二倍角与半角的正弦、余弦和正切
- 格式:doc
- 大小:319.22 KB
- 文档页数:7
5.5两倍角与半角的正弦、余弦和正切(2)教案教学目的:1、掌握半角的正弦、余弦、正切公式,能根据2α所在象限正确选择公式中的正、负号; 2、会根据具体情况灵活运用公式。
用半角的正切公式时,往往选用αα-=α+α=αsin cos 1cos 1sin 2tan ;教学重点:半角公式的应用教学过程: (一)、引入 一、(设置情境)气象学家洛伦兹1963年提出一种观点:南美洲亚马逊河流域热带雨林中的一只蝴蝶,偶尔扇动几下翅膀,可能在两周后引起美国德克萨斯的一场龙卷风。
这就是理论界闻名的“蝴蝶效应”,南美洲亚马逊河流域热带雨林中的一只蝴蝶与北美德克萨斯的龙卷风看来是毫不相干的两种事物,却会有这样的联系,那么“半角与倍角”的三角函数一定会有非常密切的关系!到底是什么关系呢?本节课我们就通过二倍角公式来研究半角的正弦、余弦和正切。
二、(双基回顾)αααcos sin 22sin =; ααα22sin cos 2cos -=; ααα2tan 1tan 22tan -=(二)、新课一、(新课教学,注意情境设置)在二倍角的正弦、余弦、正切的公式中如何求出2tan,2cos,2sinααα的表达式?探索研究证明:)3(cos 1cos 12tan)2(2cos 12cos )1(2cos 12sinααααααα+-±=+±=-±=二、概念或定理或公式教学(推导)在倍角公式中,“倍角”与“半角”是相对的1、在 α-=α2sin 212cos 中,以α代2α,2α代α 即得:2sin 21cos 2α-=α∴2cos 12sin 2α-=α2、在 1cos 22cos 2-α=α 中,以α代2α,2α代α 即得:12cos 2cos 2-α=α∴2cos 12cos 2α+=α3、以上结果相除得:α+α-=αcos 1cos 12tan 2开方得:)3(cos 1cos 12tan)2(2cos 12cos )1(2cos 12sinααααααα+-±=+±=-±=特点:1︒左式中的角是右式中的角的一半。
常用三角函数公式及口诀常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。
3、2倍角公式和半角公式 3、2、2半角的正弦、余弦和正切【学习目标】能运用二倍角的变形公式推导出半角的正弦、余弦和正切公式,,能运用这些公式进行简单的三角函数公式的化简、求值和证明恒等式。
【知识回顾】1、二倍角公式:sin2α=______________cos2α=___________=_____________=_______________.tan2α=______________. 2、二倍角公式的变形:Sin ²α=__________,cos ²α=____________. 【问题导入】1、半角的三角函数公式和二倍角的三角函数公式有什么内在联系?2、你能用sin α,cos α的不含根号的形式表示tan 2α吗?【自主学习】 半角公式:.____________________________________2αtan ___;__________2αcos ____;__________2αsin =====【课堂互动】【例1】求sin15°,cos15°,tan15°值。
变式训练1、(1)求8cos π的值。
(2)已知53-θcos =,且π<θ<23π,求2tan ,2cos ,2sin θθθ的值。
【例2】已知22tan =α,求ααααcos 2sin 3cos 2sin 6—+。
变式训练2、已知tanx1xsin 2x 2sin 53x 4cos 2++=+,求)π(。
【例3】求证αααcos 1sin 2tan +=,αsin αcos -12αtan =变式训练2、求证:1+sin α=2cos ²(2α-4π),1-sin α=2sin ²(2α-4π)【例4】求 y=2xcos 2的周期,单调区间,最值,及取得最值时的x 值。
变式训练4、求 y=x 2sin 2的周期,单调区间,最值,及取得最值时的x 值。
高一寒假第六讲:二倍角与半角的正弦、余弦和正切【知识梳理】1、二倍角公式: αααc o s s i n 22s i n =;)(2αSααα22sin cos 2cos -=;)(2αCααα2tan1tan 22tan -=;)(2αT降幂公式:1cos 22cos 2-=αα αα2sin 212cos -=)(2αC ' 升幂公式:22cos 1sin22cos 1cos 22αααα-=+=2、半角公式:α+α-±=αα+±=αα-±=αcos 1cos 12tan,2cos 12cos,2cos 12sin3、万能公式:2tan12tan2tan ,2tan12tan1cos ,2tan12tan2sin 2222ααααααααα-=+-=+=基本的技巧有:(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等); (2)三角比名互化(切割化弦); (3)公式变形使用(ta n ta n αβ±()()tan 1tan tan αβαβ=±;(4)三角比次数的降升(降幂公式:21c o s 2c o s 2αα+=,21c o s 2s in 2αα-=与升幂公式:21c o s 22c o s αα+=,21c o s 22sin αα-=);【方法总结】 三角比的化简、计算、证明的恒等变形的基本思路:一角二名三结构。
即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角比变换的核心!第二看三角比的名称之间的关系,通常“切化弦”;第三观察代数式的结构特点.(5)式子结构的转化(对角、三角比名称、式子结构化同) ; (6)常值变换主要指“1”的变换(221sinc o s x x =+22se cta nta n c o t x x x x=-=⋅ta ns in 42ππ===)(7)正余弦“三兄妹—sin cos sin cos x x x x ±、”的内在联系――“知一求二”,若sin cos x x t ±=,则sin cos x x =212t -±,特别提醒:[2,2]t ∈-.【例题精讲】例1、不用计算器,求下列各式的值(1)15cos 15sin ; (2)8sin8cos22ππ-; (3)5.22tan 15.22tan 22-; (4)75sin 212-.变式练习:求下列各式的值(1))125cos125)(sin125cos 125(sin ππππ-+ (2)2sin2cos44αα-(3)ααtan 11tan 11+-- (4)θθ2cos cos 212-+例2、已知5cos 3sin cos sin 2-=θ-θθ+θ,求3cos 2θ + 4sin 2θ 的值例3、已知π<α<π2,0<β<π-,tan α =31-,tan β =71-,求2α + β【辅助角公式】()22s in c o s s in a x b x ab x θ+=++(其中θ角所在的象限由a , b 的符号确定,θ角的值由2222s in ,c o s b a a ba bθθ==++ ,ta n b aθ=确定)在求最值、化简时起着重要作用.变式练习:已知α、β为锐角,且3sin 2α+2sin 2β=1,3sin2α-2sin2β=0求证:α+2β=2π例4、 已知sin α - cos α = 21,π<α<π2,求2tanα和tan α的值例5、已知cos α - cos β = 21,sin α - sin β = 31-,求sin(α + β)的值变式练习:已知12c o s (),s in (),923ααββ-=--=且,022ππαπβ<<<<,求c o s ()αβ+的值。
两角和与差的三角函数公式sin(α±β)=sinαcosβ± cosαsinβ诱导公式二倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α三角函数的降幂公式三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin3αcos3α=4cos3α-3cosα半角的正弦、余弦和正切公式万能公式三角函数的积化和差公式三角函数的和差化积公式化asinx±bcosx为一个角的一个三角函数的形式(辅助角的三角函数的公式)正弦定理余弦定理a2=b2+c2-2bccosAb2=c2+a2-2cacosB c2=a2+b2-2abcosC三角函数公式:三倍角公式:θθθ3sin 4sin 33sin -=;θθθcos 3cos 43cos 3-=;五、三角恒等变换:三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4α的二倍;α3是23α的二倍;3α是6α的二倍;απ22±是απ±4的二倍。
②2304560304515o ooooo=-=-=;问:=12sin π ;=12cos π;③ββαα-+=)(;④)4(24αππαπ--=+;⑤)4()4()()(2απαπβαβαα--+=-++=;等等(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。
如在三角函数中正余弦是基础,通常化切、割为弦,变异名为同名。
(3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,例如常数“1”的代换变形有: oo45tan 90sin cot tan tan sec cos sin 12222===-=+=αααααα(4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。
三角函数的半角公式与二倍角公式三角函数是数学中重要的概念之一,它们在解析几何、三角学、物理学等领域中都有广泛的应用。
在三角函数中,半角公式和二倍角公式是常用的公式之一,它们可以简化计算,增加易用性。
本文将介绍三角函数的半角公式和二倍角公式,并详细讨论其推导和应用。
一、半角公式在三角函数中,半角公式是一种将角的半角与原角之间的关系表示出来的公式。
半角公式可用于将一个角度的三角函数值表示成一个角度的三角函数值。
下面,我们将分别介绍三角函数中的半角公式。
1. 正弦函数的半角公式正弦函数的半角公式表达为:sin(θ/2) = ±√[(1 - cosθ) / 2]其中,θ代表原角的角度。
推导:设θ/2的正弦值为x,则有:sin(θ/2) = x根据正弦和余弦的关系,可以得到:cos(θ/2) = ±√(1 - x²)由于θ/2的正弦函数值为x,可以得到:sin²(θ/2) = x²再利用sin²(θ/2) + cos²(θ/2) = 1的三角恒等式,可得:x² + cos²(θ/2) = 1将cos(θ/2) = ±√(1 - x²)代入上式,可以得到:x² + (1 - x²) = 1化简后,可得:2x² - 1 = 0解方程可得:x = ±√(1/2)因此,sin(θ/2) = ±√[(1 - cosθ) / 2]。
2. 余弦函数的半角公式余弦函数的半角公式表达为:cos(θ/2) = ±√[(1 + cosθ) / 2]其中,θ代表原角的角度。
推导:设θ/2的余弦值为x,则有:cos(θ/2) = x根据正弦和余弦的关系,可以得到:sin(θ/2) = ±√(1 - x²)由于θ/2的余弦函数值为x,可以得到:cos²(θ/2) = x²再利用sin²(θ/2) + cos²(θ/2) = 1的三角恒等式,可得:sin²(θ/2) + x² = 1将sin(θ/2) = ±√(1 - x²)代入上式,可以得到:(1 - x²) + x² = 1化简后,可得:1 = 1因此,cos(θ/2) = ±√[(1 + cosθ) / 2]。
常用三角函数二倍角公式三角函数是数学中的重要概念,它们在几何、物理、工程等领域中都有广泛的应用。
其中,常用三角函数包括正弦函数、余弦函数、正切函数和余切函数。
在解决三角函数问题时,我们经常需要用到二倍角公式。
正弦函数二倍角公式正弦函数的二倍角公式为:sin2θ = 2sinθcosθ其中,θ为角度。
这个公式可以用来求解一些三角函数问题,例如: 1. 求sin120°的值。
根据正弦函数二倍角公式,我们可以将120°拆分成60°的两倍角,即:sin120° = 2sin60°cos60°由于sin60° = √3/2,cos60° = 1/2,代入公式得:sin120° = 2×√3/2×1/2 = √3因此,sin120°的值为√3。
2. 求sin15°的值。
由于15°无法拆分成已知角度的两倍角,我们需要用到半角公式:sin(θ/2) = ±√(1-cosθ)/2将θ=30°代入公式得:sin15° = ±√(1-cos30°)/2由于cos30° = √3/2,代入公式得:sin15° = ±√(1-√3/2)/2因为15°是第一象限角,所以sin15°为正数,代入公式得:sin15° = √(2-√3)/2余弦函数二倍角公式余弦函数的二倍角公式为:cos2θ = cos²θ - sin²θ这个公式可以用来求解一些三角函数问题,例如:1. 求cos150°的值。
根据余弦函数二倍角公式,我们可以将150°拆分成75°的两倍角,即:cos150° = cos²75° - sin²75°由于cos75° = (1+√3)/2√2,sin75° = (√6-√2)/4,代入公式得:cos150° = ((1+√3)/2√2)² - ((√6-√2)/4)²化简得:cos150° = (√2-√6)/4因此,cos150°的值为(√2-√6)/4。