的建立 (15)4.3硬件设计 (16)4.4软件设计 (17)一、引言在我国经济高速发展的过程中,火灾的频繁发生给社会和公共安全造成了极大的危害,据国家权威部门统计,我国每都有30%以上的火灾是由电气火灾引起的,其中2012年1-10月份全国共发生火灾11万起,其中电气引起火灾共33385起,占总数的30.3%。
在数量和危害程度上占据其它火灾之首。
电气火灾,对人身及财产造成了巨大损失。
电弧故障是造成电气火灾的主要原因之一,而传统的断路器只能保护剩余电流、过流和短路的情况,而许多严重的火灾事故往往是由低于额定电流的故障电弧引起的。
因此,对故障电弧的起因及监控探测进行研究具有十分重要的意义。
本文主要对故障电弧探测装置的工作原理, 故障电弧检测的硬件和软件的技术实现进行了阐述。
二、产品概述2.1现有电气火灾监控系统的组成电气火灾监控系统基本组成包括:电气火灾监控设备、剩余电流式电气火灾监控探测器以及测温式电气火灾监控探测器;该系统能够对被保护线路中的电流、剩余电流、温度进行监视,并及时发现电气火灾隐患,预防电气火灾发生。
电气火灾监控系统集监视、报警、控制、集中管理与一体,监控探测器一般挂接在总线上的支路上,接受主控制器的命令,并传送全部信息;主控制器处理接收来的数据,监控被探测电气线路单相、三相电流,剩余电流,温度等参数的变化。
当参数异常时,剩余电流互感器、温度传感器等终端检测元件对信息进行采集,并送到监控探测器里,超出设定值时即发出报警信号,同时输送到监控设备中,经进一步识别判定,当确认可能会发生火灾时,监控设备发出火灾报警信号,报警指示灯亮,发出报警音响,并在液晶显示屏上显示报警信息。
2.2现有电气火灾监控系统的不足许多严重的火灾事故是由线路中低于额定电流或预期短路电流的故障电弧引起的。
这些危险的电弧可能发生在设计不合理的或者老化的供电线路上、电器插头以及家用电器的电源线,内部线束或零部件绝缘上。
当故障电弧发生时,线路上的漏电、过流和短路等保护装置,可能无法检测到故障电弧或者无法迅速动作切断电源,极易引发火灾。
2.3故障电弧检测技术开始被重视故障电弧检测技术,最初被国内研究院所和厂家所认知,多是通过AFCI (故障电弧断路器)和UL 1699标准。
然而美国电网与中国电网的实际情况却相差很多,无论从电压,频率,配电系统结构等方面都有所不同,照搬UL 1699标准必然无法适应中国的实际情况。
近些年来,国内研究院所和厂家,投入了大量的人力物力,在故障电弧引发火灾的机理,故障电弧模拟仿真,故障电弧检测方法,故障电弧试验平台,故障电弧检测产品实际工程应用等方面,都做了大量的研究和尝试,为故障电弧检测技术在国内的发展和应用奠定了坚实的基础。
2.4国家标准加快出台2011年12月,在全国消防标准化技术委员会第六分技术委员会会议上,完成了对 GB 14287.4《电气火灾监控系统第4部分:故障电弧探测装置》征求意见稿的讨论。
国家标准的加快出台,势必对故障电弧检测技术在电气防火领域中的推广和应用起到积极的促进作用,国家标准的实施更可大幅度降低由故障电弧导致电气火灾发生的数量和几率。
三、故障电弧分析当两电极间的电场强度足够大 , 极间自由电子的运动能量撞击空气中的中性分子或原子并足以使其游离出更多带负电的自由电子和带正电的正离子时 ,电场强度会进一步加强。
在该电场中 ,电子撞向阴极 , 而正离子撞向阳极。
若正离子的能量能使阴极游离出新的电子 , 辉光放电就转化为弧光放电 ,即形成电弧。
由此可见 ,电弧是一种气体游离放电现象 , 也是一种等离子体。
GERM2ER 等的研究表明 : 接通过程产生的电弧与触头材料及电路电压有关 , 而分断电路过程产生的电弧还取决于电路的电流。
交流电弧也有类似特性。
3.1故障电弧的起因引起电弧故障的原因很多种,但主要可以概括为以下三点:(1)绝缘碳化在很多情况下都能形成碳化路径,例如:将两个电极放在电缆绝缘层上,对电极通以高电压,就可以直接在电缆表面形成电弧;潮湿的绝缘表面和污染物综合作用导致绝缘表面有漏电流流通,逐渐形成碳化路径,最终使绝缘碳化。
(2)空气电离燃烧和预电弧都能电离空气。
如果配电母线发生严重的电弧故障,首先会喷出大量的电离气体,这些电离气体会飞出一定距离,这时遇到另外一条线路,就很容易引起空气分解导致电弧产生。
而且燃烧会使空气介电强度降低,使空气更容易发生电离。
(3)短路短路有两种形式:一种是金属性短路;另一种是电弧性短路。
后者是由于导体暂时性接触引发的,起初触点周围的金属物质逐渐融化,磁场力趋向拉开接触的导线,从而液体桥断开。
3.2电弧的基本性质电弧可分为正常电弧和非正常电弧( 即故障电弧 ) 两种。
一般认为 , 电器的正常开关、插头插拔等操作引起的电弧属正常电弧 ; 而触头松动、绝缘老化、击穿、接地故障等引起的电弧视为故障电弧.故障电弧分为串弧、并弧和接地弧.电弧的电流和电压波形一般不是简单的正弦波形.经研究发现,并联电弧的性质更具一般性,而串联电弧的性质收到负载类型的影响,特性较为复杂.下面先讨论电弧的普遍性质.经过对大量电弧波形的研究,发现说有电弧都具有一些共同的特性:①电压和电流的波形包含有高频噪声;②沿电弧有电压降;③除有设备进行补偿的情况,由于沿电弧有电压降,对同一条线路的同一点上电弧电流低于非电弧电流;④电弧电流的上升速率一般高于正常电流;⑤电弧电流的每一个半周期波都在正常电流的过零点前熄灭,再过零点后复燃,在每半个周波形成一段几乎是平的零电流区域.把它命名为“平肩部”.⑥电压波形接近于矩形.⑦电弧通常是散布于正常电流之间零星闪波.图3.2.1 一般电弧的特性从图3.2.1中的电流电压波形,还可以看到其他一些电弧普遍特性,下面会详细介绍故障电弧的特性.(1)并联电弧的普遍特性图3.2.2 75安培并联电弧电流曲线图3.2.2表示的是用金属刀片切断NM-B型电缆产生的平行电弧,引起电弧连接的短路故障,断开点的短路电流为75A.从图中可以得到电弧电流的特点包括:①电流幅值小于理想状况;②高频闪络③电流曲线有“平肩部”的存在;④上升的幅度在部分比理想状况陡峭.我们可以注意到:没有两个半周波的波形是相同的;在波形某些局部,可以看到更为明显的电弧的特征.既然电弧是有切断电缆硬气的,发生电弧之前是没有正常电流做参照的条件下识别出电弧电流的特性.图3.2.3是完全相同的电路和条件下进行第二次实验所记录的波形,它与图3.2.2的波形不同,也不存在高频闪,但是其他特性是相同的,这说明电弧的概率特性和电弧保护的检测装置为了能够检测到电弧的产生并与正常负荷区分开,需要同时得到多个特证证实电弧的存在.图3.2.2 75安培并联电弧电流曲线二⑵串联电弧的普遍性质发生串联电弧时,我们可以观察到电流变小,同时受负荷本身的影响出现异常的波形.为了能够检测与负荷串联的电弧,研究电弧发生前后波形的变化与研究电弧的性质同样重要.检测电弧-正常电流的差异最容易,但是发生故障电弧时前后两个半周期波也会变化,如果没有同正常电流相比较,会被认为检测到电弧.一些负荷具有非常类似于故障电弧的特征.因此对于这些情况,需要检测若干个半周波直到确认存在电弧的概率比较大.以图3.2.3-3.2.6为例,故障电弧同正常电弧是存在相当大的差异的,但肉眼一般很难发现,必须通过高精度分析才能辨别.①真空吸尘器图3.2.3 真空吸尘器的电弧电流曲线图 3.2.3表示的真空吸尘器的通用点击运转时电线发生串联电弧时的电流波形.可以注意到一下特征:A.存在平肩部分;B.峰值有变化;C.电流增长速率有变化.②个人计算机图3.2.4 个人计算机的电弧电流曲线图3.2.4是个人计算机开启后的电弧电流曲线图.开关电源正常工作时具有异常的波形,表现很多故障电弧的特征.但是,通过某些特征能够区分真正的电弧和正常波形:A.电流幅值变化很大;B.振幅不稳定;C.电流脉冲偶尔会发生确实;D.增强的高频抖动.③调光器图3.2.5 1000W调光器电弧电流曲线图3.2.5表示的是1000瓦调光器电弧电流曲线,它的正常波形和故障电弧波形非常类似.我们可以看到,两者之间电流幅度确定不同,电弧电流持续时间不时变化,含有高频分量.检测调光器负载的故障电弧需要较长时间.④压缩机图3.2.6 压缩机的电弧电流曲线图3.2.6 表示的是压缩机的电弧电流曲线.正常电流波形和故障电流波形具有更加类似的性质,高频抖动和幅值变化都不是明确的区别依据.故障电弧能够作为检测特征的有:A.幅值的变化;B.增加速率变化;C.平肩部的存在.四、故障电弧的检测原理电弧具有概率特性,并不是持续不变的,许多负载的特性与串联电弧相似,因此,电弧保护的检测装置为了能够检测到电弧的产生并与正常负荷区分开来,需要同时得到多个证据证明电弧存在的概率很高而正常负荷的概率很低,这个非常重要.4.1故障电弧的试验设备(1)试验平台结构图4.1.1 电弧试验平台结构试验平台结构如图4.1.1所示,包括供电变压器,开关,电弧发生器,负载和数据采集设备.供电变压器按照标准要求能够提供500A电流,电压可调.(2)电弧发生器电弧发生器是人工产生持续电弧的设备,是试验中最重要的设备.将电弧发生器同各种负荷设备连接后,使电弧燃烧,就可以研究各种负荷状态下的电弧特性.该设备的结构如图4.1.2所示:图4.1.2 电弧发生器(a=0.7+0.3英寸)该电弧发生装置的规格按照UL1699标准相关条款的要求,有固定电极和移动电极组成.一个电极有直径0.25英寸(6.4毫米)的碳-石墨电极棒组成,另一个铜杆.其中一个或两个电极的末梢必须是尖锐的.电极相互接触时电路应该完全闭合.4.2 故障电弧数据库的建立由于故障电弧电流波形具有非正弦性和随机性,而且在某些负荷设备环境下,启动和正常工作状况的电流波形与电弧波形具有某些相似性.而目前还没有一种电压电弧数学模型可以精确地仿真各种工作状况下的电弧波形.因此,研发故障电弧探测装置的基础是搭建故障电弧实验平台,通过大量的试验采集各种负荷下故障电弧和正常工作状态的电流数据,然后经过数据处理,研究出故障电弧与正常工作的特性差异. 在此基础上所开发研制的故障电弧探测装置才能准确地检测故障电弧,而不发生误动作.故障电弧数据库的建立是故障电弧探测装置中的难点.4.3 硬件设计硬件结构图如下图4.3.1所示:图4.3.1 硬件原理框图(1)在图中,电流互感器1采用气芯的电互感器,它的特点是无磁滞和磁饱和现象,它有非常好的线性和暂态特性, 1将感应信号送入2一个电压跟随器,以使输出信号强化. 3是一个50-60HZ的低通滤波器, 4是个双路非反相运放,负载电流的信号被放大后送入13处理.(2)7和8是200KHZ和250KHZ的带通滤波器,是一个对电弧电流波形的傅里叶运算,之后,信号将送入9一个1ms的单稳触发电路,之后经过10逻辑与送入13运算处理.(3)5是电压检测电路,当电弧发生时,AC电源的电压是不稳定的.所以要对电压的绝对值进行采样,送入13处理.并且6负责检测电压的过零信号,并将此信号送入13,用于电流采样值的运算.(4)11和12分别是声光报警功能和控制输出,当检测装置检测到电弧发生是通过13控制11发出声光报警,控制12控制输出.(5)14是AC220V转DC5V电源电路.4.4 软件设计(1)故障电弧探测装置软件应具备以下几项基本功能:①准确的电弧检测此项功能要求故障电弧探测装置能够根据对负载电流和电压的A/D采样,在短时间内检测出电弧的产生,这种检测包括对负载运转所产生的正常电弧检测以及负载在非正常状态所产生的电弧检测。