最新化学热力学基础
- 格式:ppt
- 大小:1.18 MB
- 文档页数:37
化学热力学基础知识点汇总化学热力学是研究化学反应过程中能量转化规律的科学,它对于理解化学反应的可能性、方向和限度具有重要意义。
以下是对化学热力学基础知识点的详细汇总。
一、热力学的基本概念1、体系与环境体系是我们研究的对象,根据体系与环境之间物质和能量的交换情况,可分为敞开体系、封闭体系和孤立体系。
敞开体系:与环境既有物质交换,又有能量交换。
封闭体系:只有能量交换,没有物质交换。
孤立体系:既无物质交换,也无能量交换。
2、状态函数状态函数是用于描述体系状态的物理量,其值只取决于体系的状态,而与变化的途径无关。
常见的状态函数有温度(T)、压力(P)、体积(V)、内能(U)、焓(H)和熵(S)等。
3、过程与途径过程是指体系状态发生变化的经过,而途径则是完成这个过程的具体方式。
例如,从状态 A 到状态 B 可以通过不同的途径实现,但状态函数的变化量只与始态和终态有关,与途径无关。
二、热力学第一定律热力学第一定律也称为能量守恒定律,其表达式为:ΔU = Q + W 。
其中,ΔU 表示体系内能的变化,Q 表示体系从环境吸收的热量,W 表示环境对体系所做的功。
当体系膨胀时,体系对环境做功,W 为负值;当体系被压缩时,环境对体系做功,W 为正值。
如果是恒容过程,体积不变,W = 0,此时ΔU = Qv ,Qv 表示恒容热。
如果是恒压过程,压力恒定,ΔU =Qp PΔV ,Qp 表示恒压热,此时 H = U + PV ,ΔH = Qp 。
三、热化学1、化学反应的热效应化学反应在一定条件下发生时,所吸收或放出的热量称为化学反应的热效应。
热效应分为等容热效应和等压热效应。
2、热化学方程式热化学方程式是表示化学反应与热效应关系的方程式。
需要注明反应物和生成物的状态、反应的温度和压力以及反应热。
3、标准摩尔生成焓在标准状态下,由最稳定单质生成 1mol 化合物时的焓变称为该化合物的标准摩尔生成焓。
利用标准摩尔生成焓可以计算化学反应的标准摩尔反应焓变:ΔrHmθ =ΣνBΔfHmθ(B) 。
大学化学热力学基础课件contents •热力学基本概念与定律•热力学基本量与计算•热力学过程与循环•热力学在化学中的应用•热力学在物理化学中的应用•热力学在材料科学中的应用目录01热力学基本概念与定律孤立系统与外界既没有物质交换也没有能量交换的系统。
开放系统与外界既有能量交换又有物质交换的系统。
封闭系统与外界有能量交换但没有物质交换的系统。
热力学系统及其分类状态函数与过程函数状态函数描述系统状态的物理量,如内能、焓、熵等。
状态函数的变化只与系统的初、终态有关,与过程无关。
过程函数描述系统变化过程的物理量,如热量、功等。
过程函数的变化与具体的路径有关。
能量守恒定律能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体。
热力学第一定律表达式ΔU = Q + W,其中ΔU表示系统内能的变化,Q表示系统与外界交换的热量,W表示外界对系统所做的功。
热力学第二定律的表述不可能从单一热源吸热并全部转化为有用功而不引起其他变化。
熵增原理在孤立系统中,一切不可逆过程必然朝着熵增加的方向进行。
熵是描述系统无序度的物理量,熵增加意味着系统无序度增加。
02热力学基本量与计算温度是表示物体冷热程度的物理量,是热力学中最重要的基本量之一。
温度的概念温标的定义温度的测量温标是用来衡量温度高低的标准,常见的有摄氏温标、华氏温标和开氏温标等。
温度的测量通常使用温度计,其原理是利用物质的热胀冷缩性质或其他物理效应来测量温度。
030201温度与温标压力的概念压力是单位面积上受到的垂直作用力,是描述气体状态的重要物理量。
体积的概念体积是物体所占空间的大小,对于气体而言,体积通常是指气体所充满的容器的容积。
压力与体积的关系在温度不变的情况下,气体的压力与体积成反比关系,即波义耳定律。
压力与体积030201热量的概念热量是物体之间由于温差而传递的能量,是热力学中重要的基本概念之一。
功的概念功是力在力的方向上移动的距离的乘积,是描述系统能量转化或传递的物理量。
化学热力学基础热力学是研究能量变化和转化的科学,而化学热力学则专注于研究化学反应中的能量变化和转化。
在化学反应中,物质的能量发生了变化,这种变化可以通过热力学原理和方程来描述和计算。
本文将介绍化学热力学的基本概念、方程和应用。
一、热力学基本概念1. 系统和周围:热力学研究的对象称为系统,而系统以外的一切称为周围。
系统和周围可以通过物质和能量的交换而发生相互作用。
2. 状态函数:热力学的基本量不依赖于路径,只与初始状态和终态有关,被称为状态函数。
例如温度、压力、体积、内能等都是状态函数。
3. 第一法则:能量守恒定律,即能量既不能创造也不能消失,只能从一种形式转化为另一种形式。
对于化学反应,能量的变化可以表示为热量和功的转化。
4. 第二法则:熵增原理,即自然界趋向于无序与熵增加的状态。
化学反应中,反应通常会使系统的熵增加。
5. 第三法则:绝对零度,即温度低于绝对零度(0K)时,系统的熵趋于零。
这个法则揭示了温度对于熵的影响。
二、熵变与自由能1. 熵变:熵变(ΔS)是描述系统熵增或减的度量,根据熵变可以判断反应的方向性和自发性。
当ΔS大于零时,反应向有序的方向进行,反之向无序的方向进行。
2. 熵变的计算:对于化学反应,熵变可以根据摩尔熵变的差值计算得到。
摩尔熵变可以通过标准摩尔熵的差异计算得到。
3. 自由能:自由能(G)是描述系统可用能量的函数,用于预测反应的可能性。
自由能与熵变和焓变有关,可以通过关联熵变、焓变和温度的方程计算得到。
三、焓变与反应热量1. 焓变:焓变(ΔH)是化学反应中吸热或放热的度量,可以用于判断反应的放热性质和温度变化。
当ΔH小于零时,反应放热;当ΔH 大于零时,反应吸热。
2. 焓变的计算:焓变可以通过化学反应的热化学方程式和反应热量的测定来计算得到。
3. 反应热量:反应热量是化学反应中产生或吸收的热量,可以通过实验测量得到。
反应热量可以用于判断反应的热效应及其在工业和实验室中的应用。
第一章化学热力学基础第一节热力学第一定律一、基本概念和常用术语1、体系和环境体系:被选作研究对象的部分。
环境:体系之外并与体系密切相关的部分。
敞开体系:与环境有物质交换、有能量交换。
封闭体系:与环境无物质交换、有能量交换。
孤立体系:与环境无物质交换、无能量交换。
2、状态和状态函数状态:体系的宏观性质的综合表现。
状态函数:确定体系状态的物理量。
(p, V, T, U, H, S, G)状态函数特征:状态函数的改变量只与体系的始态、终态有关,而与变化途径无关。
分类:广度性质(具有加和性)强度性质(不具有加和性T, p )3、过程和途径过程:当体系的状态发生变化时,发生变化的经过。
途径:完成状态变化过程的具体步骤。
等容过程等温过程等压过程绝热过程二、热力学第一定律1、热和功(体系与环境能量交换的两种形式)规定:体系吸热:Q >0体系放热:Q <0环境对体系做功:W >0体系对环境做功:W <0特 点: 热和功不是状态函数其数值与具体途径有关2、热力学能U特 点: 是状态函数,广度性质,其绝对值未知。
3、热力学第一定律该定律的实质是能量守恒与转化定律。
第二节 化学反应的热效应一、反应热在封闭体系、非体积功=0的前提下,当反应物和生成物温度相同时,化学反应过程中吸收或放出的热量。
1. 恒容反应热(QV)W =0+(- p e x V )=0U= QV + W= QVQV 全部用于改变系统的热力学能2.恒压反应热 U Q V ∆=Vp Q U p ∆-=∆ex()12ex 12V V p Q U U p --=- 定义焓: ()111222)(V p U V p U Q p +-+=状态函数,广度性质焓变:Qp = H pV U H +=3. 反应进度ξ(读作“克赛”)a A + d D = g G + h H0= – a A – d D + g G + h H写成通式式中符号B 表示反应中的物质,而νB 为数字或简分数,称为物质B 的化学计量数。