七年级数学下册教案_三角形的内角和
- 格式:doc
- 大小:1.04 MB
- 文档页数:4
学科数学年级/册四年级/下册教材版本新人教版课题名称第五单元《三角形的内角和》教学目标验证三角形的内角和是180度重难点分析重点分析发现三角形的内角和是180度,需要学生动手操作,用不同的方法探究、多次验证才能得出结论。
难点分析学生的思维主要以形象思维为主,动手操作较弱,很难进行量、拼、折等实际操作,操作起来耗时过长。
如在直观视频演示的帮助下,学生能更顺利在动手操作中自主得出结论。
教学方法1.通过微课直观演示操作,学生动手操作2.通过合作交流,自主得出结论教学环节教学过程导入1.今天老师也把这三个好朋友请来了。
(锐角三角形、直角三角形和钝角三角形)。
可是,请看看他们之间发生了什么?生:它们在争谁的内角和大。
内角和是多少度?揭课题。
知识讲解(难点突破)2.师:同学们,请开动脑筋想一想,如果我们想知道一个三角形的内角和是多少度,我们可以怎么办?生:把三角形的三个内角的度数量出来,然后在加起来。
师:用准确数据来证明,这办法不错。
(课件演示量一量的过程。
)现在请同桌2人为一小组,选择一个你喜欢的三角形,量出三个内角的度数,记录在表格上,再求内角和。
(1)、小组合作,完成表格。
(2)、小组汇报。
(展示3、4个小组的结果)(3)、发现:锐角三角形的内角和可能是180°。
直角三角形的内角和可能是180°钝角三角形的内角和可能是180°3.师:只通过一种方法就证明三角形的内角和是180°,你们认为合适吗?能不能想到其它的方法来通验证三角形的内角和是180°??(1)独立思考。
(2)同桌交流想法。
(3)请用手势告诉老师你想到的方法有几个。
生:拼一拼(剪拼,撕拼),折一折。
(课件演示拼一拼(剪拼,撕拼),折一折的过程。
)(1)、小组合作。
(2)、小组汇报。
(展示3、4个小组的结果)(3)、发现:锐角三角形的内角和可能是180°。
直角三角形的内角和可能是180°钝角三角形的内角和可能是180°4.师总结:任意三角形的内角和都是180度。
北师大版数学七年级下册《三角形的内角和》教学设计1一. 教材分析《三角形的内角和》是北师大版数学七年级下册第五章“几何变换”中的一个重要概念。
本节课主要让学生通过探究活动,理解并证明三角形的内角和为180度。
教材内容由浅入深,从实际问题出发,引导学生探究三角形内角和定理,进而运用到实际问题中。
二. 学情分析学生在七年级上册已经学习了角的有关知识,对角的概念和性质有一定的了解。
但对于证明三角形的内角和为180度,还需要通过探究活动来进一步理解和掌握。
此外,学生对于合作探究的学习方式较为熟悉,有利于开展本节课的教学。
三. 教学目标1.理解三角形的内角和定理,并能运用到实际问题中。
2.培养学生的探究能力,提高合作学习的意识。
3.培养学生运用几何知识解决实际问题的能力。
四. 教学重难点1.重点:三角形的内角和定理。
2.难点:证明三角形的内角和为180度。
五. 教学方法1.采用问题驱动法,引导学生主动探究。
2.运用合作学习法,培养学生的团队协作能力。
3.利用几何画板软件,动态展示三角形内角和的变化,帮助学生直观理解。
六. 教学准备1.准备相关课件,包括三角形内角和的概念、性质、证明过程等。
2.准备几何画板软件,用于动态展示三角形内角和的变化。
3.准备一些实际问题,用于引导学生运用三角形内角和定理解决。
七. 教学过程1.导入(5分钟)利用几何画板软件,展示一个三角形的内角和变化过程,引导学生思考:三角形的内角和是多少?为什么?2.呈现(10分钟)呈现三角形的内角和定理,让学生初步了解三角形的内角和为180度。
3.操练(10分钟)分组讨论,每组设计一个三角形,并用几何画板软件展示其内角和。
各组汇报讨论结果,全班共同验证。
4.巩固(10分钟)出示一些实际问题,让学生运用三角形内角和定理解决。
例如:一个三角形的两个内角分别是30度和60度,求第三个内角的度数。
5.拓展(10分钟)引导学生思考:四边形的内角和是多少?五边形呢?从而引出多边形内角和的公式。
课时教学方案
问题1 观察:三个内角拼成了一个什么角?
问题2 此实验给我们一个什么启示?
学生进行探究,小组合作交流,班级展示各种说理验证的方法. 体会合作的重要性,提高表达能力和交流的能力;学生采用多种方法进行尝试说理,在说理过程中体会化归思想
6ˊ(五)性
质获取
1.三角形内角和性质定理:三角形的
内角和等于180°
2.介绍三角形内角和性质发现历史,
进行人文教育
3.加深认识:
(1)判断下列各组角度的角是否是同
一个三角形的内角?
⑴ 80°、95°、5°;⑵
60°、20°、90°;
(2)一个三角形最多有几个锐角?几
个直角?几个钝角?为什么?
学生利用三角形内
角和性质定理:三
角形的内角和等于
180°,进行计算
运用新知,进
行解答
20ˊ(六)性
质运用
例1 在⊿ABC中,已知∠B=35°,∠
C=55°,求∠A的度数,并判断
⊿ABC的类型.
练习在⊿ABC中,已知∠A:∠B:
∠C=1:2:3,求∠A的度数.
例2 在等腰⊿ABC中,已知∠
A=80°,AB=AC,角平分线BF、
CE相交于点O,求∠BOC的度数.
变式练习1:
在⊿ABC中,已知角平分线BF、CE相
学生运用各种方式
进行解答
通过例题引
导学生运用
三角形的内
角和性质进
行计算、判
断,体验用方
程思想解决
几何问题,在
解题过程中
尝试严谨的
演绎推理。
三角形的内角和教案一、教学目标:知识与技能:1. 让学生掌握三角形内角和定理,理解三角形内角和为180度的概念。
2. 能够运用三角形内角和定理解决实际问题。
过程与方法:1. 通过观察、操作、推理等过程,引导学生发现三角形的内角和定理。
2. 培养学生的逻辑思维能力和解决问题的能力。
情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探索精神。
2. 培养学生合作学习、积极思考的良好学习习惯。
二、教学重点与难点:重点:1. 三角形内角和定理的理解和运用。
难点:1. 三角形内角和定理的推导过程。
三、教学准备:教师准备:1. 三角形模型、量角器等教具。
2. 教学课件或黑板。
学生准备:1. 学习三角形相关知识。
2. 准备三角板或其他三角形教具。
四、教学过程:环节一:导入1. 引导学生回顾三角形的相关知识,如三角形的定义、特性等。
2. 提问:你们知道三角形内角和是多少度吗?环节二:探究三角形内角和1. 让学生拿出三角板或其他三角形教具,观察并测量三角形的内角。
2. 引导学生发现并总结三角形内角和的特点。
环节三:推导三角形内角和定理1. 引导学生通过量角器测量多个三角形的内角,记录数据。
2. 让学生观察数据,发现规律,推导出三角形内角和定理。
环节四:验证三角形内角和定理1. 让学生分组讨论,设计实验验证三角形内角和定理。
2. 各小组汇报实验结果,确认三角形内角和定理的正确性。
环节五:运用内角和定理解决问题1. 出示例题,让学生运用内角和定理解决问题。
2. 学生互相讨论,解答例题,分享解题思路。
五、作业布置:1. 请学生运用内角和定理,解决一些关于三角形的实际问题。
2. 总结本节课的学习内容,思考三角形内角和定理在实际生活中的应用。
六、教学反思:本节课通过引导学生观察、操作、推理等活动,发现了三角形内角和定理,并运用该定理解决了一些实际问题。
在教学过程中,注重培养学生的动手操作能力、逻辑思维能力和解决问题的能力。
《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。
出示一些三角形,让学生指出内角和。
师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。
)(板书三角形的内角和是180度。
)师:那我们再看看刚刚汇报的结果。
为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。
现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。
早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。
(1)直角三角形的两个锐角的和是90°。
(2)一个等腰三角形的底角可能是钝角。
(3)三角形的内角和都是180°,与三角形的大小无关。
4、剪一剪。
把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。
七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。
是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。
教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。
教材还安排了“试一试”,“练一练”的内容。
已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。
他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。
数学三角形的内角和与外角教案本教案的目标:- 理解三角形的内角和与外角的概念及其性质- 掌握计算三角形内角和与外角的方法- 运用内角和与外角的性质解决相关问题一、引入在我们的日常生活中,我们经常会遇到各种各样的三角形。
三角形是几何学中最简单的多边形之一,它由三条边和三个角组成。
在本课程中,我们将重点学习三角形的内角和与外角的概念及其性质。
二、内角和的概念及性质1. 内角和的定义首先,我们来定义什么是三角形的内角和。
对于任意一个三角形,我们可以将其内角相加得到一个和,这个和被称为三角形的内角和。
2. 内角和的性质三角形的内角和有一个重要的性质:对于任意一个三角形,其三个内角的和等于180度。
这一性质可以用数学表达式表示为:角A + 角B + 角C = 180度其中,角A,角B,角C分别代表了三角形的内角。
三、外角的概念及性质1. 外角的定义与内角和相对应的是三角形的外角。
每个三角形都有三个外角,它们分别位于三个顶点的三角形边的延长线上。
2. 外角的性质三角形的外角性质是:一个三角形的外角等于其不相邻两个内角之和。
这个性质可以用数学表达式表示为:外角A = 内角B + 内角C外角B = 内角A + 内角C外角C = 内角A + 内角B注意,一个三角形的外角和等于360度,这意味着对于任意三角形,其三个外角的和等于一个圆的周角。
四、计算内角和与外角接下来,我们将讲解如何计算三角形的内角和与外角。
1. 已知两个内角求第三个如果已知一个三角形的两个内角的度数,我们可以通过180度减去这两个内角的和,得到第三个内角的度数。
2. 已知一个内角与一个外角求第三个内角如果已知一个三角形的一个内角和一个外角的度数,我们可以通过将180度减去这两个角的和,得到第三个内角的度数。
3. 已知一个内角与一个外角求另一个外角如果已知一个三角形的一个内角和一个外角的度数,我们可以通过将360度减去这两个角的和,得到另一个外角的度数。
教学设计探究新知如何验证三角形的内角和等于180°?提示:阅读教材11页(度量或剪拼)以小组为单位进行交流,教师巡视学生的操作活动过程,请小组代表展示。
小组讨论,用剪纸拼图的方法。
验证三角形内角和,小组代表呈现结果.预设可能出现的拼图结果方案一:将两个角,拼在第三个角的旁边,构成平角180°;方案二:将∠A和∠B剪下拼到点C处;方案三:将∠C剪下拼到点A处......小组讨论,小组代表口述说理过程.观察拼接图形,思考:(1)拼接法改变的是什么?(2)移动角的目的是什么?(3)和180°相关的结论有哪些?(4)你能得到什么启示?任意一个三角形的内角和都等于180°,与三角形的形状、大小无关.已知:在ΔABC中,∠A、∠B、∠C是它的三个内角,求证:∠A+∠B+∠C=180°.按小组对三角形内角和性质“说理”(口述),教师板书,师生共同完成证明过程归纳知识点:三角形的内角和定理:三角形三个内角的和等于180°符号语言:在三角形ABC中,∠A+∠B+∠C=180°(三角形的内角和等于180°)教师介绍三角形内角和的证明史。
通过拼接图形,自主探究三角形的内角和是180度,体验解决问题策略的多样化并启发学生添加辅助线得到平行,进而利用平行线的性质证实三角形的内角和性质。
学生可凭借操作时的感性经验,找到证明方法.以方案一为例,学生口述说理过程,教师板书。
有了前面的铺垫,降低了说理的难度.书写的过程加深了对三角形内角和性质的记忆。
拉近学生与古代数学家之间的距离。
尝试运用1.在△ABC中,∠A=35°,∠ B=43 °,则∠C = ()2.在一个三角形中,有两个内角分别是26°,64°,则此三角形一定是()三角形.3.下列各组角能成为三角形的三个内角的是()(A)100°,50°,20° (B)10°,10°,60°(C)10°,10°,60°(D)2.5°,2.5°,175°4.下列说法不正确的是()(A)三角形三个内角中最多有一个钝角;(B)三角形三个内角中至少有2个锐角:(C)三角形三个内角中最多有一个直角;(D)钝角三角形的内角和大于直角三角形的内角和。
1认识三角形第1课时三角形的内角和教学目标一、基本目标1.通过具体实例,认识三角形的概念及其基本要素,会将三角形按角分类.2.掌握“三角形三个内角的和等于180°”,能应用三角形内角和解决一些简单的求三角形内角的度数问题,能发现“直角三角形的两个锐角互余”并会利用.3.通过观察、操作、想象、推理“三角形三个内角的和等于180°”的活动过程,发展空间观念、推理能力和有条理的表达能力.二、重难点目标【教学重点】三角形三个内角的和等于180°;直角三角形的两个锐角互余.【教学难点】探究、发现和验证“三角形三个内角的和等于180°”.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P81~P84的内容,完成下面练习.【3 min反馈】(一)三角形1.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.“三角形”可以用符号“△”表示,如图中顶点是A、B、C的三角形,记作△ABC.△ABC的三边,有时也用a、b、c来表示,如图中,顶点A所对的边BC用a表示,边AC、AB分别用b、c来表示.(二)三角形的内角和1.利用三角板的三个角之和为多少度来探索三角形三个内角的和.图1图2图1:30°+60°+90°=180°;图2:45°+45°+90°=180°.2.探索任意三角形三个内角的和都等于180°.(1)如图,剪一张三角形的纸片,它的三个内角分别为∠1、∠2和∠3;(2)将∠1、∠2撕下,按图所示将这两个角拼在第三个角的顶点处,用量角器量出∠BCD 的度数,可得到∠A+∠B+∠ACB=180°;(3)将∠2、∠3撕下,按下图拼在一起,用量角器量一量∠MAN的度数,可得到∠BAC +∠B+∠C=180°;(4)三角形内角和定理:三角形三个内角的和等于180°.(三)三角形的分类1.三角形按内角大小可以分为三类:锐角三角形、直角三角形、钝角三角形.2.(1)通常,我们用符号“Rt△ABC”表示“直角三角形ABC”.把直角所对的边称为直角三角形的斜边,夹直角的两条边称为直角边,如图;(2)直角三角形的两个锐角互余,即上图中∠A+∠B=90°.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,DF⊥AB,∠A=40°,∠D=43°,则∠ACD的度数是________.【互动探索】(引发学生思考)DF⊥AB,∠A=40°→∠AEF=50°(直角三角形两锐角互余)→∠CED=50°(对顶角相等),由∠D=43°→∠ACD=87°(三角形内角和定理).【答案】87°【互动总结】(学生总结,老师点评)“直角三角形的两个锐角互余”常常和三角形内角和定理综合起来求角的度数.【例2】如图是A、B、C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从B岛看A、C两岛的视角∠ABC是多少度?从C岛看A、B两岛的视角∠ACB是多少度?【互动探索】(引发学生思考)(方法一)A、B、C三岛的连线构成△ABC,所求的∠ACB 是△ABC的一个内角,如果能求出∠CAB、∠ABC,就能求出∠ACB;(方法二)过点C作AD 的垂线,求∠ACB的度数可转化为利用平角为180°来求解.【解答】(方法一)根据题意,得∠CAB=∠BAD-∠CAD=80°-50°=30°.因为AD∥BE,所以∠BAD+∠ABE=180°,所以∠ABE=180°-∠BAD=180°-80°=100°,所以∠ABC=∠ABE-∠EBC=100°-40°=60°,所以∠ACB=180°-∠ABC-∠CAB=180°-60°-30°=90°.即从B岛看A、C两岛的视角∠ABC是60°,从C岛看A、B两岛的视角∠ACB是90°.(方法二)∠ABC的求法同“方法一”中的求法.如图,过点C作CF⊥AD于点F,延长FC交BE于点H,则CH⊥BE.因为∠ACF=180°-∠F AC-∠AFC=180°-50°-90°=40°,∠BCH=180°-∠CBH-∠CHB=180°-40°-90°=50°,所以∠ACB=180°-∠ACF-∠BCH=180°-40°-50°=90°.即从B岛看A、C两岛的视角∠ABC是60°,从C岛看A、B两岛的视角∠ACB是90°.【互动总结】(学生总结,老师点评)由平行线的性质把已知角与三角形的内角相联系,进而利用三角形内角和定理可求出有关角的度数.活动2巩固练习(学生独学)1.已知一个三角形中一个角是锐角,那么这个三角形是(D)A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能2.在△ABC中,BC边的对应角是(A)A.∠A B.∠BC.∠C D.∠D3.在△ABC中,已知∠A=80°,∠B=∠C,则∠C=50°.4.已知三角形三个内角的度数之比为1∶3∶5,则这三个内角的度数分别为20°,60°,100°.5.如图,在Rt△ABC中,∠ACB=90°,∠1=∠B,∠2=∠3,则图中共有5个直角三角形.6.如图,D是△ABC中BC边延长线上一点,DF⊥AB交AB于点F,交AC于点E.若∠A=46°,∠D=50°,求∠ACB的度数.解:因为DF⊥AB,所以∠DFB=90°.又在△DFB中,∠D=50°,所以∠B=180°-∠DFB-∠D=40°.又在△ABC中,∠A=46°,所以∠ACB=180°-∠A-∠B=94°.活动3拓展延伸(学生对学)【例3】探究与发现:如图1,有一块直角三角板DEF放置在△ABC上,三角板DEF 的两条直角边DE、DF恰好分别经过点B、C.请写出∠BDC与∠A+∠ABD+∠ACD之间的数量关系,并说明理由.应用:某零件如图2所示,图纸要求∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=145°,就断定这个零件不合格,你能说出其中的道理吗?图1图2【互动探索】根据三角形内角和定理探究∠BDC 与∠A +∠ABD +∠ACD 之间的数量关系,然后利用得到的关系求解应用的问题.【解答】探究与发现:∠BDC =∠A +∠ABD +∠ACD .理由如下:因为∠BDC +∠DBC +∠DCB =180°,∠A +∠ABC +∠ACB =∠A +∠ABD +∠ACD +∠DBC +∠DCB =180°,所以∠BDC =∠A +∠ABD +∠ACD . 应用:能,连结BC .因为∠A =90°,∠ABD =32°,∠ACD =21°,所以由上述结论,得∠BDC =∠A +∠ABD +∠ACD =143°. 因为检验员量得∠BDC =145°≠143°, 所以这个零件不合格.【互动总结】(学生总结,老师点评)本题考查了三角形的内角和定理,能灵活运用定理进行推理是解此题的关键.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.三角形的定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2.三角形内角和定理 三角形三个内角的和等于180°. 3.三角形按角分类 三角形⎩⎪⎨⎪⎧锐角三角形钝角三角形直角三角形4.直角三角形的性质 直角三角形的两个锐角互余.练习设计请完成本课时对应练习!第2课时 三角形的三边关系教学目标一、基本目标1.结合具体实例,认识等腰三角形和等边三角形的概念及基本要素.2.在度量三角形边长的实践活动中理解三角形三边的不等关系.3.掌握三角形的三边的不等关系,并能解决相关问题.4.经历观察、操作、推理、交流等活动,进一步发展推理能力和有条理的表达能力.二、重难点目标【教学重点】三角形的三边关系.【教学难点】探究三角形的三边关系及灵活应用三边关系解决生活中的实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P85~P86的内容,完成下面练习.【3 min反馈】1.有两边相等的三角形叫做等腰三角形;三边都相等的三角形叫做等边三角形.2.三角形的三边关系:三角形任意两边之和大于第三边;三角形任意两边之差小于第三边.3.下列长度的三条线段能否组成三角形?(1)3,4,8;(不能)(2)2,5,6;(能)(3)5,6,10;(能)(4)5,6,11.(不能)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】以下列各组线段为边,能组成三角形的是()A.2,3,5B.4,7,10C.1,1,3D.3,4,9【互动探索】(引发学生思考)根据“三角形任意两边之和大于第三边”逐项判断即可.A中,2+3=5,不能组成三角形;B中,4+7>10,能组成三角形;C中,1+1<3,不能组成三角形;D中,3+4<9,不能组成三角形.【答案】B【互动总结】(学生总结,老师点评)判定三条线段能否组成三角形,只要判定两条较短线段长度之和大于第三条线段的长度即可.【例2】用一根长为18厘米的细铁丝围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4厘米的等腰三角形吗?【互动探索】(引发学生思考)(1)理解题意,得出等腰三角形的周长是18厘米→列方程求解;(2)等腰三角形的周长为18厘米→已知边是腰还是底边→分类讨论→得三角形另外两边长→利用三角形三边关系进行判断→得出结论.【解答】(1)设底边长为x厘米,则腰长为2x厘米.根据题意,得x+2x+2x=18,解得x=3.6.所以三边长分别为3.6厘米、7.2厘米、7.2厘米.(2)分情况讨论:①当4厘米长为底边时,设腰长为x厘米,则4+2x=18,解得x=7.所以等腰三角形的三边长为7厘米、7厘米、4厘米.②当4厘米长为腰长时,设底边长为x厘米,则4×2+x=18,解得x=10.此时三边长为4厘米、4厘米、10厘米.而4+4<10,所以此时不能构成三角形.故能围成底边长为4厘米,腰长为7厘米的等腰三角形.【互动总结】(学生总结,老师点评)当已知等腰三角形的周长和一边长时,需要分类讨论已知的一边长是腰还是底边,再解决问题.活动2巩固练习(学生独学)1.下列说法:①等边三角形是等腰三角形;②三角形任意两边的和大于第三边;③三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有(C)A.1个B.2个C.3个D.4个2.已知a、b、c为三角形的三边,则|a+b-c|-|b-c-a|的化简结果是(D)A.2a B.-2bC .2a +2bD .2b -2c3.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( C ) A .1 B .2 C .8D .114.已知等腰三角形的两边长分别为4 cm 和6 cm ,且它的周长大于14 cm ,则第三边长为6 cm.5.已知三角形的三边长是三个连续的自然数,且三角形的周长小于20,求三边的长. 解:设三角形三边的长分别为x -1,x ,x +1.根据三角形的三边关系,得x -1+x >x +1,解得x >2. 因为三角形的周长小于20,所以x -1+x +x +1<20,解得x <203.所以2<x <203且x 为整数,所以x 为3,4,5,6.当x =3时,三角形三边长分别为2,3,4; 当x =4时,三角形三边长分别为3,4,5; 当x =5时,三角形三边长分别为4,5,6; 当x =6时,三角形三边长分别为5,6,7. 环节3 课堂小结,当堂达标 (学生总结,老师点评)1.等腰三角形:有两边相等的三角形. 2.等边三角形:三边都相等的三角形.3.三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.练习设计请完成本课时对应练习!第3课时 三角形的中线、角平分线教学目标一、基本目标1.理解并掌握三角形的中线、角平分线的定义,认识三角形的重心. 2.能准确画出三角形的中线、角平分线. 3.理解并掌握三角形中线、角平分线的性质. 二、重难点目标【教学重点】三角形的中线、角平分线的定义及其性质. 【教学难点】三角形的中线、角平分线的画法及应用.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P87~P88的内容,完成下面练习. 【3 min 反馈】 (一)三角形的中线1.在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线.三角形的三条中线交于一点,这点称为三角形的重心.2.如图,点D 、E 、F 分别是边BC 、AC 、AB 上的中点.(1)AB 边上的中线是CF ,BC 边上的中线是AD ,AC 边上的中线是BE ; (2)因为BE 是△ABC 中AC 边上的中线, 所以AE =CE =12AC .因为CF 是△ABC 中AB 边上的中线, 所以AB =2AF =2BF . (二)三角形的角平分线1.在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线交于一点.2.(1)因为BE 是△ABC 的角平分线, 所以∠ABE =∠CBE =12∠ABC ;(2)因为CF 是△ABC 的角平分线, 所以∠ACB =2∠ACF =2∠BCF .环节2 合作探究,解决问题活动1小组讨论(师生互学)(一)画三角形的中线如图,线段AD是△ABC中BC边上的中线.讨论1:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的中线,观察中线与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条中线相交于一点;(2)锐角三角形、直角三角形、钝角三角形的三条中线都相交于三角形的内部.(二)画三角形的角平分线如图,线段AD是△ABC的一条角平分线,图中∠BAD=∠CAD.讨论2:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的角平分线,观察角平分线与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条角平分线相交于一点;(2)锐角三角形、直角三角形、钝角三角形的三条角平分线都相交于三角形的内部.活动2巩固练习(学生独学)1.如图,在△ABC中有四条线段DE、BE、EG、FG,其中有一条线段是△ABC的中线,则该线段是(B)A.线段DE B.线段BEC.线段EG D.线段FG2.如图,DE∥BC,CD是∠ACB的平分线,∠ACB=60°,那么∠EDC=30度.3.如图,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3 cm,BC =8 cm,求边AC的长.解:因为CD为△ABC的AB边上的中线,所以AD=BD.因为△BCD的周长比△ACD的周长大3 cm,所以(BC+BD+CD)-(AC+AD+CD)=3 cm,所以BC-AC=3 cm.因为BC=8 cm,所以AC=5 cm.环节3课堂小结,当堂达标(学生总结,老师点评)三角形的中线:(1)定义;(2)画法;(3)三角形重心的定义.三角形的角平分线:(1)定义;(2)画法;(3)三角形的三条角平分线交于一点.练习设计请完成本课时对应练习!第4课时三角形的高教学目标一、基本目标1.认识三角形的高线,会画任意三角形的高线,了解三角形的三条高所在的直线交于一点.2.通过折纸、画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思维变得更灵活.二、重难点目标【教学重点】三角形高线的定义,会画任意三角形的高.【教学难点】画钝角三角形夹钝角的两边上的高和三角形高的应用.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P89~P90的内容,完成下面练习.【3 min反馈】1.从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.2.三角形的三条高所在的直线交于一点.3.分别指出下图中△ABC的三条高.图1图2(1)图1中,直角边BC上的高是AB,直角边AB上的高是BC,斜边AC上的高是BD;(2)图2中,AB边上的高是CE,BC边上的高是AD,AC边上的高是BF.环节2合作探究,解决问题活动1小组讨论(师生互学)用工具准确画出三角形的高如图,线段AD是△ABC中BC边上的高.注意:标明垂直的记号和垂足的字母.教师点拨:回忆并演示“过一点画已知直线的垂线”的画法.讨论:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的高,观察高与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条高线所在的直线相交于一点;(2)锐角三角形的三条高线相交于三角形的内部;(3)直角三角形的三条高线相交于三角形的直角顶点;(4)钝角三角形的三条高线所在的直线相交于三角形的外部.活动2 巩固练习(学生独学)1.如图,在△ABC 中,EF ∥AC ,BD ⊥AC 于点D ,交EF 于点G ,则下列说法错误的是( C )A .BD 是△ABC 的高B .CD 是△BCD 的高C .EG 是△ABD 的高D .BG 是△BEF 的高2.如图,CD 、CE 、CF 分别是△ABC 的高、角平分线、中线,则下列各式中错误的是( C )A .AB =2BF B .∠ACE =12∠ACBC .AE =BED .CD ⊥BE3.如图,在△ABC 中,AB 边上的高是CE ,BC 边上的高是AD ;在△BCF 中,CF 边上的高是BC .4.若一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是直角三角形.5.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=130°,∠C=30°,则∠DAE的度数是5°.环节3课堂小结,当堂达标(学生总结,老师点评)1.三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.2.三角形的三条高所在的直线交于一点.三角形的三条高的特性:锐角三角形直角三角形钝角三角形三角形内部高的数量31 1三条高是否相交是是否三条高所在直线的交点位置三角形内部直角顶点三角形外部练习设计请完成本课时对应练习!。
数学教案-三角形的内角和一、教学目标1.让学生理解三角形的内角和定理。
2.培养学生运用内角和定理解决实际问题的能力。
3.激发学生对几何学的兴趣,提高学生的空间想象力和逻辑思维能力。
二、教学重难点1.教学重点:理解并掌握三角形的内角和定理。
2.教学难点:运用内角和定理解决实际问题。
三、教学过程1.导入新课师:同学们,大家好!今天我们要学习一个新的几何知识——三角形的内角和。
在此之前,请大家回忆一下我们学过的三角形的基本知识,比如三角形的定义、分类等。
生(齐):三角形是由三条线段首尾相连组成的图形。
师:很好!那我们来探讨一下,三角形内的角度有什么特点呢?2.探究三角形内角和(1)自主探究师:请大家拿出一张白纸,画出一个任意的三角形,并用量角器测量三个角的度数。
生(操作):画三角形,测量角度。
师:请大家将自己的测量结果告诉小组内的同学,然后汇总一下。
生(小组讨论):我们小组的三角形内角分别是60°、70°和50°。
师:很好!其他小组呢?生(小组汇报):我们小组的三角形内角分别是40°、60°和80°。
师:通过大家的测量,我们发现三角形的内角和是180°。
这是一个非常重要的定理,叫做三角形的内角和定理。
3.应用内角和定理(1)求解三角形内角度数师:现在我们知道了三角形的内角和是180°,那么如果已知三角形的两个角度,我们就可以求出第三个角度。
请大家来做一道题目:已知一个三角形,其中两个角分别是30°和60°,求第三个角的度数。
生(解答):第三个角的度数是180°30°60°=90°。
(2)解决实际问题师:我们来看一个实际问题。
请大家观察这张图片,这是一个等腰三角形,底边长为8厘米,顶角为40°。
请问,这个等腰三角形的腰长是多少?生(思考):因为这是一个等腰三角形,所以底角相等,设底角为x,那么有2x+40°=180°。
《三角形的内角和》数学教案标题:《三角形的内角和》数学教案一、教学目标1. 知识与技能:(1) 学生能够理解并掌握三角形内角和为180度的概念。
(2) 学生能通过实际操作,验证三角形内角和为180度的性质。
2. 过程与方法:(1) 通过观察、操作、推理等活动,提高学生的空间观念和逻辑思维能力。
(2) 通过合作交流,培养学生良好的学习习惯和团队协作精神。
3. 情感态度与价值观:(1) 培养学生对数学的兴趣,体验成功的喜悦。
(2) 让学生意识到数学与生活密切相关,提高应用数学知识解决实际问题的能力。
二、教学重难点1. 教学重点:理解和掌握三角形内角和为180度的性质。
2. 教学难点:如何引导学生从实际操作中抽象出三角形内角和为180度的规律。
三、教学过程(一) 导入新课教师可以通过展示生活中常见的三角形图形(如三角尺、金字塔等),引出今天要学习的内容——三角形的内角和。
(二) 新知探索1. 定义讲解教师首先介绍什么是三角形的内角,并在黑板上画出一个三角形,标出三个内角,让学生明确三角形内角的概念。
2. 探索实践然后,教师分发预先准备好的各种形状和大小的三角形纸片,让学生动手测量并计算每个三角形的内角和。
在这个过程中,教师可以适时地进行指导和帮助。
3. 归纳总结当所有小组完成测量后,教师组织全班进行交流分享。
通过对各组数据的分析,引导学生发现无论三角形的形状和大小如何变化,其内角和总是等于180度。
(三) 巩固练习设计一些针对性的练习题,让学生运用所学知识解决问题,进一步巩固三角形内角和为180度的知识点。
四、课堂小结教师引导学生回顾本节课的学习内容,强调三角形内角和为180度这一重要性质,并鼓励学生在日常生活中寻找应用这个性质的例子。
五、作业布置布置一些关于三角形内角和的习题,让学生回家独立完成,以检验他们对本节课知识的理解和掌握程度。
六、教学反思在教学结束后,教师应反思本节课的教学效果,评估学生的学习情况,思考如何改进教学方法,提高教学效率。
4.1认识三角形
第1课时三角形的内角和
1.理解三角形内角和定理及其验证方法,能够运用其解决一些简单问题;(重点)
2.理解直角三角形的相关性质并能够运用其解决问题.
一、情境导入
(三兄弟之争)在一个直角三角形村庄里,住着三个内角,平时他们非常团结,有一天,老三不高兴了,对老大说“凭什么你的度数最大,我也要和你一样大!”老大说:“这是不可能的,否则我们这个家就要被拆散,围不起来了!”“为什么呢?”老二、老三纳闷起来……
同学们,你们知道其中的道理吗?
二、合作探究
探究点一:三角形的内角和
【类型一】求三角形内角的度数
已知,如图,D是△ABC中BC边延长线上一点,F为AB上一点,直线FD交AC于E,∠DFB=90°,∠A=46°,∠D=50°.求∠ACB的度数.解析:在△DFB中,根据三角形内角和定理,求得∠B的度数,再在△ABC中求∠ACB的度数即可.解:在△DFB中,∵∠DFB=90°,∠D=50°,∠DFB+∠D+∠B=180°,∴∠B=40°.在△ABC 中,∵∠A=46°,∠B=40°,∴∠ACB=180°-∠A-∠B=94°.
方法总结:求三角形的内角,必然和三角形内角和定理有关,解决问题时要根据图形特点,在不同的三角形中,灵活运用三角形内角和定理求解.
【类型二】判断三角形的形状
一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是()
A.直角三角形B.锐角三角形
C.钝角三角形D.无法判定
解析:设这个三角形的三个内角的度数分别是x,2x,3x,根据三角形的内角和为180°,得x+2x+3x=180°,解得x=30°,∴这个三角形的三个内角的度数分别是30°,60°,90°,即这个三角形是直角三角形.故选A.
方法总结:判断三角形的形状,可从角的大小来判断,根据三角形的内角和及角之间的关系列出相关方程式求解即可.
探究点二:直角三角形的两个锐角互余
如图,CE⊥AF,垂足为E,CE与BF相交于点D,∠F=40°,∠C=30°,求∠EDF、∠DBC的度数.
解析:根据直角三角形两锐角互余列式计算即可求出∠EDF,再根据三角形的内角和定理求出∠C+∠DBC=∠F+∠DEF,然后求解即可.
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的内角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.
方法总结:本题主要利用了“直角三角形两锐角互余”的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.
三、板书设计
1.三角形的内角和定理:三角形的内角和等于180°.
2.三角形内角和定理的证明
3.直角三角形的性质:直角三角形两锐角互余.
本节课通过一段对话设置疑问,巧设悬念,激发起学生获取知识的求知欲,充分调动学生学习的积极性,使学生由被动接受知识转为主动学习,从而提高学习效率.然后让学生自主探究,在教学过程中充分发挥学生的主动性,让学生提出猜想.在教学中,教师通过必要的提示指明学生思考问题的方向,在学生提出验证三角形内角和的不同方法时,教师注意让学生上台演示自己的操作过程和说明自己的想法,这样有助于学生接受三角形的内角和是180°这一结论。