典型数理方程推导
- 格式:ppt
- 大小:2.66 MB
- 文档页数:78
数理方程公式大集合1. 考察两端固定的弦的自由振动问题● 可得出 X"(x) + l X(x) = 0 在不同的齐次边界条件下的本征函数系(表2-1). 容易发现如下的规律:● (1)若齐次边界条件含X (0)=0,则本征函数为正弦函数;若齐次边界条件含X ‘ (0) = 0,则本征函数为余弦函数 ● (2)若边界条件为同类齐次边界条件(均为第一类或均为第二类),则本征函数的宗量为若边界条件属不同类齐次边界条件,则本征函数的宗量为2. 有界长杆的热传导问题3. 二维拉普拉斯方程的边值问题4. 圆域上拉普拉斯方程的边值问题 (化为极坐标)⎪⎩⎪⎨⎧====><<=),()0,( ),()0,( ,0),( ,0),0(),0 ,0( 2x x u x x u t l u t u t l x u a u t xx tt ψϕ sin )cos sin (),(1∑∞=+-=nn n tlxn l at n b l at n a l a n t x u ππππ,sin)(2dx lxn x la ln ⎰=πϕ,sin)(2dx lxn x an b ln ⎰=πψπ⎪⎩⎪⎨⎧===><<= ),()0,( ,0),( ,0),0( ),0 ,0( 2x x u t l u t u t l x u a u xx t ϕ,sin ),(1)(2l x n e a t x u n t l a n n ππ∑∞=-=,sin)(20dx l x n x l a l n ⎰=πϕ⎪⎩⎪⎨⎧====<<<<=+ .0),( ,0),0( ),(),( ),()0,(),y 0 ,0( 0y a u y u x g b x u x f x u b a x u u yy xx sin) (),(1∑∞=-+=n y an n y an n x an eb ea y x u πππ,sin )(20⎰=+an n xdx an x f a b a π,sin)(2⎰=+-ab an n b an n xdx an x g aeb ea πππ11),0(0r r <<5. 圆域内的泊松公式6. 无限长弦自由振动问题的达朗贝尔解为公式其中方程(3)的通解形式为7. 无限长弦强迫振动问题的解为公式和差化积sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]积化和差sinαsinβ=-[cos(α+β)-cos(α-β)]/2(注意:此时公式前有负号) cosαcosβ= [cos(α-β)+cos(α+β)]/2 sinαcosβ= [sin(α+β)+sin(α-β)]/2 cosαsinβ= [sin(α+β)-sin(α-β)]/2).(|θf u r r ==)20(πθ≤≤.)sin cos (21),(10∑∞=++=n n n n r n b n a a r u θθθ⎰=πθθθπ20cos )(1d n f r a n n ⎰=πθθθπ20sin )(1d n f r b nn), ,2 ,1 ,0( =n ),,2 ,1( =n ),( )(cos 2)(21),(0200220220r r d n r r r r r r f r u <--+-=⎰ϕϕθϕπθπ),0 ,( 2>+∞<<-∞=t x u a u xx tt)()0,( ),()0,(x x u x x u t ψϕ==2)()(),(at x at x t x u ++-=ϕϕ.)(21⎰+-+atx atxd a ααψ).()(),(at x g at x f t x u ++-=(3)),0 ,( ),(2>+∞<<-∞+=t x t x f u a u xx tt )()0,( ),()0,(x x u x x u t ψϕ==2)()(),(at x at x t x u ++-=ϕϕ⎰+-+atx atxd aααψ)(21..),(21)()(⎰⎰-+--+t t a x t a xd d f aτξτξττ222222zy x ∂∂+∂∂+∂∂=∆是三维拉普拉斯算子。
初中数学公式推导大全1.一次函数的斜率公式一次函数的一般形式为y=ax+b,其中a为斜率。
斜率表达式可以通过求导法则推导得到。
假设有一次函数y=ax+b,我们可以将其写成y=bx+a。
对其求导得到dy/dx=b。
根据斜率的定义,斜率是直线在x轴上的增量与y轴上的增量的比值。
而直线的斜率与斜率为b的导数相等,所以斜率公式可以记作a=b。
2.二次函数的顶点坐标公式二次函数的一般形式为y=ax^2+bx+c。
其顶点坐标可以通过求导法则推导得到。
二次函数的导数为dy/dx=2ax+b,令dy/dx=0,则得到x=-b/2a。
将x=-b/2a带入二次函数的方程中可以求得y,进而得到顶点的坐标。
3.直线的斜截式公式直线的斜截式公式是y=kx+b,其中k为斜率,b为截距。
斜截式公式可以通过观察直线经过的两个点,利用点斜式公式推导得到。
点斜式公式为(y-y1)=k(x-x1),其中(x1,y1)为直线上的已知点。
将点斜式公式中的x,y代入直线方程y=kx+b中,可以得到关于k和b的两个方程。
解这两个方程可以得到k和b的值,从而得到斜截式公式。
4.平方差公式平方差公式是(a+b)(a-b)=a^2-b^2平方差公式可以通过差的平方公式推导得到。
差的平方公式为(a-b)^2=a^2-2ab+b^2将差的平方公式中的2ab移项,可以得到(a-b)^2=a^2-b^2-2ab。
将(a-b)^2展开得到a^2-2ab+b^2=a^2-b^2-2ab,进一步化简得到(a+b)(a-b)=a^2-b^25.定积分的面积计算公式定积分可以表示曲线与x轴之间的面积。
对于曲线y=f(x),在区间[a,b]上的面积可表示为∫[a,b]f(x)dx。
定积分的面积计算公式可以通过拆分区间并计算矩形面积的方法推导得到。
将区间[a,b]分为n个小区间,每个小区间的长度为Δx=(b-a)/n。
在每个小区间上取一点xi,计算对应的高度为f(xi)的矩形面积,即面积Ai=f(xi)Δx。
常见数学公式的推导记忆口诀(完整版)1. 二次方程求根公式:x = (-b ± √(b² - 4ac)) / 2a2. 三角函数的和差化积公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)3. 三角函数的倍角公式:sin2A = 2sinAcosAcos2A = cos²A - sin²A = 2cos²A - 1 = 1 - 2sin²Atan2A = (2tanA) / (1 - tan²A)4. 指数函数的性质:a^0 = 1a^1 = aa^(-n) = 1 / a^na^(m + n) = a^m × a^n(a^m)^n = a^(m × n)(ab)^n = a^n × b^n5. 对数函数的性质:loga(1) = 0loga(a) = 1loga(1 / a) = -1loga(mn) = loga(m) + loga(n) loga(m / n) = loga(m) - loga(n) loga(m^n) = n × loga(m)loga(b) = logc(b) / logc(a)6. 等比数列通项公式:aₙ = a₁ × r^(n - 1)7. 等差数列前n项和公式:Sₙ = (a₁ + aₙ) × n / 28. 余弦定理:c² = a² + b² - 2abcosC9. 正弦定理:sinA / a = sinB / b = sinC / c10. 高斯消元法:利用矩阵的初等行变换将线性方程组转化为最简形式,进而求得方程组的解。
数学常见知识推导公式大全1.二次平方差公式:$(a + b)^2 = a^2 + 2ab + b^2$2.平方差公式:$(a - b)^2 = a^2 - 2ab + b^2$3.三次方差公式:$(a + b)(a^2 - ab + b^2) = a^3 + b^3$4.比例公式:$\frac{a}{b} = \frac{c}{d}$,则有 $ad = bc$5.二次方和公式:$a^2 + b^2 = (a + b)^2 - 2ab$6.二次方差公式:$a^2-b^2=(a+b)(a-b)$7.三角恒等式:(其中a,b,c为任意角度)余弦定理:$c^2 = a^2 + b^2 - 2ab\cos(C)$正弦定理:$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$余切定理:$\frac{\sin(A)}{\cos(A)} = \tan(A)$8.对数运算法则:$\log_a (xy) = \log_a x + \log_a y$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$ $\log_a x^n = n \log_a x$9.二项式公式:$(a + b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}b^n$10.指数运算法则:$a^m \cdot a^n = a^{m+n}$$\frac{a^m}{a^n} = a^{m-n}$$(a^m)^n = a^{mn}$11.对数换底公式:$\log_a b = \frac{\log_c b}{\log_c a}$12.圆的面积和周长:圆的面积:$A = \pi r^2$圆的周长:$C = 2\pi r$13.等差数列求和公式:$a_1 + a_2 + \dots + a_n = \frac{n}{2}(a_1 + a_n)$14.等比数列求和公式:$a_1 + a_2 + \dots + a_n = a_1 \cdot \frac{1 - r^n}{1 - r}$,其中$r \neq 1$15.三角函数和差公式:$\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$$\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$$\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}$16.三角函数和差化积公式:$\sin a + \sin b = 2 \sin \left(\frac{a + b}{2}\right) \cos\left(\frac{a - b}{2}\right)$$\sin a - \sin b = 2 \cos \left(\frac{a + b}{2}\right) \sin\left(\frac{a - b}{2}\right)$$\cos a + \cos b = 2 \cos \left(\frac{a + b}{2}\right) \cos\left(\frac{a - b}{2}\right)$$\cos a - \cos b = -2 \sin \left(\frac{a + b}{2}\right) \sin \left(\frac{a - b}{2}\right)$以上是一些常见的数学推导公式。
数学备考中的常用公式及推导过程整理数学备考是许多学生备战考试的重要环节。
在数学备考过程中,熟练掌握和灵活运用各种数学公式是必不可少的。
本文将对数学备考中常用的公式进行整理,并介绍其中的推导过程,以帮助读者更好地理解和应用这些公式。
一、数学备考中的常用公式1.1 代数公式1.1.1 二次方程的求根公式:对于二次方程 ax^2+bx+c=0,其求根公式为:\[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]其中,a、b、c分别为二次项系数、一次项系数和常数项。
1.1.2 平方差公式:平方差公式可以用来展开和简化两个数的平方差。
其公式如下:\[(a+b)(a-b)=a^2-b^2\]1.1.3 二项式定理:二项式定理是展开(x+y)^n的公式,其中n为非负整数。
其公式如下:\[(x+y)^n=\sum_{k=0}^nC_n^kx^{n-k}y^k\]其中,\[C_n^k=\frac{n!}{k!(n-k)!}\]为组合数。
1.2 几何公式1.2.1 直角三角形三边关系:对于直角三角形,根据勾股定理,有以下公式:勾股定理:a^2+b^2=c^2其中,a、b为两个直角边的长度,c为斜边长。
1.2.2 三角函数公式:三角函数公式是数学备考中常用的工具。
以下是一些常用的三角函数公式:正弦函数公式:\[sin(a\pm b)=sinacosb\pm cosasinb\]余弦函数公式:\[cos(a\pm b)=cosacosb\mp sinasinb\]1.3 微积分公式1.3.1 定积分基本公式:定积分的基本公式如下:\[F(x)=\int{f(x)dx}\]其中,F(x)为积分函数,f(x)为被积函数。
1.3.2 泰勒级数公式:泰勒级数可以将一个函数展开为无穷级数的形式,其公式如下:\[f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)(x-a)^2}{2!}+...\]其中,f(x)为函数,f'(a)、f''(a)为函数在点a处的一阶、二阶导数。
=====================无限长弦的一般强迫振动定解问题200(,)(,0)()()tt xx t t t u a u f x t x R t u x u x ϕψ==⎧=+∈>⎪=⎨⎪=⎩解()()().().0()111(,)(,)222x at t x a t x at x a t u x t x at x at d f d d a a ττϕϕψξξατατ++----⎡⎤=++-++⎡⎤⎣⎦⎢⎥⎣⎦⎰⎰⎰ 三维空间的自由振动的波动方程定解问题()2222222220001,,,,0(,,)(,,)t t u uu a x y z t t x y z u x y z u x y z t ϕϕ==⎧⎛⎫∂∂∂∂=++-∞<<+∞>⎪ ⎪∂∂∂∂⎝⎭⎪⎪=⎨⎪∂⎪=∂⎪⎩在球坐标变换sin cos sin sin (0,02,0)cos x r y r r z r θϕθϕϕπθπθ=⎧⎪=≤<+∞≤≤≤≤⎨⎪=⎩21()1()(,)44M Mat r S S M M u M t dS dS a t r a rϕψππ⎡⎤''∂=+⎢⎥∂⎢⎥⎣⎦⎰⎰⎰⎰(r=at)221()1()(,)44M M at atS S M M u M t dS dS a t t a tϕψππ⎡⎤''∂=+⎢⎥∂⎢⎥⎣⎦⎰⎰⎰⎰无界三维空间自由振动的泊松公式()sin cos ()sin sin (02,0)()cos x x at y y at z z at θϕθϕϕπθπθ'=+⎧⎪'=+≤≤≤≤⎨⎪'=+⎩2()sin dS at d d θθϕ=二维空间的自由振动的波动方程定解问题()222222200,,,0(,)(,)t t u uu a x y t t x y u u x y x y t ϕψ==⎧⎛⎫∂∂∂=+-∞<<+∞>⎪ ⎪⎪∂∂∂⎝⎭⎨∂⎪==⎪∂⎩2222222200001(cos ,sin )1(cos ,sin )(,,)22at at x r y r x r y r u x y t rdrd rdrd a t a a t r a t r ππϕθθψθθθθππ⎡⎤⎡⎤∂++++=+⎢⎥⎢⎥∂--⎣⎦⎣⎦⎰⎰⎰⎰======================= 傅立叶变换1()()2i xf x f e d λλλπ+∞-∞=⎰基本性质 线性性质[]1212[][]F ff F f F f αβαβ+=+1212[][][]F f f F f F f *=12121[][][]2F f f F f F f π=* 微分性质[][]F f i F f λ'=()[]()[]k k F f i F f λ=[][]dF f F ixf d λ=- ()()i xf f x e dx λλ+∞--∞=⎰1[()]dixf F f d λλ--= 00[()][()]i x F f x x e F f x λ--= 00[()]()i x F e f x f λλλ=- ..1[()][()]xF f d F f x i ξξλ-∞=⎰ .0.[)]1i x i xx F x x e dx e λλδδ∞--=-∞===⎰(() ()()..[]i x i F x x e dx e λλξδξδξ∞---∞-=-=⎰1[()]()F f ax f a aλ=若[()]()F f x g λ=则 [()]2()F g x f πλ=- []12()F πδλ=22242ax aF ee λπ--⎛⎫⎡⎤= ⎪⎣⎦⎝⎭1c o s ()21s i n ()2i a i ai a i aa e e a e e i --=+=-cos sin cos sin ia ia e a i a e a i a -=+=-2x e d x π+∞--∞=⎰=========================拉普拉斯变换()()sx f s f x e dx +∞-=⎰[]Re Re ax c L ce p a p a=>- 21[]L x s =21[]()x L e x s ββ-⋅=+ []22sin k L kt s k =+ []22cos s L kt s k ==+ []22[]2ax ax e e aL shax L s a --==-Re Re s a >[]22[]2ax ax e e sL chax L s a -+==+Re Re s a >基本性质[]1212[][]L f f L f L f αβαβ+=+ 1111212[][]L f f L f L f αβαβ---⎡⎤+=+⎣⎦[()][()],0s L f x e L f x τττ--=≥ 0[()](),Re()ax L e f x f s a s a σ=-->1[()](),(0)sL f cx f c c c=> ()12(1)[][](0)(0)(0)n n n n n L f s L f s f s f f ---'=----..01[()][()]xL f d L f x s ττ=⎰[][()]nn n d L f L x f ds=-..()[]pf x f s ds L x∞=⎰() 1212[][][]L f f L f F f *= 0[()]()1sxL x x e dx δδ+∞-==⎰ ======================三个格林公式 高斯公式:设空间区域V 是由分片光滑的闭曲面S 所围成,函数P ,Q,R 在V 上具有一阶连续偏导数,则:V SP Q R dV Pdydz Qdzdx Rdxdy x y z ⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰或()()()cos ,cos ,cos ,V SP Q R dV P n x Q n y R n z dS x y z ⎛⎫∂∂∂++=++⎡⎤ ⎪⎣⎦∂∂∂⎝⎭⎰⎰⎰⎰⎰ 第一格林公式:设u(x,y,z),V(x,y,z)在SŲS V 上有一阶连续偏导数,它们在V 中有二阶偏导,则:SVVu v dS u vdV u vdV ∇⋅=∇⋅∇+∆⎰⎰⎰⎰⎰⎰⎰⎰第二格林公式:设u(x,y,z),V(x,y,z)在SŲS V 上有一阶连续偏导数,它们在V 中有二阶偏导,则:()()SVu v v u dS u v v u dV ∇-∇⋅=∆-∆⎰⎰⎰⎰⎰第三格林公式设M 0,M 是V 中的点,v(M)=1/r MM0, u(x,y,z)满足第一格林公式条件,则有:000011111()44MM MM MM S V u u M u dS u dV r n n r r ππ⎡⎤⎛⎫⎛⎫∂∂=--∆⎢⎥ ⎪ ⎪ ⎪ ⎪∂∂⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰⎰⎰⎰ 定理1:泊松方程洛平问题 (,,),(,,)(,,),((,,),(xx yy zz SS S u u u u f x y z x y z V uu x y z x y z n ϕψ∆=++=∈⎧⎪⎨∂==⎪∂⎩连续)连续)的解为: 011111()()()()44S V u M M M dS f M dV r n r r ψϕππ⎡∂⎤⎛⎫⎛⎫=-- ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦⎰⎰⎰⎰⎰ 推论1:拉氏方程洛平问题 0,(,,)(,,),((,,),(xx yy zz SS S u u u u x y z V uu x y z x y z n ϕψ∆=++=∈⎧⎪⎨∂==⎪∂⎩连续)连续)的解为: 0111()()()4S u M M M dS r n r ψϕπ⎡∂⎤⎛⎫=- ⎪⎢⎥∂⎝⎭⎣⎦⎰⎰ ============================调和函数1、定义:如果函数u(x,y,z)满足:(1) 在V S 具有二阶连续偏导数;(2) 0u ∆= 称u 为V 上的调和函数。