高中数学三视图例题解析
- 格式:doc
- 大小:786.50 KB
- 文档页数:2
立体几何三视图及体积表面积的求解一、空间几何体与三视图1. (吉林省实验中学2013—2014年度高三上学期第四次阶段检测)一个长方体截去两个三棱锥,得到的几何体如图1所示,则该几何体的三视图为( )A B C D【答案】C【解析】正视图是含有一条左下到右上实对角线的矩形;侧视图是含有一条从左上到右下的实对角线的矩形,故选C2. (广州2014届高三七校第二次联考)如图为几何体的三视图,根据三视图可以判断这个几何体为( ) A .圆锥B .三棱锥C .三棱柱D .三棱台【答案】C【解析】由三视图知,这是一个横放的三棱柱3.(黄冈中学2014届高三十月月考数学试卷)如图,一个棱柱的正视图和侧视图分别是矩形和正三角形,则这个三棱柱的俯视图为( )【答案】:D【解析】为。
4. (江西省稳派名校学术联盟2014届高三12月调研考试)如图所示是一个几何体的三视图,若该几何体的体积为,则主视图中三角形的高x 的值为( )212 2A32B32 C22 D2A. B. C. 1 D.【答案】C 【解析】5.(石家庄2014届高三第一次教学质量检测)用一个平面去截正方体,有可能截得的是以下平面图形中的 .(写出满足条件的图形序号)(1)正三角形 (2)梯形 (3)直角三角形 (4)矩形 【答案】(1)(2)(4) 【解析】6.(黄冈中学2014届高三十月月考数学试卷)一个底面是等腰直角三角形的直棱柱,侧棱长与底面三角形的腰长相等,其体积为4,它的三视图中俯视图如右图所示,侧视图是一个矩形,则这个矩形的对角线长为 .【答案】123432【解析】:设底面的等腰直角三角形的腰长为,则侧棱长也为,则,解得,则其,宽为。
二、空间几何体的体积和表面积1.(湖北省黄冈中学2014届高三数学(文)期末考试)某空间组合体的三视图如图所示,则该组合体的体积为()A .48 B .56 C .64 D .72【答案】C【解析】该组合体由两个棱柱组成,上面的棱柱体积为24540创=,下面的棱柱体积为46124创=,故组合体的体积为642.(四川省泸州市2014届高三数学第一次教学质量诊断性考试)一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( ) A .B .C .D .a a 3142V a ==2a =2=3. (2014年福建宁德市普通高中毕业班单科质量检查)一个几何体的三视图如图所示,则该几何体的侧面积为()A.8+B.10C.8+.123. (承德市联校2013-2014年第一学期期末联考)把边长为2的正方形ABCD沿对角线BD折起,连结AC,得到三棱锥C-ABD,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.32B.12C.1 D.22【答案】B【解析】由两个视图可以得到三棱锥如图:其侧视图的面积即t R ACEV的面积,由正方形的边长为2得==1AE CE,故侧视图面积为125.(安徽省六校教育研究会2014届高三2月联考)某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是()(A) (B)(C)(D)8【答案】D【解析】由三视图可得三棱锥如图所示:底面是边长为4的正三角形,AD BDC ^平面,故四个面的面积中,最大的面积是ABC V 的面积为142创4. (宁夏银川一中2014届高三年级月考)如图是一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的全面积为( )A .2+3.2+2.8+5.6+3【答案】A【解析】由三视图可知,该几何体是半个圆柱和侧棱垂直于底面的三棱柱组成的组合体,该几何体的表面积.5. (湖南省2014届高三第五次联考数学)已知三棱锥的三视图如图所示,则它的外接球表面积为( ) A. 16pB. 4pC. 8pD. 2pπ+π+π+π+1212(1)2S ππ=⨯⨯++32π=+7.(西安铁一中2014届高三11月模拟考试试题)一个几何体的三视图如图所示,则其外接球的表面积是( )A. B.【答案】B【解析】由三视图知:该几何体为长方体,长方体的棱长分别为3、4、5,所以长方体的体对角线为,所以外接球的半径为,所以外接球的表面积为。
专题21三视图SUBA. 2 n B • 3 n C【答案】B【解析】综合三视圄可知』几何体是一个半轻炸1的半个球体.且表面积是底面积与半球面积的和丿其表面枳3=丄敦4“+疋2=31t-故选B.2点睛:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.2.已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧1 •某几何体的三视图如图所示,则其表面积为(【解析】由正视图和俯视图还原几何体如图所示,由正视图和俯视图对应线段可得AB BD AD 2,当BC 平面ABD时,BC=2,ABD的边AB上的高为、3,只有B选项符合,当BC不垂直平面ABD时,没有符合条件的选项,故选 B.点睛:1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2•三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据3.某个长方体被一个平面所截,得到几何体的三视图如图所示,则这个几何体的体积为()B【答案】BA. 4 B . 2.2 C . 20 D . 83【答案】D【解析】由三视图可知,该几何体如图所示,其底面为正方形』正方形的边长为2. 口D=3,BF=1,将相同的两个几何体拼在V』构成一个高为斗的长方饥所臥该几何体的体积為煜x仁仪4.如图,正三棱柱ABC ABG的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为()【答案】D【解析】依题意知,此正三棱拄底面定边长为4的正三角形,接柱高为也其侧视囹为矩形,其一边长为2語,一启一边长訶4,故其面积2斗><2曲=8曲;故选D点睛:三视图问题的常见类型及解题策略⑴由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图•先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式•当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.原几何体为组合体;上面是长方体,下面是圆柱的一半(如图所示),A. 16 B 2 3 C . 4 3 D . 8,35.某几何体的三视图如图所示,则该几何体的体积为( )8 8 (C) 16 16 (D) 8 16将三视图还原为原来的几何体,再利用体积公式求解.其体积为V 4 2 2122 4 16 8 .故选A; 26•如图5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的几条棱中,最长的棱的长度为( )(A) 6,2 (B) 4、2 (C) 6 (D)4【答案】C原几何体为三機锥D-A^C, M 中Aff^BC=i r AC=^D^ = DC=2^ ?QN二旳*叭庁)+4 = 6,故最长的棱的长度为= 选C点睛:对于小方格中的三视图,可以放到长方体,或者正方体里面去找到原图,这样比较好找;7.某几何体的三视图如图所示,则该几何体的表面积为()24 2【解析】如图所示A【解析】由已知三视图得到几何体是一个正方怀割去半轻为2的丄个球」所以表面积为S3 12试4&一亦於+ —><4亦囚・24巧故选:A4S&已知某空间几何体的三视图如图所示,则该几何体的表面积是()iEttffl 博视图A. 12十2&+2后B . 12+ 也+2 后C . 12 + 2辽十曲D . |12 +V2 + .J【答案】A【解析】由三视图知:几何体为四棱锥,且四棱锥的一条侧棱与底面垂直,1=-5< 2*2 = 221 =-X2M4=421S ABCD =~X(2+4)X2=69.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体如图,P A丄平面ABCD , 朋=2 , AD = 4,医=2 ,经计算,PD = 2石,P匚=«亍,Dt = 2調,•••可••.,故选A.3D. 35 2.2【答案】A 【解析】试題分析;扌艮据三视图可知几何体是组合体;左边罡直三棱柱、右边是半个圆柱,直三棱柱的底面是等腰 亶角三角形,直角边是1,侧犧长是茶圆柱的底面半径是1,母线长是2,二该几何体的体积V =ixlxlx2十丄芝二臥十1・故选;乩2 2考点:由三视图求体积.10•如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积【答案】C 【解析】A.1 B2C. 2 1的体积是(为(3D. 41 2 体积为—2 2 2 1 4 —3 3试题分析:相当于一个圆锥和一个长方体,故考点:三视图.11. 一个几何体的三视图如图所示,则该几何体的体积为(【解析】试题分析:该几何休的直观團如园所示,连接妙,则该几何体由直三棱柱血D-和四棱锥一吨组合而成,其和易22 +扌心后专詈故应选扎12. 一个几何体的三视图如图所示 ,则该几何体的体积为A.14~316~3D. 6【答案】A考点:三视图.1【答案】-3【解析】本题考查三视图、四棱锥的体积计算等知识,难度中等•由三视图可知该几何体是底1 1面为长和高均为1的平行四边形,高为1的四棱锥,故其体积为V - 1 1 1 - •3 3。
3 32正视图侧视图俯视图图1空间几何体的三视图1..一个空间几何体得三视图如图所示,则该几何体的表面积为(A )48 (B)32+8(C) 48+8(D) 80【答案】 C【命题意图】本题考查三视图的识别以及空间多面体表面积的求法.【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,。
故S 表【解题指导】:三视图还原很关键,每一个数据都要标注准确。
2.设图1是某几何体的三视图,则该几何体的体积为A.1229 B.1829 C. 429 D. 1836答案:B解析:由三视图可以还原为一个底面为边长是3的正方形,高为2的长方体以及一个直径为3的球组成的简单几何体,其体积等于233)23(3431829。
故选 B评析:本小题主要考查球与长方体组成的简单几何体的三视图以及几何体的体积计算.3.如图l —3.某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为()b5E2RGbCAPA.63 B.93 C.123 D.183【解析】 B.由题得三视图对应的直观图是如图所示的直四棱柱,.ABCD EA 平面3931232hS VABCD平行四边形。
所以选 B4.某几何体的三视图如图所示,则它的体积是(A )283(B )83(C )82(D )23【答案】A【解析】:由三视图可知该几何体为立方体与圆锥,立方体棱长为2,圆锥底面半径为1、高为2,所以体积为3212123283故选A5.某四面体的三视图如图所示,该四面体四个面的面积中,最大的是HGFEDCBA 3123A .8B .62C .10 D .82【答案】 C6.一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是____________.p1EanqFDPw答案:2323234aa ,解得解析:设正三棱柱的侧棱长和底面边长为a ,则由a=2,正三棱柱的左视图与底面一边垂直的截面大小相同,故该矩形的面积是322232.DXDiTa9E3d7.一个几何体的三视图如图所示(单位:m ),则这个几何体的体积为__________ 3m 【答案】6【解析】由题意知,该几何体为一个组合体,其下面是一个长方体(长为3m,宽为2m,高为1m),上面有一个圆锥(底面半径为1,高为3),所以其体积为1321363V V 长方体圆锥.8. 下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)0 【答案】 A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.9.若某几何体的三视图如图所示,则这个几何体的直观图可以是第一节10.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于()A.3 B.2 C.23 D.6【命题立意】本题考查三棱柱的三视图与直观图、表面积。
母题四三视图【母题原题1】【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)32(B)23(C)22(D)2【答案】B【解析】试题分析:几何体是四棱锥,如图红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,22222223l=++=,故选B.【考点】三视图【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:或者也可根据三视图的形状,将几何体的顶点放在正方体或长方体里面,便于分析问题.【母题原题2】【2016北京,理6】某三棱锥的三视图如图所示,则该三棱锥的体积为(A)16(B)13(C)12(D)1【答案】A【考点】三视图【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.【母题原题3】【2015北京,理5】某三棱锥的三视图如图所示,则该三棱锥的表面积是11俯视图侧(左)视图21A.25+B.45+C.225+D.5【答案】C【解析】根据三视图恢复成三棱锥P-ABC,其中PC⊥平面ABC,取AB棱的中点D,连接CD、PD,有,PD AB CD AB⊥⊥,底面ABC为等腰三角形底边AB上的高CD为2,AD=BD=1,PC=1,5,ABCPD S∆=1222,2=⨯⨯=,12552PABS∆=⨯⨯=AC BC=5=1512PAC PBCS S∆∆==⨯⨯52=,三棱锥表面积表252S=+.考点定位:本题考点为利用三视图还原几何体及求三棱锥的表面积,考查空间线线、线面的位置关系及有关线段长度及三角形面积数据的计算.【名师点睛】本题考查三视图及多面体的表面积,本题属于基础题,正确利用三视图还原为原几何体,特别是有关数据的还原,另外要利用线面垂直的性质,判断三角形的形状,特别是侧面PAB的形状为等腰三角形,正确求出三个侧面的面积和底面的面积.【命题意图】 主要考察空间几何体的三视图还原几何体,求几何体的体积和表面积,意在考查学生的空间想象能力,和计算能力.【命题规律】高考对三视图的考查注意以以下几个方面为主:1、已知部分三视图,考查还原为原来立体图形的直观图;2、已知三视图,考查还原为立体图形的直观图并能计算表面积或体积;3、已知三视图,需要还原立体图形后求空间角或空间距离以及相关元素的位置关系4、以三视图为载体,考查还原后几何体的外接球或内切球问题。
三视图——⼏何体的体积问题一、基础知识:1、常见几何体的体积公式:(:S 底面积,:h 高)(1)柱体:V S h=×(2)锥体:13V S h =×(3)台体:(1213V S S h =++×,其中1S 为上底面面积,2S 为下底面面积(4)球:343V R p =2、求几何体体积要注意的几点(1)对于多面体和旋转体:一方面要判定几何体的类型(柱,锥,台),另一方面要看好该几何体摆放的位置是否是底面着地。
对于摆放“规矩”的几何体(底面着地),通常只需通过俯视图看底面面积,正视图(或侧视图)确定高,即可求出体积。
(2)对于组合体,首先要判断是由哪些简单几何体组成的,或是以哪个几何体为基础切掉了一部分。
然后再寻找相关要素(3)在三视图中,每个图各条线段的长度不会一一给出,但可通过三个图之间的联系进行推断,推断的口诀为“长对正,高平齐,宽相等”,即正视图的左右间距与俯视图的左右间距相等,正视图的上下间距与侧视图的上下间距相等, 侧视图的左右间距与俯视图的上下间距相等。
二、典型例题:例1:已知一个几何体的三视图如图所示,则该几何体的体积为_________思路:从正视图,侧视图可判断出几何体与锥体相关(带尖儿),从俯视图中可看出并非圆锥和棱锥,而是两者的一个组合体(一半圆锥+ 三棱锥),所以12V V V =+圆锥棱锥,锥体的高计算可得h =(利用正视图),底面积半圆的半径为6,三角形底边为12,高为6(俯视图看出),所以1126362S =××=三角形,2636S p p =×=圆,则13V S h =×=三角形棱锥,13V S h =××=圆圆锥,所以12V V =+=+圆锥棱锥答案:+例2:已知一棱锥的三视图如图所示,其中侧视图和俯视图都是等腰直角三角形,正视图为直角梯形,则该棱锥的体积为 .思路:观察可发现这个棱锥是将一个侧面摆在地面上,而棱锥的真正底面体现在正视图(梯形)中,所以()1424122S =×+×=底,而棱锥的高为侧视图的左右间距,即4h =,所以1163V S h =×=底答案:16例3:若某几何体的三视图如图所示,则此几何体的体积是________.思路:该几何体可拆为两个四棱柱,这两个四棱柱的高均为4(俯视图得到),其中一个四棱柱底面为正方形,边长为2(正视图得到),所以2112416V S h =×=×=,另一个四棱柱底面为梯形,上下底分别为2,6,所以()2126282S =+×=,228432V S h =×=×=。
(完整版)高中数学3三视图课后习题(带答案)332 正视图侧视图俯视图图1 三视图课后习题1.(陕西理5)某几何体的三视图如图所示,则它的体积是A .283π-B .83π-C .82π-D .23π2.(全国新课标理6)。
在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为3.(湖南理3)设图1是某几何体的三视图,则该几何体的体积为A .9122π+B .9182π+C .942π+D .3618π+4.(广东理7)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A .63 B .93C .123D .1835.(北京理7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A .8B .62C .10D .826.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为(A )48 (B )32+817 (C )48+817 (D )807.(辽宁理15)一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是.8.(天津理10)一个几何体的三视图如右图所示(单位:m ),则该几何体的体积为__________3m9.(2010湖南文数)13.图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h= cm10.(2010浙江理数)(12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是___________3cm .11.(2010辽宁文数)(16)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为 .12.(2010辽宁理数)(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.13.(2010天津文数)(12)一个几何体的三视图如图所示,则这个几何体的体积为。
§3三视图1.三视图的特点:主、俯视图①;主、左视图②;俯、左视图③,前后对应.2.在绘制三视图时,应注意:若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,分界线和可见轮廓线都用④画出,不可见轮廓线,用⑤画出.一、解决有关三视图的问题1.(2014福建,2,★☆☆)某空间几何体的正视图是三角形,则该几何体不可能是( )A.圆柱B.圆锥C.四面体D.三棱柱思路点拨逐个分析各选项.圆柱的任何视图都不可能为三角形.2.(2014江西,5,★☆☆)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )思路点拨认清直观图是解题关键.3.(2014广东汕头期末,★☆☆)下列几何体各自的三视图中,有且仅有两个视图相同的是( )A.①②B.①③C.①④D.②④思路点拨正确画出三视图是解题的关键.4.(2013四川理,3,★☆☆)一个几何体的三视图如图所示,则该几何体的直观图可以是( )思路点拨综合三个视图,先看轮廓线,再考虑细节.5.(2013湖南理,7,★★☆)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的主视图的面积不可能等于( )A.1B.√2C.√2-12D.√2+12思路点拨俯视图是正方形,而主视图的视角不固定,从不同角度观察正方体,主视图也不同.6.(2012辽宁理改编,13,★★☆)一个几何体的三视图如图所示,试画出该几何体的直观图.思路点拨整个长方体,挖去一个圆柱.二、空间几何体的直观图与三视图的关系7.(2014浙江改编,3,★☆☆)某几何体的三视图如图所示,则此几何体为( )A.长方体与三棱锥的组合体B.正方体与三棱柱的组合体C.长方体与三棱柱的组合体D.正方体与三棱锥的组合体思路点拨先画出直观图的草图,再加以判断.8.(2014山东高密统测,★★☆)如图所示,甲、乙、丙是三个几何体的三视图,则下列甲、乙、丙对应的标号正确的是( )①长方体②圆锥③三棱锥④圆柱A.④③②B.②①③C.①②③D.③②④思路点拨仔细考量各个视图.以某一个视图为基准,其他两个视图辅助,画出直观图草图.9.(2014河北沧州阶段考试,★★☆)根据如图所示的三视图,想象对应的几何体,并画出草图(尺寸不作严格要求).思路点拨从视图可看出上部为正六棱锥,下部为正六棱柱.一、选择题1.下列说法正确的是( )A.任何几何体的三视图都与其摆放的位置有关B.任何几何体的三视图都与其摆放的位置无关C.有的几何体的三视图与其摆放的位置无关D.正方体的三视图一定是三个全等的正方形2.如果一个空间几何体的主视图与左视图均为全等的等边三角形,俯视图为一个圆及其圆心,那么这个几何体为( )A.棱锥B.棱柱C.圆锥D.圆柱3.如图,空心圆柱体的主视图是( )4.将正三棱柱截去三个角(如图①所示,A,B,C分别是△GHI三边的中点)得到如图②所示的几何体,则该几何体按图②所示方向的左视图为( )5.四个正方体按如图所示的方式放置,其中阴影部分为我们观察的正面,则该组合体的三视图是( )6.如图所示的正方体ABCD-A1B1C1D1是一个用铁丝围成的模型框架,E、F分别是A1D1、CC1的中点,G为正方形ABCD的中心,用铁丝将AE、EF、FG、GA连接起来得到一组合体框架,则该组合体的主视图、左视图和俯视图分别是( )A.①④②B.①②④C.①④③D.②④③7.若某几何体的三视图如图所示,则这个几何体的直观图可能是( )二、填空题8.对几何体的三视图,下列说法正确的是.①主视图反映物体的长和宽;②俯视图反映物体的长和高;③左视图反映物体的高和宽;④主视图反映物体的高和宽.三、解答题9.一个几何体的三视图及其尺寸如图所示(单位:cm),请问该几何体是什么?写出该几何体的母线长,底面半径,高的大小.10.根据如图所示的三视图画出相应空间图形的直观图(尺寸自定).11.一个几何体是由若干个相同的小正方体组成的,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多是多少?一、选择题1.(2015山东聊城测试,★☆☆)如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体分别为( )A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台2.(2015河南内黄月考,★☆☆)如下图,三棱柱的侧棱长和底面边长均为2,且侧棱AA1⊥底面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为( )A.√3B.2√3C.4D.4√33.(2014湖北黄石模拟,★★☆)如图,水平放置的三棱柱的侧棱长为2,底面是边长为2的等边三角形,侧棱AA1⊥平面A1B1C1,且其主视图是边长为2的正方形,则该三棱柱左视图的面积为( )A.4B.2√C.2√3D.2√24.(2014安徽宿州检测,★★☆)如图所示的直三棱柱的主视图的面积为2a2,则左视图的面积为( )A.2a2B.a2a2C.√3a2D.√345.(2013北京西城一模改编,★☆☆)如图为某几何体的三视图,则此几何体为( )A.球与三棱柱的组合体B.半球与圆柱的组合体C.半球与圆锥的组合体D.半球与三棱柱的组合体二、填空题6.(2014山西太原模拟,★★★)已知正三棱锥V-ABC的主视图、俯视图如图所示,其中VA=4,AC=2√3,则该三棱锥的左视图的面积为.知识清单①长对正②高平齐③宽相等④实线⑤虚线链接高考1.A 由三视图知识可知,圆柱的正视图是矩形,不可能为三角形.故选A.2.B 由几何体的直观图知,该几何体最上面的棱横放且在中间的位置上,因此它的俯视图应排除A、C、D,经验证B符合题意,故选B.3.D 正方体的三个视图都是正方形,不合题意;圆锥的主视图和左视图都是等腰三角形,俯视图是圆(含圆心),符合题意;三棱台的主视图、左视图和俯视图各不相同,不合题意;正四棱锥的主视图和左视图都是三角形,俯视图是正方形(含两条对角线),符合题意,所以②④符合题意.故选D.4.D 由俯视图易知,只有选项D符合题意.故选D.5.C 若该正方体的放置方式如图所示,当主视图的方向与正方体的任一侧面垂直时,主视图的面积最小,其值为1,当主视图的方向与正方体的对角面BDD1B1或ACC1A1垂直时,主视图的面积最大,其值为√2,因为主视图的方向不同,所以主视图的面积S∈[1,√2].故选C.6.解析如图所示:该几何体是长为4,宽为3,高为1的长方体内部挖去一个底面半径为1,高为1的圆柱.7.C 画直观图如图,可见几何体是长方体与三棱柱的组合体.8.A 甲中俯视图是圆,则该几何体是旋转体,又其主视图和左视图均是矩形,则甲是圆柱;乙中俯视图是三角形,则该几何体是多面体,又其主视图和左视图均是三角形,则该多面体的各个面都是三角形,因此,乙是三棱锥;丙中俯视图是圆(含圆心),则该几何体是旋转体,又其主视图和左视图均是三角形,故丙是圆锥.9.解析由主视图和俯视图可知该几何体的下半部分为柱体,上半部分为锥体,因为俯视图为一个正六边形,所以该几何体是由一个正六棱锥和一个正六棱柱组合而成的.它的实物草图如图所示.基础过关一、选择题1.C 球的三视图与其摆放位置无关.2.C 棱锥、棱柱的俯视图不是圆,圆柱的主视图和左视图都是矩形,故选C.3.C 根据三视图的画法可知选C.4.A 左视图一定为直角梯形.5.B 由三视图的定义,可得其对应三视图应为选项B中的相应图形,故选B.6.A 主视图是从前向后观察,易知为①,左视图是从左向右观察,应为④,俯视图为②.7.D A、B的主视图不符合要求,C的俯视图不符合要求.二、填空题8.答案③解析根据三视图定义,主视图反映的是物体的长和高,左视图反映的是物体的宽和高,俯视图反映的是物体的长和宽.三、解答题9.解析主视图与左视图相同,说明它是均匀的对称体,又俯视图为圆(含圆心),根据学过的知识可知该几何体是圆锥.从主视图可知圆锥的底面直径为6 cm,母线长是5 cm,所以该几何体的底面半径为3 cm,母线长为5 cm,高为4 cm.10.解析直观图如图:11.解析 由主视图和左视图可知该几何体底部这一层最多摆放9个小正方体,上面一层最多摆放4个小正方体,所以组成这个几何体的小正方体的个数最多是13个.三年模拟一、选择题1.C 仔细观察三视图,先确定大致图形,再细化处理.2.B 侧视图是宽为√3,长为2的矩形,故侧视图的面积为2√3.3.C 三棱柱的左视图为一个矩形,且其一边为三棱柱的高,与这一边相邻的一边为底面三角形的高,故其面积为2×√3=2√3.4.C 由主视图的面积为2a 2得三棱柱的高为2a.左视图为矩形,长为2a,宽为底面图形(三角形)的高√32a,∴左视图的面积为2a×√32a=√3a 2.5.C 显然是半球与圆锥的组合体.二、填空题6.答案 6解析 此正三棱锥的侧棱长是4,底面正三角形的边长是2√3,而其左视图是等腰三角形,底边长是2√3,高是三棱锥的高,即为2√3,所以左视图的面积是6.。
1
三视图
1、若某几何体的三视图如图所示,则此几何体的表面积是_____________.4042+
2、某几何体的三视图如图所示,则该几何体的体积为_____________.
3、如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为( )D
A 、8π
B 、252π
C 、12π
D 、414
π
4、如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则四面体的体积为( )A A 、23 B 、43 C 、8
3
D 、2
5、一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )D (A )
81 (B )71 (C )61 (D )5
1
6、如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) C A. 1727 B. 59
C. 1027
D. 13
7、一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )
A
(A) (B) (C)
8、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(B ) ()A 6 ()B 9 ()C 12 ()D 18
4
2
44131
2
11侧视图俯视图
正视图
俯视图
侧视图
正视图
C
D
B
P A
D D 1C 1
B 1
1
O y
x
z
(0,1,1)
(0,0,0)
(1,0,1)
(1,1,0)
53
2
2
9、在一个几何体的三视图中,正视图和俯视图如左图所示,则相应的侧视图可以为( )D
10、某几何体的三视图如图所示,则该几何体的体积为_____________.
11、已知某几何体的三视图如图所示,则其体积为_____________.20或16
12、若某几何体的三视图如图所示,则这个几何体中最长的棱长等于_____________.
13、某几何体的三视图如图所示,则该几何体的体积为_____________.
14、某几何体的三视图如图所示,则该几何体的体积为_____________.
15、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( B ) (A )1 (B )2 (C )4 (D )8
16、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( C )
A .62
B .42
C .6
D .4
17.某几何体的三视图如图所示,则该几何体的体积为( A ) A .168π+ B .88π+ C .1616π+ D .816π+
1
1
1
4
2
1
2
2
2
2
2
2
2
4
4
4
2
俯视图
正视图
r
2r
2r
r
P
B
A
C
C
A
P
B
13
3383
323。