高一数学投影与三视图
- 格式:pdf
- 大小:1008.37 KB
- 文档页数:11
高一数学立体几何知识点归纳(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高一数学立体几何知识点归纳数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。
《正投影与三视图》尊敬的各位评委、各位老师,大家好。
我的题目是《正投影与三视图》,这是江苏版教材技术与设计1第六章第二节的第一课时,它主要描述三视图的成图原理和规律、三视图的识读和绘制等内容。
下面我将从教材、教法、学法、教学过程等几方面进行介绍。
一、教材1、课标教材分析:技术课程的标准对“设计交流”的内容提出的要求是“了解技术语言的种类及其应用,能识读一般的机械加工图、线路图、效果图等常见的技术图样,能绘制草图和简单的三视图。
”本节内容在本章乃至技术课程的整个教学过程中都占有十分重要的地位。
因为技术语言中最能准确、直观地表达设计思想的就是技术图样,而三视图则是技术图样教学的重点。
2、教学目标:l 知识与技能:①、掌握正投影法方法、特性及三视图成图原理②、理解并掌握三视图的投影规律2 过程与方法:通过讲解投影的原理,并利用其来绘制简单三视图的过程,提高学生对三视图的识别以及绘制能力,初步学会利用模型来展示相关三视图,发展学生的识图能力。
通过交流和讨论感受设计交流中三视图的作用。
3 情感、态度、价值观:①、在利用模型引导学生准确绘制三视图的教学过程中,培养学生良好的合作和交流的态度,养成细致、严谨的工作作风。
②、形成科学的空间三围思维方式,养成一丝不苟的态度。
3、学情分析“学生是学习的主体”,学生在初一和高一已经接触到了三视图,但学生对三视图的理解仍然在数学的知识层面上,认识较为肤浅。
而本节有关工业制图的知识,对于高中一年级学生而言在理解上会有一定的难度。
4、教学重点、难点分析:为了更好地实施新课程的教学理念,根据通用技术新课程标准中对《正投影与三视图》此节的要求,特确定本课的教学重难点如下:教学重点:掌握正投影法方法、特性及三视图成图原理和规律。
教学难点:识读简单的三视图,绘制简单的三视图。
二、教学法:1、教法:在前部分教学需要通过教师的讲解,方能引导学生准确地认识。
由于中学生动手的积极性较高,好奇性强,在后部分教学通过采用学生动手绘制,并认真观察,积极引导,组织教学。
高一数学空间几何体的三视图知识点归纳高一数学空间几何体的三视图知识点归纳知识点是知识、理论、道理、思想等的相对独立的最小单元。
下面是店铺给大家带来的高一数学空间几何体的三视图知识点归纳,希望能帮到大家!光由一点向外散射形成的投影叫做中心投影,其投影的大小随物体与投影中心间距离的变化而变化。
平行投影:在一束平行光线照射下形成的投影叫做平行投影。
在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。
空间几何体的`三视图:光线从几何体的前面向后面正投影,得到投影图,叫做几何体的正视图;光线从几何体的左面向右面正投影,得到投影图,叫做几何体的侧视图;从几何体的上面向下面正投影,得到投影图,高考地理,叫做几何体的俯视图。
几何体的正视图、侧视图、俯视图统称为几何体的三视图。
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
平行投影与中心投影的区别和联系:①平行投影的投射线都互相平行,中心投影的投射线是由同一个点发出的.如图所示,②平行投影是对物体投影后得到与物体等大小、等形状的投影;中心投影是对物体投影后得到比原物体大的、形状与原物体的正投影相似的投影.③中心投影和平行投影都是空间图形的基本画法,平行投影包括斜二测画法和三视图.中心投影后的图形与原图形相比虽然改变较多,但直观性强,看起来与人的视觉效果一致,最像原来的物体.④画实际效果图时,一般用中心投影法,画立体几何中的图形时一般用平行投影法.画三视图的规则:①画三视图的规则是正侧一样高,正俯一样长,俯侧一样宽.即正视图、侧视图一样高,正视图、俯视图一样长,俯视图、侧视图一样宽;②画三视图时应注意:被挡住的轮廓线画成虚线,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示,尺寸线用细实线标出;D表示直径,R表示半径;单位不注明时按mm计;③对于简单的几何体,如一块砖,向两个互相垂直的平面作正投影,就能真实地反映它的大小和形状.一般只画出它的正视图和俯视图(二视图).对于复杂的几何体,三视图可能还不足以反映它的大小和形状,还需要更多的投射平面.【高一数学空间几何体的三视图知识点归纳】。
⾼⼀数学知识点总结_空间⼏何体的结构知识点⾼⼀数学怎么学? 学⽣学习期间,在课堂的时间占了⼀⼤部分。
因此听课的效率如何,决定着学习的基本状况,今天⼩编在这给⼤家整理了⾼⼀数学知识点总结,接下来随着⼩编⼀起来看看吧!⾼⼀数学知识点总结(⼀)空间⼏何体的结构知识点1、静态的观点有两个平⾏的平⾯,其他的⾯是曲⾯;动态的观点:矩形绕其⼀边旋转形成的⾯围成的旋转体,象这样的旋转体称为圆柱。
2、定义:以矩形的⼀边所在直线为旋转轴,其余各边旋转⽽形成的的曲⾯所围成的旋转体叫做圆柱,旋转轴叫圆柱的轴;垂直于旋转轴的边旋转⽽成的圆⾯叫做圆柱的底⾯;平⾏于圆柱轴的边旋转⽽成的⾯叫圆柱的侧⾯,圆柱的侧⾯⼜称圆柱的⾯。
⽆论转到什么位置,不垂直于轴的边都叫圆柱侧⾯的母线。
表⽰:圆柱⽤表⽰轴的字母表⽰。
规定:圆柱和棱柱统称为柱体。
3、静态观点:有⼀平⾯,其他的⾯是曲⾯;动态的观点:直⾓三⾓形绕其⼀直⾓旋转形成的⾯围成的旋转体,像这样的旋转体称为圆锥。
4、定义:以直⾓三⾓形的⼀条直⾓边所在的直线为旋转轴,其余两边旋转⽽形成的⾯所围成的旋转体叫做圆锥。
旋转轴叫圆锥的轴;垂直于旋转轴的边旋转⽽成的圆⾯成为圆锥的底⾯;不垂直于旋转轴的边旋转⽽成的曲⾯叫圆锥的侧⾯,圆锥的侧⾯⼜称圆锥的⾯,⽆论旋转到什么位置,这条边都叫做圆锥侧⾯的母线。
表⽰:圆锥⽤表⽰轴的字母表⽰。
规定:圆锥和棱锥统称为锥体。
5、定义:以半直⾓梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转⽽形成的曲⾯所围成的⼏何体叫圆台。
还可以看成⽤平⾏于圆锥底⾯的平⾯截这个圆锥,截⾯于底⾯之间的部分。
旋转轴叫圆台的轴。
垂直于旋转轴的边旋转⽽形成的圆⾯称为圆台的底⾯;不垂直于旋转轴的边旋转⽽成的曲⾯叫做圆台的侧⾯,⽆论转到什么位置,这条边都叫圆台侧⾯的母线。
表⽰:圆台⽤表⽰轴的字母表⽰。
规定:圆台和棱台统称为台体。
6、定义:以半圆的直径所在的直线为旋转轴,将半圆旋转⼀周所形成的曲⾯称为球⾯,球⾯所围成的旋转体称为球体,简称为球。
高一数学课本知识点总结高一数学是数学学科中的一个重要阶段,也是学习数学基础知识的关键时期。
下面是对高一数学课本知识点的总结:1. 复数与复数运算:复数是由实部和虚部构成的数,可以表示为 a+bi 的形式,其中a 和 b 分别是实数,i 是虚数单位。
复数的运算包括加减乘除和乘方等,其中乘法的运算规则为:(a+bi)(c+di) = ac-bd+(ad+bc)i。
2. 函数与函数的性质:函数是数与数之间的一种对应关系,表示为 y=f(x)。
函数的性质包括定义域、值域、奇偶性、单调性等。
常见的函数有线性函数、二次函数、指数函数、对数函数等,它们有着不同的图像特征和数学性质。
3. 三角函数与三角恒等式:三角函数是描述角度与边长之间关系的函数,包括正弦函数、余弦函数、正切函数等。
三角恒等式是用于简化三角表达式的等式,常见的恒等式有正弦定理、余弦定理等。
4. 平面向量与向量运算:平面向量包括有大小和方向的量,常用于描述平面上的位移、速度、力等。
向量的运算包括加法、减法、数量积和向量积,其中数量积和向量积分别是用于计算向量间夹角和向量的正交性。
5. 概率与统计:概率是描述事件发生可能性的量,是数学中的一个重要分支。
统计是收集、整理、分析和解释数据的过程,用于描述数据的特征和推断总体的特征。
6. 三角比与勾股定理:三角比是描述直角三角形边长之间关系的比值,包括正弦比、余弦比和正切比等。
勾股定理是用于计算直角三角形边长关系的定理,表达为a²+b²=c²。
7. 数列与数列的性质:数列是一串按照规律排列的数,包括等差数列、等比数列、等差数列和等差数列等。
数列的性质包括公式求和、通项公式、递推公式等。
8. 平面几何知识:平面几何是研究平面图形和其性质的学科,包括直线、多边形、圆、曲线等。
平面几何包括定理的证明、计算图形的面积和周长等。
9. 三视图与投影:三视图是用于表示物体三个视图的正交投影,包括平面正视图、平面侧视图和平面俯视图等。
《三视图》教学设计一、教学内容分析通用技术必修模块“技术与设计1”第六章第二节《常见的技术图样》之“正投影与三视图”(苏教版)主要描述了正投影形成三视图的方法、原理,三视图的绘制(识读)方法和规律等。
三视图作为一种技术图样是设计交流与表达的一种常用的技术语言形式。
学生通过本节的学习,掌握绘制简单三视图的基础知识和技能,本节内容也是后续知识“形体的尺寸标注”和“机械加工图”的基础。
在这里起到一个呈上启下的作用。
二、学情分析通过前面章节的学习,高中学生能够较熟练地绘制(识读)平面图和正等轴测图,也有光线投射成影的感知和体验。
教学可以从学生的现有知识和经验出发,按照直观感知、操作确认、思辩求证的认识过程展开,建构正投影与三视图的知识体系。
但学生的空间思维还受到定向模式的限制,很难发散思考一些个别现象,处理个特殊案例的能力有待提高,如不可见部分和重叠等。
三、教学目标1.知识目标:(1)理解投影法的基本概念和方法;(2)掌握正投影法方法、特性及三视图成图原理和规律;(3)掌握三视图一般绘图规则。
2.能力目标:(1)掌握简单的三视图的绘制(识读);(2)学会规范作图的方法和技能。
3.情感态度价值观:(1)经历三视图的作图过程,体验技术图样的魅力(2)形成科学的空间三围思维方式,培养学生严谨的思维与态度。
4、教学重点:(1)掌握三视图成图原理和规律;(2)掌握简单的三视图的绘制(识读)。
5、教学难点:(1)能规范绘制和识读简单的三视图。
四、教学准备准备积木,利用塑料胶纸和泡沫制作多个的模型。
五、教学策略及媒体运用在本节的教学中,将采用“主导—主体(分享—互助提升)”的设计模式,引导学生进行自主探究、知识建构和能力拓展。
总体教学流程为:“情境导入,知识建构,合作探究,总结提升,能力拓展”。
1、通过生活小故事的情景导学,激发学生对“技术语言的种类”进行回顾和复习以及注意在技术活动中选用恰当的技术语言进行交流的重要性,对本节课内容产生强烈的求知欲望。
课后导练基础达标1如图,桌面上放着一个圆锥和一个长方体,其俯视图是()解析:圆锥的俯视图是一个圆和圆心,而长方体的俯视图是一个长方形,故选D.答案:D2对几何体的三视图,下面说法正确的是()A.正视图反映物体的长和宽B.俯视图反映物体的长和高C.侧视图反映物体的高和宽D.正视图反映物体的高和宽解析:正视图反映物体的长和高;俯视图反映物体的长和宽;侧视图反映物体的高和宽.答案:C3已知某物体的三视图如下图所示,那么这个物体的形状是()A.长方体B.圆柱C.立方体D.圆锥解析:由俯视图知,该几何体的上、下底面均为圆,又由正视图与侧视图均为矩形,所以该物体应为圆柱.答案:B4给出下列命题,其中正确命题的个数是()①如果一个几何体的三视图是完全相同的,则这个几何体是正方体②如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体③如果一个几何体的三视图是矩形,则这个几何体是长方体④如果一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台A.0B.1C.2D.3解析:①不一定为正方体,也可能是球;②不一定为长方体,有可能是圆柱;③正确;④若是圆台,则俯视图是两个同心圆.答案:B5右图是一个哑铃的立体图,则以下结论不正确的是()A.侧视图是一个圆B.侧视图是几个同心圆C.俯视图和正视图一样D.右视图和左视图一样解析:该物体的俯视图应该是多个矩形组合而成,所以A错.答案:A6如图,E、F分别为正方体的面ADD1A1,面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(把可能的序号都填上)解析:四边形BFD1E在面BCC1B1或面ADD1A1上的射影应是E与F重合,D1与C1重合,A与B重合,所以③正确;在下底面射影是B1与B重合,D1与D重合,E、F的射影分别为AD与BC的中点,所以②正确.在前后两面的射影也是②.答案:②③7以下三视图代表的立体图形是_______________________.答案:(1)代表直四棱柱(2)代表一个圆柱和一个长方体的组合体(3)代表正六棱锥(4)代表两个圆台的组合体8图中是两个相同的正方体,阴影面选为正面,正方体棱长为1,分别画出它们的三视图.解析:其三视图分别是图中的(1)(2).。