基于熵权的多层模糊综合评判法在医院医疗质量评价中的应用
- 格式:pdf
- 大小:194.86 KB
- 文档页数:3
基于熵权-TOPSIS法模型的医院工程项目管理风险评价李思童;张鑫缘
【期刊名称】《医院管理论坛》
【年(卷),期】2024(41)1
【摘要】目的医院作为提供医疗服务的重要机构,工程项目的管理水平直接影响着医院的运行效率和安全。
在考虑医院工程项目特殊性质的前提下,分析评价医院工程项目的风险管理问题,制定有针对性的解决措施。
方法基于三重底线的概念,选取某公立医院2022年度21项30万元以上工程项目中的决策风险、设计风险、采购风险、施工风险、运维风险5个维度32个风险指标作为研究对象,采用熵权-TOPSIS法模型进行风险排名评价。
结果 32个指标中大部分风险等级位于中等及以下。
其中6个指标风险较高。
结论基于熵权-TOPSIS法模型能够针对医院工程项目管理确定并评价存在的主要风险管理问题,分析并提出有效的管理和改进措施,丰富了医院工程项目管理理论水平。
【总页数】7页(P81-86)
【作者】李思童;张鑫缘
【作者单位】北京大学第一医院
【正文语种】中文
【中图分类】R197.3
【相关文献】
1.基于熵权TOPSIS法的水保项目管理评价
2.基于熵权的 TOPSIS 评价法构建煤炭企业战略风险评价新模型及应用
3.基于熵权TOPSIS法和灰色关联度的航天型号项目管理成熟度评价
4.基于熵权TOPSIS法与RSR法的广西中医类医院服务能力综合评价
5.基于熵权TOPSIS法与RSR法的某三级医院医疗质量评价
因版权原因,仅展示原文概要,查看原文内容请购买。
熵权法的值-概述说明以及解释1.引言1.1 概述熵权法是一种多属性决策分析方法,它将熵的概念引入到权重计算中,用以解决多属性决策问题。
熵是信息论中的概念,衡量了信息的不确定性或混乱程度。
在熵权法中,熵被用来度量属性的不确定性,通过计算属性的熵值,进而确定属性的权重。
熵权法具有较强的普适性和灵活性,不依赖于具体问题的背景和特点,适用于各种类型的决策问题,包括社会经济、环境资源、工程管理等各个领域。
同时,熵权法可以有效地处理属性之间的相互影响,充分考虑属性之间的关联性,提高决策的准确性和可靠性。
该方法的原理相对简单直观,通过引入熵的概念,将属性的信息熵转化为权重,从而实现了对属性的排序和评价。
相比于传统的权重计算方法,熵权法能够避免主观因素的干扰,更加客观地评估属性的重要性,提高了决策结果的客观性和可靠性。
熵权法的应用领域广泛,可以在人才招聘、投资决策、项目评估等多个方面发挥作用。
通过对属性的熵值计算,可以确定各个属性对决策结果的影响程度,进而进行合理的决策、资源分配和风险评估。
然而,熵权法在实际应用中也存在一些局限性。
首先,该方法对原始数据要求较高,需要准确、全面的数据信息才能计算出准确的熵值。
其次,当属性之间存在非线性关系时,熵权法的效果可能受到一定的影响,需要结合其他方法进行综合分析。
尽管存在一些局限性,但熵权法作为一种简便、直观、有效的决策评价工具,具有较大的发展潜力。
未来,可以通过改进算法、完善理论框架,进一步拓展熵权法在多属性决策问题中的应用范围,提高决策过程的效率和准确性。
1.2 文章结构文章结构部分的内容可以包括以下内容:在本篇文章中,主要介绍了熵权法(Entropy Weight method)的值。
本文将按照以下结构展开讨论:首先,引言部分将从概述、文章结构、目的和总结四个方面入手。
在概述部分,我们将简要介绍熵权法的概念和应用背景。
接着,文章结构部分将对整篇文章的结构进行详细介绍,包括各个章节的内容和布局。
熵权法和模糊综合评价法熵权法和模糊综合评价法是两种常用的多标准决策方法,用于解决复杂的决策问题。
本文将介绍这两种方法的基本原理和应用领域,并对它们的优缺点进行比较。
一、熵权法熵权法是一种基于信息熵理论的权重确定方法。
信息熵是信息论中用来衡量信息量的指标,熵越大表示信息量越大,反之越小表示信息量越小。
在熵权法中,先计算出各个指标的熵值,然后根据熵值的大小确定各个指标的权重,进而进行综合评价。
具体步骤如下:1. 收集决策指标:首先确定与决策问题相关的指标,这些指标应能够客观反映问题的各个方面。
2. 数据标准化:将指标的原始数据进行标准化处理,使其具有可比性。
3. 计算信息熵:根据标准化后的数据,计算每个指标的熵值,熵的计算公式是通过对每个指标的各个取值进行概率计算得到的。
4. 确定权重:根据各个指标的熵值,计算出每个指标的权重,权重的计算公式是通过每个指标的熵值与所有指标熵值之和的比值得到的。
5. 综合评价:根据指标的权重,对各个方案进行综合评价,选择权重最大的方案作为最佳决策。
熵权法的优点是简单易行,不需要事先确定权重的取值范围,能够充分考虑各个指标之间的相互影响。
然而,熵权法在处理存在主观因素的问题时,可能存在权重过于集中或者过于分散的问题。
二、模糊综合评价法模糊综合评价法是一种基于模糊数学的决策方法,适用于处理评价指标具有模糊性的问题。
模糊数学是一种用来处理模糊信息的数学理论,它允许对象的属性具有模糊的边界,能够更好地反映人类的认知和判断过程。
具体步骤如下:1. 收集决策指标:确定与决策问题相关的指标,并将其划分为不同的模糊集合。
2. 确定隶属度函数:为每个模糊集合确定隶属度函数,隶属度函数描述了指标在不同取值下的隶属程度。
3. 进行模糊综合评价:根据指标的隶属度函数,对各个方案进行模糊综合评价,得到各个方案的模糊评价值。
4. 确定最佳决策:根据模糊评价值,确定最佳决策。
模糊综合评价法的优点是能够较好地处理模糊性问题,考虑到了各个指标的不确定性。
熵值法和模糊综合评价法熵值法和模糊综合评价法是两种常见的多指标决策方法。
这两种方法都能够在决策中处理多个指标的复杂关系,提升决策的准确性和可信度。
对于不同的决策问题,选择适合的方法可以提升决策的效果,降低决策的风险。
下面具体介绍熵值法和模糊综合评价法的基本原理和应用。
1.熵值法熵值法是一种基于信息熵的多指标决策方法。
在熵值法中,对于每个指标,计算其相对熵值和权重。
相对熵值反映了不确定性和信息量的大小,权重则决定了不同指标对于决策结果的重要性。
具体的步骤如下:(1)计算指标的归一化值将每个指标的取值范围映射到0到1的区间,得到指标的归一化值。
(2)计算信息熵根据每个指标的归一化值,计算信息熵。
信息熵越小表示指标的价值越大,即越符合决策目标。
(3)计算相对熵值相对熵值是指标的信息熵除以参考熵值。
参考熵值可以是所有指标的信息熵之和,也可以是已知最优值对应的信息熵。
(4)计算权重根据相对熵值,计算每个指标的权重。
权重越大表示指标对于决策结果的影响越大。
熵值法的优势在于能够处理多个指标之间的复杂关系,充分利用了每个指标的信息量。
但是熵值法有些局限性,比如需要设定参考值或最优值,且对于不同的问题可能需要不同的参考值或最优值。
同时,熵值法只考虑了指标之间的线性关系,并不能完全反映指标之间的非线性关系。
2.模糊综合评价法模糊综合评价法是一种基于模糊数学的多指标决策方法。
在模糊综合评价法中,对于每个指标,定义其模糊隶属函数和权重系数。
模糊隶属函数可以反映指标之间的非线性关系,权重系数则体现了不同指标的重要性。
具体的步骤如下:(1)确定决策问题和指标确定决策问题和需要考虑的指标。
对于每个指标,设定指标的隶属函数和权重系数。
(2)模糊化将每个指标的取值映射到[0,1]的模糊集上,得到模糊化后的指标。
(3)解模糊对于每个指标,应用模糊化的结果,得到其对应的隶属程度值。
(4)计算综合评价值综合评价值是每个指标的隶属度加权求和,反映了决策对于各个指标的整体考虑。
基于熵权法的模糊综合评价在风险评价的应用模糊综合评价法在指标评价的应用非常广泛,但是其权重确定具有一定主观随意性。
本文通过建立风险评价体系,并用熵权法计算各评价指标的客观权重,一定程度上克服了凭经验确定指标权重的主观性的缺点。
最后根据模糊综合评价法得到评价结果,使得方案评价更为客观、合理,为决策者提供更科学的指导。
关键字:权重熵权法模糊综合评价Fuzzy Comprehensive Evaluation method is extensively used in index evaluation,but the weight is identified with a certain subjective and optionally .Here we get the objective weight of index ,through the use of entropy method,overcome the shortcoming of fuzzy comprehensive evaluation .Finally get the evaluation results based on the fuzzy comprehensive evaluation moethd ,it makes the scheme evaluation even more objective and reasonal,so that can get even scitific guidence for the managers.Keywords: weightEntropy weight methodfuzzy comprehensive evaluation1 研究背景在风险评价过程中,各因素权重是至关重要的,它反映了各个因素在决策过程中所占有的地位或所起的作用,直接影响到工程风险评价的结果。
风险评价存在一个不合理之处,就是权重设置不合理,无法真实、客观的反应指标的重要程度。
基于熵权法的综合评价模型基于熵权法的综合评价模型是一种以熵值的大小为评价标准,用于综合分析、对比评价多个指标之间相关性及其影响力差异的评价方法。
它将不确定性的理论结合到综合评价中,从而使综合评价结果更加准确可靠。
熵权法的综合评价模型有三个步骤:①构建评价指标体系。
在基于熵权法的综合评价模型中,首先要建立一个评价指标体系,即确定评价对象,然后根据实际情况选择合适的指标,并形成一套评估指标。
②评价指标的权重确定。
根据构建的评价指标体系,计算每个指标的熵值,并根据熵值的大小,结合实际情况,确定每个指标的权重。
③综合评价计算。
根据评价指标的权重,计算出各指标的熵值,再求出各指标的熵值的总和,从而得出最终的综合评价结果。
熵权法的综合评价模型不仅能够快速,准确地评估多个指标间的相互关系,而且具有良好的可靠性和可操作性,能够真正反映系统的实际情况,从而使综合评价结果更加准确可靠。
基于熵权法的综合评价模型主要应用于企业的经营效率的评价、经济效益的评价、产品质量的评价、人才招聘评价、投资评估、城市建设评价等多个领域,可以实现快速准确地评估结果,可以有效提高企业的经营效率,并且可以更好地改善人们的生活。
基于熵权法的综合评价模型也存在一些不足,如评价指标过多时,熵值计算量太大,使得评价模型变得复杂,结果准确度降低;另外,熵值的大小受评价指标的数量及指标间的相关性的影响,而这些影响因素受多种因素的影响,因此熵权法的综合评价模型也会遇到一些困难。
总之,基于熵权法的综合评价模型是一种具有较高的准确性和可靠性的综合评价方法,可以快速准确地评估多个指标间的相互关系,并可以用于企业经营效率、经济效益、产品质量、人才招聘、投资评估、城市建设等多个领域,可以有效提高企业的经营效率,改善人们的生活。
主题:熵值法在医疗服务综合评价中的应用随着医疗服务行业的不断发展,人们对医疗服务质量的要求也越来越高。
在这种背景下,如何科学、全面地评价医疗服务质量成为了一个重要的课题。
熵值法作为一种较为先进的评价方法,已经在多个领域得到了广泛应用。
本文将探讨熵值法在医疗服务综合评价中的应用,旨在为提高医疗服务质量提供参考。
一、熵值法概述熵值法是信息论中的一种评价方法,它是以信息熵的概念为基础,用来描述系统的混乱程度和无序程度。
在实际应用中,熵值法可以用来评价各种事物的优劣程度,包括医疗服务的质量。
二、医疗服务综合评价的难点医疗服务质量的评价涉及到多个方面,如医疗水平、医院设施、医护人员素质等。
如何科学地将这些方面进行综合评价是一个难点,传统的评价方法往往无法全面、客观地评价医疗服务的质量。
三、熵值法在医疗服务综合评价中的优势熵值法作为一种多指标综合评价方法,能够充分考虑各个指标之间的相互关系,可以更全面地评价医疗服务的质量。
熵值法能够将定性指标和定量指标进行统一评价,能够较好地解决医疗服务质量评价中的主观性和客观性问题。
四、熵值法在医疗服务综合评价中的应用通过建立医疗服务质量评价指标体系,将各个指标进行量化处理,并进行熵值计算,可以得出医疗服务质量的综合评价结果。
这样的评价方法可以更客观地反映医疗服务的质量,为医院管理和政府监管提供科学依据。
五、熵值法在医疗服务领域的现状与发展目前,熵值法在医疗服务领域的应用还比较有限,但随着医疗服务行业的发展,熵值法必将得到更广泛的应用。
还需要进一步完善熵值法在医疗服务质量评价中的具体方法和应用细则,以更好地为医疗服务的质量提升提供支持。
六、总结熵值法作为一种先进的多指标综合评价方法,在医疗服务质量评价中具有重要的应用前景。
通过科学合理地运用熵值法,可以更客观、全面地评价医疗服务的质量,为医院管理和政府监管提供更科学、更有效的依据。
希望未来能够进一步发扬熵值法在医疗服务领域的优势,为医疗服务质量的提升做出更大的贡献。
熵权TOPSIS法结合RSR法在中医药卫生资源配置综合评价中的应用【摘要】本文探讨了熵权TOPSIS法和RSR法在中医药卫生资源配置中的应用。
首先介绍了熵权TOPSIS法和RSR法的基本原理,然后结合两者,提出了在中医药卫生资源配置综合评价中的具体步骤。
通过案例分析,验证了这种方法的有效性,并总结了其在中医药卫生资源配置中的优势。
展望了未来研究方向,为进一步完善中医药卫生资源配置提供了参考。
这项研究具有重要的现实意义,有助于提高中医药卫生资源的配置效率和质量,促进中医药事业的发展。
【关键词】中医药卫生资源配置, 熵权TOPSIS法, RSR法, 结合应用, 综合评价, 案例分析, 优势分析, 展望未来1. 引言1.1 研究背景中医药卫生资源配置是指有效地利用中医药资源和卫生资源,调配合理,以满足人们对中医药卫生服务需求的过程。
随着中医药的发展和全民健康意识的提升,中医药卫生资源的合理配置成为了当前研究的焦点之一。
在传统的资源配置评价方法中,常常存在主观性强、权重确定困难、结果不够客观等问题。
引入量化评价方法对中医药卫生资源配置进行评价具有重要意义。
熵权TOPSIS法和RSR法是两种常用的评价方法,它们在不同领域已经取得了许多成功的应用。
本研究旨在将熵权TOPSIS法和RSR法相结合,应用于中医药卫生资源配置的综合评价中,以期能够提高评价结果的准确性和可靠性。
通过该研究,可以更好地指导中医药卫生资源的配置和利用,为中医药事业的发展提供科学依据。
1.2 研究意义中医药卫生资源配置是保障人民健康的重要组成部分,其合理性直接关系到民众医疗服务的质量和效率。
由于中医药卫生资源分布不均、利用效率差异等原因,导致资源配置存在不合理和浪费的现象。
对中医药卫生资源进行科学评价和合理配置是当前亟待解决的问题。
熵权TOPSIS法和RSR法作为两种常用的资源评价方法,各具优势,但其单独应用在中医药卫生资源评价中存在一定局限性。
熵指数在icu的应用全文共四篇示例,供读者参考第一篇示例:熵是一种用来描述系统无序程度的物理量,而在医学领域中,熵指数是一种可以用来评估患者病情严重程度的指标。
在重症监护室(ICU)中,熵指数的应用能够帮助医护人员更好地了解患者的生理状态,提高监护质量,及时干预,减少并发症发生率。
ICU是一种医疗部门,致力于监护和治疗病情危急的患者。
患者在ICU中经常需要接受各种监测和治疗,而医护人员需要通过患者生理数据来判断患者病情的严重程度,及时进行干预。
熵指数是指在一定温度下,系统内部微观状态变化所造成的不确定性的度量,它可以反映出系统的无序状态和混乱程度。
在ICU中,熵指数可以通过患者的生理数据计算得出,比如血压、心率、呼吸频率等指标。
熵指数在ICU中的应用主要体现在以下几个方面:1. 判断病情严重程度通过监测患者的熵指数,医护人员可以更准确地了解患者的生理状态。
熵指数越高,说明系统内部的混乱程度越高,代表患者病情越严重。
医护人员可以根据熵指数的大小来判断患者的病情严重程度,及时调整治疗方案,确保患者能够得到有效的救治。
2. 指导治疗决策在ICU中,患者的病情往往非常复杂多变,需要医护人员在短时间内做出正确的治疗决策。
熵指数可以为医护人员提供一个客观的评估指标,帮助他们更好地了解患者的生理状态,指导治疗决策。
比如当熵指数较高时,可能需要及时加强对患者的监护和治疗,以防病情恶化。
3. 预测并发症发生率熵指数可以帮助医护人员预测患者可能会出现的并发症,提前采取相应的措施进行干预。
比如熵指数较高的患者可能更容易出现感染等并发症,医护人员可以通过监测熵指数的变化来提前预警,并及时进行预防性治疗,降低并发症的发生率,提高患者救治成功率。
第二篇示例:熵指数是一种用来衡量系统无序程度的物理量,广泛应用于物理、化学、生物、经济等领域。
近年来,熵指数在医学领域的应用也越来越受到重视,特别是在重症监护室(ICU)的应用方面。
熵权法和模糊综合评价法
熵权法和模糊综合评价法是两种常用的多指标决策方法,它们在不同领域中都有广泛的应用。
熵权法是一种基于信息熵理论的权重分配方法,它通过计算指标之间的信息熵来确定各指标的权重。
具体来说,对于一个包含n个指标的决策问题,假设第i个指标的信息熵为Hi,则该指标的权重为Wi=1-Hi/ln(n)。
这种方法的优点在于能够考虑指标之间的相关性,避免了传统的主观赋权方法的缺陷。
模糊综合评价法则是一种基于模糊数学理论的多指标决策方法,它将各指标的评价结果转化为模糊数,然后通过模糊综合运算得到最终的评价结果。
具体来说,对于一个包含n个指标的决策问题,假设第i个指标的评价结果为Ai,则该指标的模糊数为μi(x),其中x 表示评价结果的取值范围。
然后,通过模糊综合运算得到最终的评价结果μ(x),并将其转化为确定性的评价结果。
这两种方法各有优缺点,应根据具体情况选择。
熵权法适用于指标之间相关性较强的情况,能够较为准确地反映各指标的重要性;而模糊综合评价法则适用于指标之间相关性较弱的情况,能够较好地处理不确定性和模糊性。
熵权法和模糊综合评价法是两种常用的多指标决策方法,它们在不同领域中都有广泛的应用。
在实际应用中,应根据具体情况选择合
适的方法,并结合专业知识和经验进行综合评价。
基于熵权TOPSIS-RSR法的江苏省公立三级甲等中医院医疗服务评价研究阮智慧;时孝春;钱爱兵【期刊名称】《中国医疗管理科学》【年(卷),期】2022(12)2【摘要】目的评价江苏省公立三级甲等中医院医疗服务情况,为“十四五”公立中医院医疗服务提质增效提供参考。
方法基于熵权TOPSIS结合秩和比法对2018年—2020年江苏省15家公立三级甲等中医院进行评价。
结果2020年开展手术例数的熵权最大,为0.193;2019年和2018年中医医疗服务项目收入的熵权最大,分别为0.353和0.273。
按相对接近度C_(i)和概率单位Probit将江苏省15家公立三级甲等中医院医疗服务情况划分为好(Probit≥6.4)、中(4.8≤Probit<6.4)、差(Probit<4.8)3类,2018年、2019年、2020年各类中医院的数量依次为:1、8、6家,1、8、6家,1、7、7家。
Kruskal-Wallis检验结果表明,2018年—2020年各类医院间的差异均具有统计学意义。
结论各项评价指标中开展手术例数和中医医疗服务项目收入差异最大,江苏省公立三级甲等中医院医疗服务存在区域差异,同时苏南地区中医院医疗服务的吸引力形成扩大效应,建议优化完善政策保障机制,健全完善医疗服务体系,丰富创新医疗服务模式,以不断提升江苏省公立三级甲等中医院医疗服务能力和水平。
【总页数】7页(P17-23)【作者】阮智慧;时孝春;钱爱兵【作者单位】南京中医药大学卫生经济管理学院;江苏省中医院【正文语种】中文【中图分类】R197【相关文献】1.基于熵权TOPSIS法的三级医院医疗质量综合评价2.基于诊断相关组和模糊物元法对某三级甲等医院骨科系统住院医疗服务绩效的评价3.基于诊断相关组和模糊物元法对某三级甲等医院骨科系统住院医疗服务绩效的评价4.基于DEA-Malmquist指数法对某三级甲等综合性公立医院临床科室运行效率的评价研究5.基于熵权-TOPSIS法的长三角地区中医医院医疗卫生服务能力评价研究因版权原因,仅展示原文概要,查看原文内容请购买。
基于熵权法和模糊综合评价的质量综合评价研究随着全球化的发展和市场竞争的日益激烈,产品质量、企业服务质量和管理质量已成为企业竞争力的关键。
因此,质量评价成为企业必要的管理活动,并成为企业决策的重要指标。
在质量评价中,综合评价技术是一种常用的方法。
其中,熵权法和模糊综合评价是常用的综合评价方法,它们具有很好的可操作性和适用性。
熵权法是一种权重分配方法,它通过数据的熵值和各指标的信息量来确定各指标的权重,从而实现指标优先级排序。
在这个方法中,熵值越小,说明指标的信息量越大,反之亦然。
因此,指标的权重与其熵值成反比例关系。
这种方法可以排除主观性,使得权重分配更为科学客观。
在质量评价中,熵权法可以解决指标间的冲突和权重分配问题,提高评价的准确性和可靠性。
模糊综合评价是一种灰色系统理论的应用。
该方法将各指标评价值通过模糊数学处理,得出综合评价的模糊值,然后再通过模糊数学的运算,将模糊值转化为确定的评价结果。
在这个方法中,模糊数学运算可以体现不同指标在综合评价中的重要性和影响,同时还可以考虑评价值的不确定性。
模糊综合评价方法不仅具备普通综合评价方法的优点,而且克服了其缺点,具有更为灵活、全面和准确的综合评价能力。
在质量综合评价中,熵权法和模糊综合评价可以相互配合。
首先,利用熵权法确定各指标的权重,然后通过模糊综合评价将权重与指标评价值结合,得到综合评价结果,从而对各项质量进行科学、系统、全面的评价。
该方法不仅提高了质量评价的准确性和可靠性,还增强了质量管理决策的科学性和效果。
综上所述,基于熵权法和模糊综合评价的质量综合评价方法,在质量管理中具有广泛的应用前景。
它不仅可以应用于产品质量评价、服务质量评价和企业管理绩效评价等领域,还可以为企业的决策提供有力的参考依据。
当然,这个方法也存在一些不足之处,例如权重的确定和评价值的模糊性等问题,这需要在实际应用中加以改进和完善。
基于熵权法和模糊层次分析法的风险评估方法研究风险评估在现代社会中越来越得到重视,特别是在企业管理和公共政策制定领域中。
随着复杂性和不确定性的增加,传统的风险评估方法已经受到挑战,人们需要更加精确和科学的方法来评估各种风险。
本文将介绍基于熵权法和模糊层次分析法的风险评估方法,并探讨其在实际应用中的优缺点和适用场景。
一、传统风险评估方法的不足传统的风险评估方法主要包括统计分析法、概率分析法和专家评估法等。
但是,这些方法在实际应用中存在一些缺陷,例如:1. 缺乏针对性:传统方法往往只考虑具体的指标和变量,忽略了各种因素之间的关系和影响,导致评估结果不够精准和可靠;2. 资料不足难以计算:有些风险因素难以量化,导致数据不够准确和完整,评估结果受到限制;3. 计算复杂:在众多指标和变量中选择和计算权重也是一项复杂的任务,需要专业知识和大量时间;4. 计算结果误差较大:在进行综合评估时,往往采用简单的加权平均方法,结果受到误差和不确定性的影响。
二、熵权法和模糊层次分析法的基本原理为了解决传统方法存在的不足,熵权法和模糊层次分析法应运而生。
熵权法主要是通过熵值来确定各指标的权重,从而达到评估结果更精确和可靠的目的。
模糊层次分析法则通过层次划分、模糊推理和矩阵运算等过程,确定各指标之间的权重和重要性,从而达到全面、系统的评估局面。
下面详细介绍这两种方法的基本原理。
(一)熵权法熵权法主要是基于信息熵概念,通过测量各变量之间的不确定性来确定其权重,反映变量的重要程度和贡献度。
其计算公式如下:$$w_i = \frac{1 - H(X_i)}{\sum_{j=1}^n(1 - H(X_j))}$$其中,$w_i$表示第$i$个变量的权重,$H(X_i)$是变量的信息熵,$n$是变量的个数。
信息熵的计算公式为:$$H(X_i) = -\sum_{j=1}^mp_j\log_2 p_j$$其中,$p_j$表示变量$X_i$取值为$j$的概率,$m$是变量$X_i$取值的总数。
熵权-TOPSIS模型在医药企业市场法估值中的应用——以昆
药集团为例
胡晓明;梁馨倪;罗心怡;陈默
【期刊名称】《广西财经学院学报》
【年(卷),期】2024(37)2
【摘要】如何在医药行业中运用市场法估值模型,以客观、科学的方法评估公司价值是一项重大理论与实践课题。
研究以昆药集团为例,对传统市场法的不足进行了改进,引入熵权-TOPSIS模型选择可比公司来降低选择过程中的主观性问题;通过变异系数法计算案例和可比公司不同价值乘数的离散程度,将离散程度最小的几个价值乘数作为估值依据;运用综合评价法对价值乘数进行修正,利用熵权-TOPSIS模型中构建的评价体系计算各可比公司与最优解的相对贴近度,以此作为可比公司的综合得分。
最后将案例评估价值与企业市值以及收购价值进行对比,得出结论:基于熵权-TOPSIS模型改进后的医药行业市场法估值在市场预期、投资者认可度方面与实际情况基本一致。
【总页数】14页(P51-64)
【作者】胡晓明;梁馨倪;罗心怡;陈默
【作者单位】南京财经大学会计学院
【正文语种】中文
【中图分类】F275
【相关文献】
1.熵权—TOPSIS模型在个人信用风险评估中的应用
2.基于熵权-GRA-TOPSIS的组合评价模型在黑龙江省城市经济发展综合评价中的应用研究
3.基于熵权TOPSIS 模型在入河排水口水质综合评价中的应用
4.基于熵权的TOPSIS模型在黄瓜适宜抗蒸腾产品评价中的应用
5.熵权TOPSIS模型在竹叶花椒药材质量综合评价中的应用
因版权原因,仅展示原文概要,查看原文内容请购买。