高中数学(超全面的)_三视图
- 格式:ppt
- 大小:3.93 MB
- 文档页数:12
高中数学中的三视知识点总结三视是指从不同角度观察一个物体时所得到的图形,包括主视图、左视图和顶视图。
在高中数学中,三视是一个重要的概念,涉及到几何图形的理解和建模。
以下是高中数学中的三视知识点的总结。
1. 主视图:主视图是指一个物体从正面朝向观察者时所得到的图形。
在主视图中,我们可以观察到物体的宽度、高度和部分深度。
主视图通常用正方向的箭头表示,箭头指向主视图的方向。
2. 左视图:左视图是指一个物体从左侧朝向观察者时所得到的图形。
左视图通常与主视图相互垂直,能够展示物体的厚度和深度。
左视图也可以用箭头表示,箭头指向左视图的方向。
3. 顶视图:顶视图是指一个物体从上方朝向观察者时所得到的图形。
顶视图可以展示物体的长度和宽度,但没有深度信息。
顶视图也可以用箭头表示,箭头指向顶视图的方向。
三视图常常出现在几何图形的建模中。
通过观察三视图,我们可以更准确地理解和描述一个物体的形状和尺寸。
在数学中,我们通过三视图来解决以下几个问题:1. 三视图的绘制:为了绘制一个物体的三视图,我们首先需要了解物体的尺寸和形状。
我们可以通过已知的信息,比如物体的长度、宽度和高度,来绘制主视图、左视图和顶视图。
绘制三视图需要一定的几何知识和技巧。
2. 三视图的旋转:通过旋转物体,我们可以观察到不同的视图。
在数学中,我们可以通过旋转主视图、左视图和顶视图,来得到其他角度的视图。
通过观察这些视图,我们可以更全面地认识一个物体。
3. 三视图的投影:在三维空间中,一个物体在某个平面上的投影就是其相应视图。
通过投影,我们可以将三维物体转化为二维图形。
在几何学中,投影是一个重要的概念,可以帮助我们研究空间中的物体。
除了上述的知识点,三视图还与其他数学概念有一定的联系。
比如,在解方程和计算几何中,我们可以通过三视图来解决问题。
三视图还与空间几何和立体几何等知识有关联。
总结:在高中数学中,三视是一个重要的概念,涉及到几何图形的建模和分析。
通过观察和分析三视图,我们可以更准确地描述和理解一个物体的形状和尺寸。
三视图——⼏何体的体积问题一、基础知识:1、常见几何体的体积公式:(:S 底面积,:h 高)(1)柱体:V S h=×(2)锥体:13V S h =×(3)台体:(1213V S S h =++×,其中1S 为上底面面积,2S 为下底面面积(4)球:343V R p =2、求几何体体积要注意的几点(1)对于多面体和旋转体:一方面要判定几何体的类型(柱,锥,台),另一方面要看好该几何体摆放的位置是否是底面着地。
对于摆放“规矩”的几何体(底面着地),通常只需通过俯视图看底面面积,正视图(或侧视图)确定高,即可求出体积。
(2)对于组合体,首先要判断是由哪些简单几何体组成的,或是以哪个几何体为基础切掉了一部分。
然后再寻找相关要素(3)在三视图中,每个图各条线段的长度不会一一给出,但可通过三个图之间的联系进行推断,推断的口诀为“长对正,高平齐,宽相等”,即正视图的左右间距与俯视图的左右间距相等,正视图的上下间距与侧视图的上下间距相等, 侧视图的左右间距与俯视图的上下间距相等。
二、典型例题:例1:已知一个几何体的三视图如图所示,则该几何体的体积为_________思路:从正视图,侧视图可判断出几何体与锥体相关(带尖儿),从俯视图中可看出并非圆锥和棱锥,而是两者的一个组合体(一半圆锥+ 三棱锥),所以12V V V =+圆锥棱锥,锥体的高计算可得h =(利用正视图),底面积半圆的半径为6,三角形底边为12,高为6(俯视图看出),所以1126362S =××=三角形,2636S p p =×=圆,则13V S h =×=三角形棱锥,13V S h =××=圆圆锥,所以12V V =+=+圆锥棱锥答案:+例2:已知一棱锥的三视图如图所示,其中侧视图和俯视图都是等腰直角三角形,正视图为直角梯形,则该棱锥的体积为 .思路:观察可发现这个棱锥是将一个侧面摆在地面上,而棱锥的真正底面体现在正视图(梯形)中,所以()1424122S =×+×=底,而棱锥的高为侧视图的左右间距,即4h =,所以1163V S h =×=底答案:16例3:若某几何体的三视图如图所示,则此几何体的体积是________.思路:该几何体可拆为两个四棱柱,这两个四棱柱的高均为4(俯视图得到),其中一个四棱柱底面为正方形,边长为2(正视图得到),所以2112416V S h =×=×=,另一个四棱柱底面为梯形,上下底分别为2,6,所以()2126282S =+×=,228432V S h =×=×=。
高中数学立体几何知识点总结(全)垂直直线:两条直线的夹角为90度。
XXX.三.点与平面的位置关系点在平面上:点在平面内部;点在平面外:点在平面的一侧;点在平面上方或下方:需要指定一个方向向量,点在平面的哪一侧就取决于该方向向量与平面法向量的夹角。
四.直线与平面的位置关系直线在平面上:直线的每一点都在平面上;直线在平面内部:直线与平面没有交点;直线与平面相交:直线与平面有且只有一个交点;直线平行于平面:直线与平面没有交点,且方向向量与平面法向量垂直。
改写后:一、空间几何体的三视图空间几何体的三视图包括正视图、侧视图和俯视图。
其中,正视图是指从几何体的前面向后面正投影得到的投影图,反映了物体的高度和长度;侧视图是指从几何体的左面向右面正投影得到的投影图,反映了物体的高度和宽度;俯视图是指从几何体的上面向下面正投影得到的投影图,反映了物体的长度和宽度。
在三视图中,长对正,高平齐,宽相等是反映长、宽、高特点的简洁表述。
二、空间几何体的直观图斜二测画法是一种用于绘制空间几何体直观图的方法。
基本步骤包括建立适当的直角坐标系xOy,建立斜坐标系x'O'y',并画出对应图形。
在直观图中,已知图形平行于X轴的线段画成平行于X'轴,长度不变;已知图形平行于Y轴的线段画成平行于Y'轴,长度变为原来的一半。
直观图与原图形的面积关系是直观图面积为原图形面积的四分之一。
三、空间几何体的表面积与体积圆柱、圆锥、圆台的侧面积分别为2πrl、πrl和πr(l+R),其中r表示底面半径,l表示母线长度,R表示上底面半径。
圆柱、圆锥、圆台的体积分别为Sh、S/3h和S(h/3),其中S为底面积,h为高度。
球的表面积和体积分别为4πR²和(4/3)πR³。
四、点、直线、平面之间的位置关系平面的基本性质包括三条公理,分别是公理1、公理2和公理3.直线与直线的位置关系有相交、平行和垂直;点与平面的位置关系有在平面上、在平面内部、在平面外部、在平面上方或下方;直线与平面的位置关系有在平面上、在平面内部、相交和平行。
高中数学三视图知识点总结及解题技巧专题汇总高中数学三视图知识点总结及解题技巧专题汇总三视图是指物体向投影面投影所得到的图形。
将物体在三个相互垂直的平面内作垂直投影所得的三个图形,称为三视图,分别为主视图(正)、俯视图和侧(左)视图。
正投影是指投影线互相平行,并都垂直于投影面的投影。
识图技巧包括试图位置、侧面与试图的关系、看图要领和选取的几何体。
一般三视图的放置方式是按照标准位置,便于尺寸的对应。
当几何体的侧面与投影面不平行时,该侧面的视图形状不是真实的形状,只有当侧面与投影面平行时,视图才能真实地反映几何体侧面的形状。
在看图时,主、俯视图长对正;主、侧视图高平齐;俯、侧视图宽相等。
在三视图考题中,选取的几何体一般有三种,包括常见的几何体、被平面截取后得到的几何体和组合体。
解题要领包括先确定底面、找视图中有线线垂直的地方和注意三视图与几何体的摆放位置直接相关。
大多数试题中下、俯视图的图形都是几何体底面的真实形状。
关键线往往对应着几何体中线面垂直、面面垂直的地方。
几何体的高很多情况就是视图平面图形的高,求几何体的体积时这一点显得尤为重要。
同样一个几何体若摆放位置不同,那么三视图的形状也会有变化。
典型例题讲解:某几何体的三视图如下,确定它的形状。
通过分析俯视图,可以知道底面是直角三角形;通过主视图,可以确定SA在几何体中是一条与底面垂直的棱。
重新画出三视图,放到标准位置,方便长度关系的计算。
由对应关系,可以算得底面三角形的高应为2,故底面的面积为4.高为2,则体积为18/3=6.综上所述,了解三视图的概念和识图技巧,掌握解题要领和典型例题的解法,能够有效提高解决三视图问题的能力。
已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是多少?分析:1)看俯视图,确定底面为一个正方形。
2)看正视图和俯视图,最右边应该垂直于底面,且与底面垂直的是一个三角形的面。
3)这样就可以确定了,这个几何体是一个四棱锥,底面是正方形,一个侧面是等腰三角形且与底面垂直。
可编辑修改精选全文完整版
高中数学知识点:空间几何体的三视图
1.三视图的概念
把一个空间几何体投影到一个平面上,可以获得一个平面图形,但是只有一个平面图形很难把握几何体的全貌,因此我们需要从多个角度进行投影,这样才能较好地把握几何体的形状和大小.通常,我们总是选择三种投影.
(1)光线从几何体的前面向后面正投影,得到的投影图叫做几何体的正视图;
(2)光线从几何体的左面向右面正投影,得到的投影图叫做几何体的侧视图;
(3)光线从几何体的上面向下面正投影,得到的投影图叫做几何体的俯视图.
几何体的正视图、侧视图和俯视图统称为几何体的三视图.
2.三视图的画法规则
画三视图时,以正视图为准,俯视图在正视图的正下方,侧视图在正视图的正右方,正、俯、侧三个视图之间必须互相对齐,不能错位.
正视图反映物体的长度和高度,俯视图反映物体的长度和宽度,侧视图反映物体的宽度和高度,由此,每两个视图之间有一定的对应关系,根据这种对应关系得到三视图的画法规则:
(1)正、俯视图都反映物体的长度——“长对正”;
(2)正、侧视图都反映物体的高度——“高平齐”;(3)俯、侧视图都反映物体的宽度——“宽相等”.。
1.2空间几何体的三视图和直观图知识点1 平行投影和中心投影基本概念:光由一点向外散射而成的投影叫做中心投影,把一束平行光线照射下形成的投影叫做平行投影。
知识点2 三视图三视图的相关概念:正视图,侧视图(左向右),俯视图画三视图的规则:正视图侧视图一样高,正视图俯视图一样长,俯视图侧视图一样宽。
(长对正、高平齐、宽相等)能看见用实线,不能看见用虚线。
知识点3 常见几何体的三视图圆柱、三棱柱、四棱锥、球知识点4 斜二测画法(直观图)斜二测画法:1在已知图形所在的空间中取水平平面,作互相垂直的轴Ox,Oy,再作Oz轴,使Lx0z=90°,且.LyOz=90°.2画直观图时,把Ox,Oy,Oz.2画成对应的轴O'x',O'y',O'2',使Lx'0'y'=45°(或135°),Ly'0'z'=90°。
x'O'y'所确定的平面表示水平平面.3已知图形中,平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于x'轴、y'轴或z'轴的线段.并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.4已知图形中平行于x轴或z轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度变为原来的一半5画图完成后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图.6用斜二测画法画出的水平放置的平面图形的V2直观图的面积是原图形面积的四分之根号二。
(课本16页例1、例2)基础训练:习题1.2 A组1、2。
高中数学必考------三视图1、分类①正视图:光线从几何体的前面向后面正投影,得到的投影图;②侧视图:光线从几何体的左面向右面正投影,得到的投影图;③俯视图:光线从几何体的上面向下面正投影,得到的投影图.2、三视图的画法规则①主、俯视图都反映物体的长度——“长对正”;②主、左视图都反映物体的高度——“高平齐”;③俯、左视图都反映物体的宽度——“宽相等”.3、三视图的排列顺序先画正视图,侧视图在正视图的右边,俯视图在正视图的下面.4、画三视图应注意的问题(1)三视图的排列规则是:先画正视图,俯视图安排在正视图的正下方,长度与正视图一样,侧视图安排在正视图的正右方,高度与正视图一样.正视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图与侧视图共同反映物体的宽度要相等.正视图又称为主视图,侧视图又称为左视图.(2)画三视图时,要遵循“长对正,高平齐,宽相等”的原则,若相邻两个几何体的表面相交,表面的交线是它们原分界线.在三视图中,分界线和可见轮廓线都用实线画出,不可见的轮廓线用虚线画出.5、画简单组合体三视图的注意事项(1)画组合体的三视图时,一定要注意组合体由哪些简单几何体组成,注意它们的组合方式,特别要注意它们的交线位置.(2)选择视图:一般以最能反映该组合体各部分形状和位置特征的一个视图为正视图;选择的角度不同,画出的三视图可能不同.结合三视图的一般画法,依次画出三视图,且分界线和可见的轮廓线用实线画出,不可见的用虚线画出.画几何体三视图的注意事项:(1)务必做到正视图、侧视图高平齐,正视图、俯视图长对正俯视图、侧视图宽相等.(2)三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的下方.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,分界线和可见轮廓线都用实线画出,不可见轮廓线用虚线画出.1 .(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为A .35003cm πB .38663cm πC .313723cm πD .320483cm π 【答案】A2 .(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C .1616π+D .816π+ 【答案】A3 .(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则A 、1243V V V V <<<B 、1324V V V V <<<C 、2134V V V V <<<D 、2314V V V V <<<【答案】C 4 .(2013年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于A.1B.2C.2-12D.2+12【答案】C 5 .(2013年普通高等学校招生统一考试广东省数学(理)卷)某四棱台的三视图如图所示,则该四棱台的体积是A.4B.143C.163D.6【答案】B 6.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题图所示,则该几何体的体积为A.B.C.D.【答案】C7.(2013年普通高等学校招生统一考试辽宁数学(理)试题)已知三棱柱111ABC A B C-的6个顶点都在球O 的球面上,若34AB AC==,,AB AC⊥,112AA=,则球O的半径为()()556035803200240正视图俯视图侧视图第5题图A .2B .C .132D .【答案】C8.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理))一个四面体的顶点在空间直角坐标系中的坐标分别是,画该四面体三视图中的正视图时,以平面为投影面,则得到正视图可以为A .B .C .D . 【答案】A二、填空题 9.(2013年高考陕西卷(理))某几何体的三视图如图所示, 则其体积为__【答案】3π10.(2013年高考北京卷(理))如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为__________.【答案】 11.(2013年普通高等学校招生全国统一招生考试江苏卷(数学))如图,在三棱柱ABC C B A -111中,FE D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V _____1B【答案】1:2412.(2013年普通高等学校招生统一考试浙江数学(理)试题)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________2cm .【答案】2413.(2013年普通高等学校招生统一考试安徽数学(理)试题)如图,正方体1111ABCD A BC D -的棱长为1,P为BC 的中点,Q 为线段1CC 上的动点,过点A,P,Q 的平面截该正方体所得的截面记为S.则下列命题正确的是__①②③⑤___(写出所有正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足1113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S【答案】①②③⑤A BC 1A D E F1B 1C14.(2013年普通高等学校招生统一考试辽宁数学(理)试题)某几何体的三视图如图所示,则该几何体的体积是__________π-【答案】1616 15.(2013年普通高等学校招生统一考试福建数学(理)试题)已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_____________【答案】12π。