高一数学简单组合体的三视图
- 格式:ppt
- 大小:356.00 KB
- 文档页数:18
执教人教学自评:优良中差课题三视图主备人苏振民审核人课时 3 教学时间三维目标1、知识与技能(1)掌握画三视图的基本技能.(2)丰富学生的空间想象力.(3)能够根据三视图还原实物图.2、过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用.3、情感.态度与价值观(1)提高学生空间想象力.(2)体会三视图的作用.教学重点由三视图想象实物模型,并画出模型草图.教学难点由三视图还原实物图.教学方法对几何体三视图的真正理解、掌握和运用是需要一个过程的,要有一个多次接触,反复体会,螺旋上升、逐步加深认识和理解的过程.三视图教学中,对画法的理解,对于教学学习十分重要.课时序数第一课时教学流程个案设计【新课导入】①光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影.其中的光线叫做投影线,留下物体影子的屏幕叫做投影面.②把一个空间几何体投影到一个平面上,可以获得一个平面图形,从多个角度进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面.[问题1]简单几何体的三视图探究一:三视图的画法要求:(1)三视图的主视图、俯视图、左视图分别是人从物体的 、 、 看到的物体轮廓线的正投影组成的平面图形;(2)一个物体的三视图的排列规则是:俯视图放在主视图的 ,长度与主视图一样,左视图放在主视图的 ,高度与主视图一样,宽度与俯视图的宽度一样;(3)记忆口诀: 。
(4)在视图中,被挡住的轮廓线画成 ,向下投影(俯视图)人物 投影面侧面投影 (左视图)正面投影(主视图举例:常见简单几何体的三视图。
C1B1A1CBACBASDCBAS例1:画出正五棱锥的主视图[问题2]简单组合体的三视图探究二:画简单组合体的三视图例2:画出如图所示物体的俯视图。
[课堂练习]课本16页练习1,2[知识整理]三视图的画法[作业布置]课本19页A组第4,5,6题。
高一数学空间几何体的三视图与直观图试题答案及解析1.某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.36cm3B.48cm3C.60cm3D.72cm3【答案】B.【解析】该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.【考点】三视图和几何体的体积.2.一空间几何体的三视图如图所示,则该几何体的体积为( )A.B.C.D.【答案】C【解析】由三视图知几何体是一个简单组合体,上面是一个四棱锥,四棱锥的底面是一个正方形,对角线长是2,侧棱长是2,高是,下面是一个圆柱,圆柱的底面直径是2,高是2,∴组合体的体积是=故答案为:【考点】圆锥和圆柱的体积.3.如图,网格纸上小正方形的边长为1,实线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18【答案】C【解析】该几何体是三棱锥,底面是俯视图,三棱锥的高为4;底面三角形是斜边长为6,高为3的等腰直角三角形,此几何体的体积为.故选C.【考点】三视图与几何体的关系;几何体的体积的求法.4.某向何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是一个长方体和一个半圆柱组成的几何体,所以体积为。
【考点】(1)根据三视图确定几何体的构成,(2)圆柱及长方体的体积公式的应用。
5.一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为 .【答案】11【解析】由图可知切去的是直淩柱的一角,先算直棱柱的体积,再算切去部分的体积,所以.【考点】1、立体图形的三视图;2、体积的计算.6.右图中的三个直角三角形是一个体积为的几何体的三视图,则()A.B.C.D.【答案】B【解析】由三视图可知该几何体为三棱锥,其中一侧棱垂直底面,且底面为直角三角形,∴三棱锥的体积为,解得,故选B.【考点】由几何体的三视图求体积.7.已知四棱锥的三视图如图所示,则四棱锥的四个侧面中面积最大的是()A.3B.C.6D.8【答案】C【解析】通过三视图可作出该几何体的直观图,如图所示.其中底面为矩形,面面,且,,.易得,,,故侧面中面积最大值为6.【考点】几何体的三视图与直观图.8.右图是水平放置的的直观图,轴,,则是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形【答案】C【解析】直观图为斜二测画法,原图的画为,因此原为直角三角形.【考点】斜二测画法.9.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.B.C.D.【答案】D【解析】主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是球和圆柱的表面积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.由三视图可知几何体是半径为1的球和底面半径为1,高为3的圆柱,故其表面积应为球的表面积与圆柱的表面积面积之和减去圆柱一个底面积,即.故选D.【考点】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用10.如图是一个简单的组合体的直观图与三视图,一个棱长为4的正方体,正上面中心放一个球,且球的一部分嵌入正方体中,则球的半径是()A.B.1C.D.2【答案】B【解析】由已知题中三视图中的俯视图中圆上的点到正方形边长的最小距离为1,已知中的正方体的棱长为4,可得球的半径为1,故选B.【考点】由三视图还原实物图.11.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D【解析】由正视图和左视图可知此几何体为台体,结合俯视图可知此几何体为圆台。
课题《三视图》教学设计【教学目标】1、知识目标(1)使学生学会在平面上表示空间图形,能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等)的三视图;(2)了解空间几何体的不同表示形式,能识别并描述三视图所表示的立体模型;(3)通过观察能画出简单组合体的三视图.2、能力目标培养和发展学生分析问题的能力和作图能力,着重培养其空间想象能力;3、情感、态度、价值观目标(1)通过对大量图形的欣赏和感悟,激发学生学习热情,提高其学习立体几何的兴趣;(2)通过简单几何体三视图的作图过程培养学生作图能力及从多角度观察和思考问题的能力.【教学重点与难点】重点:(1)简单几何体的三视图的画法;(2)正确理解正视图、侧视图、俯视图.难点:识别三视图所表示的空间几何体.【教学设计思路】1、创设情境:通过手影图激发学生兴趣,引入中心投影和平行投影,并引导学生观察总结两种投影各自的特征;2、从坦克、汽车的三视图引入,介绍几何体的三视图的作法,并引导学生观察探究正视图、俯视图、侧视图之间的关系;3、在上述基础上,师生共同探究长方体、球、圆柱、圆锥、圆台的三视图的作图方法;4、在学生初步掌握简单几何体的三视图的基础上引导学生探究简单组合体的三视图5、通过练习引导学生探究由三视图识别其所代表的实物模型,为下一节课作铺垫;6、巩固总结: 共同回顾三视图的作图原则;7、课后作业及课外探究.【教学过程与操作设计】创设情境1通过点光源展示三张生动有趣的手影图,吸引学生探究如何通过双手的不同组合投影得到这些栩栩如生的动物.新课教授--平行投影和中心投影:介绍平行投影和中心投影的概念并探究两种投影中实物和投影之间有何关系创设情境2展示坦克、汽车的三视图图片,引导学生从不同角度观察同一个空间几何体教师引导学生分别观察这两组图片,说出每组中三张图片之间的关系,并指出为什么会产生这种结果?新课教授--三视图:1)介绍三视图的形成过程:选取简单的组合体,利用Flash动画结合平行投影的知识介绍三视图的形成过程2)探究三视图的规律特征:观察长方体的三视图,探究实物与三视图之间的联系,从而总结三种视图之间的相互联系,得出三视图的规律特征3)探讨几种常见的简单几何体(长方体、球、圆柱、圆锥、圆台)的三视图的作图方法4)探讨由正方体组成的简单几何体的三视图说明:1、教师引导学生仔细观察三视图的形成过程;引导学生分析正视图、俯视图、侧视图与实物之间的联系,及三者之间的联系,共同总结三视图的规律并给出口诀:长对正,高平齐,宽相等.2、展示长方体、球、圆柱、圆锥、圆台的实物图,引导学生想象并动手试着画出其三视图,以自主探究的形式探索这些实物的三视图并在同学之间进行交流.3、展示由正方体组成的简单几何体,引导学生分组合作画出其三视图.课内练习探究1.随堂练习:由球和圆柱组成的简单组合体的三视图2.课内探究:简单几何体三视图的还原(1)五棱锥的三视图;(2)圆台组合体的三视图;(3)圆台与圆柱组合体的三视图课堂小结及作业(1)课堂小结:①三视图的规律特征②三视图作图的注意事项(2)作业布置课后探究三视图的实物还原:有一个正方体,在它的各个面上分别标上字母A、B、C、D、E、F,甲、乙、丙三位同学从不同的方向去观察其正方体,观察结果各不同,问这个正方体各个面上的字母对面各是什么字母?。
高一数学简单组合体的三视图的优秀教学设计高一数学简单组合体的三视图的优秀教学设计一、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观(1)提高学生空间想象力(2)体会三视图的作用二、教学重点、难点重点:画出简单组合体的三视图难点:识别三视图所表示的空间几何体三、学法与教学用具1.学法:观察、动手实践、讨论、类比2.教学用具:实物模型、三角板四、教学思路(一)创设情景,揭开课题“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?(二)实践动手作图1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图(1)画出球放在长方体上的三视图(2)画出矿泉水瓶(实物放在桌面上)的三视图学生画完后,可把自己的.作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片请同学们思考图中的三视图表示的几何体是什么?(2)你能画出圆台的三视图吗?(3)三视图对于认识空间几何体有何作用?你有何体会?教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
(三)例题讲解课本例题例1—4,6—7例5自学。
(四)巩固练习课本P16练习1、2(五)归纳整理请学生回顾发表如何作好空间几何体的三视图(六)课外练习1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。
2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。
组合体三视图的画法教学设计组合体三视图的画法教学设计1一、教材的地位和作用本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效手段。
另外,三视图部分也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的表面积或体积设置在选择或填空中。
同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的帮助。
所以在人们的日常生活中有着重要意义。
二、教学目标(1) 知识与技能:能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。
(2)过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。
(3)情感、态度与价值观:让感受数学就在身边,提高学生学习立体几何的兴趣,培养学生相互交流、相互合作的精神。
三、设计思路本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。
直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的设计思路。
通过大量的多媒体直观,实物直观使学生获得了对三视图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识上升为理性认识。
培养学生的空间想象能力,几何直观能力为学习立体几何打下基础。
教学的重点、难点(一)重点:画出空间几何体及简单组合体的三视图,体会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。
(二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。
四、学生现实分析本节首先简单介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的两种投影形式,学生具有这方面的直接经验和基础。