为这个数的倒数的正整数指数幂,即 (a )n ( b )n .如
本例中
(
1 3
)1
b
=3,这样就大大地简化了计算.
a
知2-练
1
【2017·包头】计算
1 2
1
所得结果是(
D)
A.-2
B.-
1 2
C. 1 2
D.2
知2-练
2 若(x-3)0-2(3x-6)-2有意义,则x的取值范围
是( B )
本题易因考虑不周全而漏掉其中一种情况.
本小节结束!
.
本题易出现的错误答案:
(1)(- 3 )-2=- 9 或(- 3 )-2=-16 .
4
16
4
9
(2)(-3)-1=3.(3)3-2=-6或3-2=-9.
出错的原因是没有严格按照负整数指数幂的运
算性质进行运算.
易错点:因考虑问题不周全而出错 3.若aa-2=1,则a的值是___2_或__1__.
知23-练 讲
知23-练 讲
运用同底数幂的乘除法法则进行计算,熟记法则并且 正确应用法则是解题的关键.
知23-练 讲
例6 已知10m=3,10n=2,试求102m-n的值.
导引:逆用幂的乘方及同底数幂的除法法则, 进行运算即可.
解: 102m-n=(10m)2÷10n=9÷2=4.5 .
本题应用逆向思维法和代入法解答.先逆用同底数 幂的除法法则和幂的乘方,将所求代数式转化为关 于10m和10n的式子,再将10m和10n的值代入计算.
1
1
10 ( ) = 100 , 10 ( ) =1000 .
1
2 ( ) =1 , 2 ( ) = 2 ,