发电机振动原因分析及处理过程
- 格式:doc
- 大小:28.00 KB
- 文档页数:15
汽轮发电机组启动过程中振动大的原因分析及对策摘要:电能在人们日常生活中、厂矿企业正常运转中起着举足轻重的地位,保证发电设备的正常运行就显得更为重要,尤其是汽轮发电机组及时、顺利的启动更是会为企业节省大量的成本。
然而,汽轮发电机组的启动经常会因为各种故障而被迫中止,其中最常见的莫过于振动。
由于机组的振动原因本身就非常复杂,再加上启机是个变工况的过程,振动增大后要迅速找到对应的处理措施就更为困难,因此了解振动增加的各种因素是减小振动的关键所在。
关键词:汽轮发电机组;振动;原因分析;对策汽轮发电机组是一种高温高压、高速旋转的机械组合,振动现象在汽轮发电机组是普遍存在也是无法消除的,这种现象,在一定范围内是允许的,也不会对设备造成过大的损害,但超过临界值的振动会给机组乃至整个电力系统带来巨大的安全隐患。
本自备电厂汽轮发电机组(型号:NZK100--9.32/535)主要负责为全厂提供厂用电,以及配合锅炉调整化工区的高、中压供汽压力,由于正常运行时负荷波动较大、启停非常频繁,对汽轮机的损害本来就比较严重,再加上启停过程中操作不合理、参数控制不到位,对汽轮机寿命造成很大的损害,尤其是振动大造成的危害更为巨大,本文就结合我厂实际,对汽轮发电机组启动过程中振动大的常见原因进行分析,并提出相应的防范措施和处理意见。
一、启动过程中上下缸温差引发的汽轮机振动。
机组冷态启动时,由于上下缸具有不同的重量和散热面积,下缸重量大于上缸,且下缸布置有抽汽管道,散热面积大,在同样的加热条件下,下缸加热速度较上缸慢,所以上缸温度大于下缸,另外,在汽缸内,蒸汽上升,其凝结水下流,使下缸受热条件变化,温升速率也较上缸慢;机组热态启动时,上下缸之间可能已经存在初始温差,或由于主蒸汽管、汽缸疏水不足,发生水冲击,导致汽缸上下缸壁温差增大。
上下缸温差过大时易造成内部径向间隙变化较大,导致振动。
本厂#1、2号机组都出现过高压缸内壁上、下温差超过50℃,有时高达120℃以上的现象。
水轮发电机组振动原因和处理措施分析水轮发电机组振动会让水轮发电机组正常运行产生问题,会让水轮机组出现故障。
本文首先对水轮发电机组振动带来危害作出简要阐述,然后对水轮发电机组振动原因进行分析,之后结合笔者在新庄水电站工作的实际情况,提出几点水轮发电机组振动处理措施,希望可以对业内起到一定参考作用。
标签:水轮发电机组;振动原因;处理措施前言:在水电站中,水轮发电机组的安全运行可以保证水电站经济效益,如果水轮发电机组因为振动出现故障情况,那么就会对水轮发电机组运行平稳性与发电效益造成不利影响。
水力原因、机械原因与电气原因均有可能导致水轮发电机组出现振动情况,进而产生运行故障。
一、水轮发电机组振动带来危害在水电站中,水轮机占有核心地位,水轮机组可以转化水势能为机械能,在水电厂中,水轮发电机组的安全运行可以保证其供电安全性、供电优质性和供电经济性,这和电网运行的稳定性、安全性具有直接关系,这对于水电厂的社会效益与经济效益具有决定作用。
在水轮机组的运行中,水力原因、机械原因与电气原因均会造成水轮发电机组振动情况,据统计,现阶段,水轮发电机组大约有80%事故与故障和振动有关。
水轮发电机振动会带来五点主要危害:(1)會让机组零部件出现疲劳损坏区,该区主要出现在金属和焊缝之间,长期运行会让损害程度加重,可能会有裂缝出现,导致机组报废;(2)发电机组部分紧固部件会出现松动甚至断裂情况,会让连接部件出现振动情况,减少其使用寿命;(3)水轮发电机振动会让机组旋转部分磨损程度加剧;(4)水轮机组共振会对厂房以及多种设备造成影响;(5)水轮机组振动会让尾水管中形成涡流脉动压力,此压力可能会让水管壁开裂,可能会对尾水设备正常使用造成影响。
二、水轮发电机组振动原因(一)水力原因在水力方面,水轮发电机组振动的主要原因是水轮机会受到动力水压的干扰,这种水力原因往往是具有较大随机性、很难进行控制的。
如果水轮机处于非设计环境工作,或是处于过度运行状态,那么由于不理想水流状况,机组部分组件会产生振动加速,出现断裂情况。
电机振动故障的原因及解决对策张凯锋摘要:电机振动故障的出现不但会对其自身的结构和构件造成损坏,同时还可能会引发严重的事故,因此对电机振动故障的原因进行研究非常重要。
基于此,本文对电机振动故障发生的原因进行了分析,然后提出了一些针对性的解决对策,仅供参考。
关键词:电机运行;振动故障;原因分析;解决对策电机实际运行过程中,由于振动故障而导致机器停止运转的状况时有发生,造成的经济损失也非常严重。
因此,对电机振动故障的原因进行分析是非常必要的。
1 电机振动故障的特点电机的振动故障是一种常见的故障,并且还具有特定的故障特征。
实际上,在发电机运行期间经常会发生不同程度的振动,对于很小的机械振动可以接受。
但是,如果振动幅度超过一定范围,则会发生振动故障的问题。
关于振动故障的问题,由于轴承的类型和额定转速不同,发电机各部分的振动水平也不同。
因此,分析其故障特性非常重要。
1.1 结构特殊发电机通常分为立式和卧式,大型发电机组和中型发电机组为立式,小型发电机组为卧式。
由于发电机本身的特殊结构,振动干扰相对复杂。
从结构的角度来看,机组的轴环和衬套之间有一定的间隙,该间隙是不固定的,从而导致机组的大轴磁贴之间存在运动,并且运动轨迹是可变的。
1.2 振动故障的逐渐变化由于发电机的转轮的旋转速度不如其它旋转机械高,因此振动故障的发生通常是渐进且不可逆的,突发事故通常很少发生,因此,设备的正常运行需要定期维护。
1.3 振动故障的多样性发电机组的振动不是由单一的原因引起的,而是由机械振动、电磁振动、液压振动等各种原因引起发电机组的振动。
因此,在测试和分析机组振动时需要考虑各种因素。
2 电机振动故障的原因由于发电机组的结构比较复杂,因此整个机组对运行环境有很高的要求。
发电机组只能在某些情况下正常运行,因此,发电机组发生故障的可能性增加。
另外,发电机组的振动超过标准,这会对发电机组和人员安全产生不利影响。
2.1 机械振动(1)机组转子振动。
汽轮发电机组振动原因分析及处理摘要:伴随着时代与社会经济的高速发展,我国各个领域得以不断进步,各项机械设备也得到广泛应用,对其运行效率也提出更加严格的标准。
正常运行中汽轮机机组允许存在一定参数范围内的振动现象,但如果振动超出允许范围将对整个机组的运行以及电厂的稳定发电工作产生不利影响。
对振动故障进行分类,总结、分析设备启动和运行过程中常见的振动问题,并介绍相关解决方案,为设备的安全可靠运行提供技术保障。
关键词:汽轮发电机;故障诊断;振动引言振动是衡量大型旋转设备运转状态的重要指标,需要对其进行快速、精准的采集、分析和故障诊断。
引起振动的原因极其复杂,不仅与设备前期的设计、制造、安装有关联,同时,与设备在运行中的工艺过程参数有着密不可分的连接。
1汽轮机简介目前,发电厂通过天然气、煤炭等不可再生资源来产生电能。
发电的具体过程是通过燃料的燃烧过程来产生较大的热量,而在水的加入后将会产生一定的热蒸汽,这些热蒸汽可以有效地将化学能转化成热能。
在高压热蒸汽的作用下,汽轮机将持续运转,这些热能也将转变为机械能,从而形成循环过程,达到更好的汽轮机运转效率。
汽轮机使用机械能来转化为电能,而这些电能将被传输到发电厂。
现阶段,我国的发电厂包括天然气发电厂、工业废料发电厂、余热发电厂、燃煤发电厂等,而汽轮机主要使用在火力发电厂的发电工作中。
汽轮机的基础结构包括低压缸、中压缸和高压缸三个部分。
现阶段也有一些汽轮机的设计是将中压缸和高压缸结合在一起。
汽轮机同样也包含一些辅助结构或者是系统,如润滑油、给水系统等,所以其结构十分复杂。
2汽轮机振动原因分析2.1油膜失稳汽轮机油膜失稳形式包含两种:油膜振荡与半速涡动。
其中,半速涡动多发生在转速低于第一临界速度期间,随着转速的不断提升,在某一低速阶段开始,该振动会不断升高,有时随着转子速度的增加,这一情况也会逐渐消失。
随着转子转速的不断变化,涡动频率也将不断变化,但转度半频关系一直不变,识别半速涡动法多使用级联图,级联图中,半频振锋频率点体现为斜率为2的直线。
机械化工 发电厂中机组常见的振动原因及分析王时威(内蒙古华能兴安热电有限责任公司,内蒙古 乌兰浩特 137400)摘要:机组运行中经常出现振动超标现象,可进行转速试验、负荷试验、真空试验、轴承油膜试验、外特性实验、励磁电流试验等找到好的解决办法。
关键词:汽轮机;振动;试验现在大功率汽轮机发电机组,是一种结构复杂的高速动力机械。
机组产生振动的情况是复杂的,引起的原因也是各种各样的,下面就电厂运行中机组经常出现振动现象的原因进行分析,并进行一些相关试验,找到好的解决办法。
1 转速试验(1)转速试验的目的:是判别振动是否由于转子偏心所引起,并且可以找出机组的共振转速和工作转速接近的程度,检查和轴承座相连的支撑系统(包括基础、管道)是否存在共振现象。
(2)转子上质量不平衡引起的振动频率和转速是一致的,波形是正弦波,相位单一而稳定,径向振幅较大,这是最常见的振动原因。
如果波形不是标准的正弦波,而是含有多种频率但主要波形频率和转速相符,振动原因往往还是质量不平衡。
有时平衡了主波表示的振动后,其他频率的谐波分量也相应减少。
(3)对于刚性转子,质量不平衡产生的离心力和转速平方成正比。
但是由于转轴在离心力作用下会变形,振动和转速的平方不完全符合正比关系,然而还是能够看出变化的趋势。
(4)转子中心不正是指二转子的靠背轮有开口差,然而只要靠背轮止口不是很松,拧紧靠背轮螺丝后转子将自然同心,如果止口很松或没有止口,接上以后两个转子是偏心的;另一种是靠背轮平面瓢偏,连接以后,转子另一端会发生摇头(晃度)。
这后两种情况都会产生振动,然而瓢偏的影响较大,检修时要尽量减少和避免。
(5)轴承中心标高不在同一高度,并不影响转轴中心线的同心度,只会影响轴承上负载分配,或使转轴的临界转速偏移。
对于小型机组,一般问题不大。
但大型机组轴瓦上的比压的变化有时会引起振动增大。
因此,大型机组常在冷态下将轴承中心高度预作调整,以保证热态下比压达到设计值。
电机振动的原因及处理方法电机振动是电机运行过程中常见的问题,其原因多种多样。
本文将探讨电机振动的原因,并提出相应的处理方法,以帮助工程师更好地解决这一问题。
一、电机振动的原因1.电磁方面:电机运行时,由于磁路不对称或磁路饱和等原因,会产生不平衡的磁拉力和磁压力,导致电机振动。
2.机械方面:电机转子、轴承、联轴器等部件的制造、安装和使用不当,都可能导致电机振动。
此外,电机的基础不平、地脚螺栓松动等也会引起电机振动。
3.机电混合方面:电机与负载连接不良、负载突然变化等因素,也会导致电机振动。
二、电机振动的十个原因1.转子、耦合器、联轴器、传动轮不平衡引起的。
2.铁心支架松动、斜键失效、销钉松动转子绑扎不紧都会造成转动部分不平衡。
3.联动部分轴系不对中,中心线不重合,定子内芯位置不正确。
这些故障产生的原因主要是安装过程中,对中不良、安装不当造成的。
4.联动部分中心线在冷态时是重合一致的,但运行时由于转子、基础等变形,轴线又被破坏,因而产生振动。
5.与电机相连的齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。
6.电机本身结构的缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够。
7.安装的问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。
而轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。
8.拖动的负载传导振动,例如汽轮发电机的汽轮机振动,电机拖动的风机、水泵振动,引起电机振动。
9.电气原因的检修:如三相电压不平衡、绕组断线、绕组短路击穿、缺相运行等。
10.机械原因的检修:检查气隙是否均匀,轴承是否合格,铁心变形和松动情况,转轴是否弯曲等。
三、处理电机振动的方法1.把电机和负载脱开,空载测试电机,检测振动值。
汽轮发电机振动分析及现场动平衡处理大多数的汽轮发电机振动故障可以用现场高速动平衡的方法进行处理。
本文介绍了柔性转子的振动特性,阐述了现场校正一、二、三阶转子不平衡所采用的方法。
通过实例证明对称加重法虽然可能使汽轮发电机存在的三阶不平衡得到一定的校正,但是灵敏度低,且可能破坏一阶平衡状态;而在转子外伸端的联轴器加重时一般会取得较好的效果。
所取得的振动治理经验对同型机组类似振动故障的诊断及现场处理有一定的借鉴意义。
关键词:汽轮发电机;柔性转子;振动;现场动平衡引言汽轮发电机是火力发电厂的核心设备,振动水平是衡量机组安全可靠性最重要的指标。
剧烈的振动容易导致设备部件的疲劳损坏,一些重大的毁机事故直接或间接地与振动有关。
在汽轮发电机的各种振动故障中,不平衡引起的振动占到70%以上,还有部分故障也可以通过平衡的手段使振动得到改善,因此现场动平衡是消除振动的主要手段[1]。
由于汽轮发电机组轴系是多转子系统,相互之间有一定影响;而且在现场受加重位置的限制,有时无法在计算好的位置加重;此外大型机组启动一次的费用高达十万元以上,启动次数和时间受到了限制,因此现场高速动平衡是振动处理中十分重要而又有一定难度的环节。
随着汽轮发电机容量的增大,转子轴向长度及其重量也不断增加,而转子径向尺寸因受到材料强度限制增长不大,这样就迫使采用工作转速大于第一临界转速和第二临界转速的柔性转子[2]。
汽轮发电机转子均属于柔性转子,一般200 MW及以下的发电机工作转速在一、二阶临界转速之间,大多数300MW及以上的发电机工作转速在二、三阶临界转速之间。
这两类转子的平衡方法存在较大的差异,因此在现场动平衡时应采取针对性的处理方案才能取得理想的效果。
1 柔性转子的振动特性在不平衡作用下柔性转子的振动可表示为:柔性转子平衡主要根据其振型正交原理进行。
所谓正交是指在平衡某一阶振型时,不影响其他振型的平衡状态。
现场动平衡时通常一阶不平衡采用对称加重的方法,它与二阶振型是正交的;二阶不平衡采用反对称加重的方法,它与一阶不平衡是正交的。
风力发电机的振动分析与控制在当今能源转型的大背景下,风力发电作为一种清洁、可再生的能源形式,得到了广泛的应用和快速的发展。
然而,风力发电机在运行过程中会不可避免地产生振动,这不仅会影响其运行效率和稳定性,还可能导致设备的损坏和故障,缩短其使用寿命。
因此,对风力发电机的振动进行深入分析,并采取有效的控制措施,具有重要的现实意义。
风力发电机的振动来源较为复杂。
首先,风的随机性和不确定性是导致振动的主要因素之一。
风的速度、方向和湍流强度的不断变化,会对叶片产生非定常的气动力载荷,从而引起叶片的振动。
其次,叶片在旋转过程中,由于自身的质量分布不均匀、制造误差以及安装偏差等原因,也会产生不平衡力,进而引发振动。
再者,传动系统中的齿轮、轴承等部件在运行时的摩擦、啮合以及疲劳损伤等,也会产生振动。
为了准确地分析风力发电机的振动,需要采用多种测量和分析方法。
加速度传感器是常用的测量工具之一,它可以安装在叶片、塔筒、机舱等关键部位,实时监测振动信号。
通过对这些信号进行时域分析,可以了解振动的幅值、周期等基本特征。
频域分析则能够揭示振动的频率成分,帮助找出振动的主要来源。
此外,还有模态分析,通过对风力发电机结构进行建模和计算,可以得到其固有频率和振型,从而判断是否存在共振的风险。
在对振动进行深入分析的基础上,可以采取一系列控制措施来减小振动。
从叶片设计的角度来看,可以通过优化叶片的形状、结构和材料,提高其气动性能和结构强度,降低风载荷引起的振动。
叶片的质量平衡调整也是一种有效的方法,通过在叶片上添加或去除一定的质量,使其在旋转时达到平衡状态,减少不平衡力产生的振动。
在传动系统方面,采用高精度的齿轮和轴承,并且定期进行维护和保养,可以有效降低由于部件磨损和故障引起的振动。
同时,安装减震装置,如减震器和阻尼器,可以吸收和耗散振动能量,减小振动的传递。
控制策略的优化也是风力发电机振动控制的重要手段。
例如,通过改进变桨控制算法,根据风速和风向的变化实时调整叶片的桨距角,使叶片受到的气动力更加平稳,从而减少振动。
水轮发电机组异常振动原因分析及处理摘要:轮发电机组运行中的各部位振动和摆度是机组运行健康状况的最直接反映,良好的振动和摆度对机组长期的安全稳定运行具有重要意义,将其幅值限制在规程规范要求的限值之内,是确保机组能长期安全、稳定运行的基本要求。
大修机组和新装机组在启动调试过程中,时常会遇到机组的振动和摆度超标异常情况,虽然水轮发电机组振动和摆度异常的原因主要归结有机械因素、电磁因素和水力因素三个方面,但这三个方面又都包含很多不同的具体原因,不同方面的具体原因的故障现象有些还是相似的,在实际中,往往还存在多个不同因素共同起作用。
关键词:水轮发电机组;异常震动;处理措施引言要找到机组振动和摆度异常的真实原因,往往需要对这些原因进行逐一仔细排查,往往需花费大量人力、物力和时间。
同时,由于现场试验手段及各种条件限制,逐一排查各种振动和摆度异常的原因并不现实,为此,如何尽快缩小排查范围、快速找到机组振动异常的原因就显得尤为重要。
1水轮发电机组异常振动原因(1)机械因素引起机械不平衡的常见原因主要有:转子质量不平衡、水轮机质量不平衡、轴承缺陷、机组轴线不正等。
机械不平衡一般表现为振动频率与转速一致,且和转速平方成正比。
根据表1数据,机组在空转状态下,机组各部位振动和摆度数据优良,各振动和摆度频率也以转速频率为主,其他频率成分很小,长时间空转运行机组各部位瓦温也正常。
因此,由于机械不平衡引起机组振动过大的可能性很小,可暂不考虑是由机械因素引起的机组振动过大。
(2)电磁因素引起电磁不平衡的常见原因主要有:转子绕组短路、空气间隙不均匀、定转子椭圆度超标等。
电磁不平衡一般表现为振动随励磁电流增大而明显增大。
机组投入励磁,发电机机端电压为25%Ue(Ue为机端额定电压)时,机组的各部振动和摆度都出现较明显的变化。
机组上导摆度呈下降趋势,摆度值由88μm降至54μm,下导摆度和上导摆度则有轻微波动,无规律可循。
从机组各部位振动和摆度频谱分析,上机架水平、上导摆度和定子水平振动仍然以转频为主。
发电机振动原因分析及处理过程
对运行中振动跟踪结果进行分析,得出以下结论
1)发电机内氢气温度对励磁机振动的影响特别敏感,振动大小随着氢气温度的变化而变化
2)机组无功负荷的变化,对励磁机振动的影响也较大。
2机组的无功负荷一般只保持在30Mvar 左右,无功负荷升高后励磁机的振动明显增大。
运行一段时间后,励磁机的外部振动再次达到0.11mm左右。
根据现场的实际情况,于2004年3月16日停机小修,再次对励磁机振动进行处理。
励磁机揭盖检查后在其端部增加平衡块75g,发电机7、8振动分别降至0.012mm至0.016mm,通过配重后调整氢气温度和无功负荷,运行不久以后励磁机部位的振动值又上升到了0.13mm,发电机组在振动超标的情况下维持运行。
32机组B级检修中对励磁机振动的分析及处理
3.1振动影响着整个汽轮发电机的安全可靠运行,而且超过允许值的振动将带来许多危害,大致可以分析为以下几个方面:
1)引起动、静部分磨擦,并且加速这些部件的磨损,产生偏磨。
2)使某些部件产生过大的动应力、导致疲劳损坏,其中以轴瓦钨金碎裂及烧损轴瓦居多。
3)使汽封、油封间隙加大而降低机组热效率。
4)引起某些坚固件的断裂和松脱,如轴承座
地脚螺栓断裂、松动。
5)使定子铁芯叠片或定子绕组绝缘损坏引起短路
根据水电部对3000r/min的汽轮发电机的轴承振动幅值的规定如表4:按这一标准规定判断,2励磁机的振动处在不合格的范围内,这将对发电机组的运行造成极其严重的危害,所以,必须停机进行振动处理。
表4汽轮发电机的轴承振动标准
3-2前次大修中发电机存在并处理的异常情况
1)发电机7瓦轴颈处有3道划痕,其中最严重的一处宽4mm,深2.5mm,对该划痕进行了微弧焊处理,并更换7瓦。
2)汽轮机的高、中压缸前后轴封及隔板汽封有磨损,对磨损严重的汽封进行更换,整个通流部分间隙调整在标准范围内。
3)低、发中心高低偏差0.75mm,对发电机两侧基础进行的调整,使中心高、低差达到标准要求
0.04mm,左右0.00
4)励磁机电枢与发电机转子连接的剪切销钉中有一个犯卡,通过检修现场的手段未能拔出,原位进行了回装。
5)经试验检测出有3个旋转二极管反向耐压超标,用天平称重后保证质量不变的情况下进行更换,避免由于质量不平衡造成振动。
根据上次大修中发电机存在以及处理的问题,分析了造成机组振动的原因,决定利用2机组B级
检修的机会对发电机进行解体检修,对机组的振动问题做一次彻底处理。
3-3B级检修中对发电机振动的处理经过
发电机长期在振动超标的情况下运行,造成的危害是显而易见的,这样下去对机组安全稳定造成极大的危害。
北方联合电力会同北京汽轮电机有限的相关专业人员,组织召开了2机组处理振动的专题会议,决定进行发电机解体检查,并且对转子返厂做动平衡试验。
3.3.1停机前做发电机空载无励磁状态下的振动测试,结果如表5:
表52005年大修前空载测试振动
3.3.2转子匝间短路故障录波未发现异常
3.3.3发电机解体后检查处理的项目及内容
1)发电机转子返厂,进行了转子单独以及转子与电枢一体的动平衡测试,动平试验完全合格。
2)转子回装前的绝缘电阻,直流电阻及交流
阻抗测试合格。
3)对7瓦轴颈处微弧焊处理的划痕进行检测,发现其中一处高出0.14mm,经过研磨后使轴颈光滑并达到一致
4)7轴承下瓦钨金局部受损,将7轴承更换为原始安装时所用的轴承,并对轴承球面进行刮研,使得接触合格。
5)励磁机电枢与转子连接的剪切销钉间隙稍大,所有销钉重新制作并更换。
6)发电机定子绕组端部振型模态试验及引出线的固有频率测试均合格
7)冷却器内部固定螺栓检查,紧固状态良好
8)发电机定子调整垫片原为多个铁皮垫叠加,本次检修全部更换为不锈钢垫片,而且每处不超出三片,沿发电机纵向呈阶梯状布置,左右厚度完全相同。
9)发电机与低压转子重新调中心,二者圆周差<0.005mm,端面差<0.005mm,对轮连接后
调整其同心度<0.03mm
3.3.4运行中转子匝间短路故障录波未发现异常
3.3.5励磁机安装的关键点
2发电机组的励磁机是旋转无刷励磁系统,励磁机悬挂在发电机的转子端部,励磁机电枢对发电机的振动影响特别大,所以励磁机安装过程中有以下一些工序应严格要求;
1)电枢安装1所示,d和d1直径尺寸差值(即
间隙)应≥0.6mm,若<0.6mm,应修整导杆绝缘层
外圆(d)
2)电枢安装后慢转动转子,用百分表检查图2中A、B、C、C、D、E、F各部位的外圆跳动偏差,C点部位外圆跳动两对标称点的代数差应≤0.20mm,间隙K≤H1-H。
将各组数据调整在合格范围.。
3)励磁机电枢的安装。
检查电枢所带的平衡
块一定要紧固,轴销与销孔只有0.01mm的间隙,否则会造成安装困难或晃度过大。
4)转子接地检测装置回装时,要将发射器底座边缘与止口配合好,避免发射器装偏,引发励磁机的摆动。
4、结论
引起汽轮发电机组振动的原因有很多,主要有电磁和机械方面。
发现振动超标后一定要仔细判别振动原因。
4.1为了确定是否属于电磁方面的原因,首先应观察三相电流是否平衡,如不平衡则产生100HZ 的振动;其次,再保持负荷值一定,在较大范围改变励磁电流,观察励磁电流对振动的影响,如果随其变化,振动也急剧变化,就表明振动原因是转子绕组存在匝间短路。
4.2为了确定是否属于机械方面的原因,可保持励磁电流一定,若振动随着有功负荷变化,则表明振动是由于机械原因引起的,通常应在汽轮机上或在汽轮机与发电机联轴部位上寻找原因,如果振
动值较大,而且不随励磁电流或负荷的变化而变,这种现象也属于机械原因引起。
转子旋转产生的机械振动。
主要表现为50HZ和100HZ两个频率;50HZ 的振动主要由转子不平衡引起,并通过轴承、端盖伟给机座,减小的办法就是提高转子大齿和小齿两个方向的刚度不同引起的
4.3机组检修后的安装,一定要严格按照质量标准和工艺要求进行,技术数据调整在合格的范围内,尽量避免由于安装、调试的质量原因而造成振动,使发电机组在优良振动的条件下稳定运行。