§4.5 力学量测量结果的几率 平均值
- 格式:doc
- 大小:87.50 KB
- 文档页数:4
)(Et r p i p Ae-⋅=ρϖηϖψ《量子力学》复习 提纲一、基本假设 1、(1)微观粒子状态的描述 (2)波函数具有什么样的特性 (3)波函数的统计解释2、态叠加原理(说明了经典和量子的区别)3、波函数随时间变化所满足的方程 薛定谔方程4、量子力学中力学量与算符之间的关系5、自旋的基本假设 二、三个实验1、康普顿散射(证明了光子具有粒子性) 第一章2、戴维逊-革末实验(证明了电子具有波动性) 第三章3、史特恩-盖拉赫实验(证明了电子自旋) 第七章 三、证明1、粒子处于定态时几率、几率流密度为什么不随时间变化;2、厄密算符的本征值为实数;3、力学量算符的本征函数在非简并情况下正交;4、力学量算符的本征函数组成完全系;5、量子力学测不准关系的证明;6、常见力学量算符之间对易的证明;7、泡利算符的形成。
四、表象算符在其自身的表象中的矩阵是对角矩阵。
五、计算1、力学量、平均值、几率;2、会解简单的薛定谔方程。
第一章 绪论1、德布洛意假设: 德布洛意关系:戴维孙-革末电子衍射实验的结果: 2、德布洛意平面波:3、光的波动性和粒子性的实验证据:4、光电效应:5、康普顿散射: 附:(1)康普顿散射证明了光具有粒子性(2)戴维逊-革末实验证明了电子具有波动性∑=nnn c ψψ1d 2=⎰τψ(全)()ψψψψμ∇-∇2=**ηϖi j ⎩⎨⎧≥≤∞<<=ax x a x x V 或0,0,0)(0=⋅∇+∂∂j tϖρ⎥⎦⎤⎢⎣⎡+∇-=),(222t r V H ϖημ)(,)(),(r er t r n tE i n n n ϖϖϖηψψψ-=n n n E H ψψ=(3)史特恩-盖拉赫实验证明了电子自旋第二章 波函数和薛定谔方程1.量子力学中用波函数描写微观体系的状态。
2.波函数统计解释:若粒子的状态用()t r ,ρψ描写,τψτψψd d 2*=表示在t 时刻,空间r ρ处体积元τd 内找到粒子的几率(设ψ是归一化的)。
《量子力学》课程教学大纲课程编号: 11122616课程名称:量子力学英文名称: Quantum Mechanics课程类型: 专业核心课总学时: 72 讲课学时: 72 实验学时:0学分: 5适用对象: 物理专业本科学生先修课程:高等数学、线性代数、原子物理学、数学物理方法、理论力学、电动力学等课程执笔人:李淑红审定人:孙长勇一、课程性质、目的和任务量子力学是物理专业的一门重要的专业基础理论课。
该课程是研究微观粒子运动规律的基础理论。
该课程的主要目的和任务:1、使学生了解微观粒子的运动规律,初步掌握量子力学的基本原理和处理具体问题的一些重要基本方法,为进一步学习和今后从事教学和科学研究打下必要的基础;2、使学生适当地了解量子力学在现代物理学中的应用和新进展,深化和扩大学生在普通物理学(特别是原子物理学)中所学过的有关内容,以适应现代物理学发展的状况和今后教学及科研工作的需要。
二、课程教学和教改基本要求量子力学是20世纪二十年代人们在总结了大量实验事实和旧量子论的基础上,通过一代物理学家的共同努力而建立起来的;它的基本概念除了与经典力学不同之外,还视量子力学的各种表述形式的不同而各异。
根据本课程的特点和计划学时,编制了适合学生水平的PPT教学课件,采用多媒体教学,增加课时容量;同时,注意到学生的接受情况,把传统教学和多媒体教学的优点结合起来,利用启发式教学方法;教学过程中介绍一些相关的前沿科研内容和动向,扩大学生的知识面,从而激发学生的学习兴趣。
通过课堂教学、自学、作业等环节使学生掌握所学内容,提高分析、归纳、推理的能力,为以后从事现代物理学研究打下坚实的理论基础。
三、课程各章重点与难点、教学要求与教学内容按照教育部颁布的量子力学教学大纲,本课程总学时为72学时,本大纲安排课堂讲授66学时,习题课6学时。
下面大纲中加带“*”号的为选讲内容,在教学过程中可视具体情况和总学时的多少,略讲或不讲,而以学生自学为主。
§4.9厄密算符的基本性质一、厄密算符设u 和v 是任意两个函数,如果算符F ∧满足**()u F vdx F u vdx ∧∧=⎰⎰,式中x 代表u和v 的所有变数,积分是在所有变数的全部区域进行的,则称算符F ∧为厄密算符或自轭算符。
我们前面已讨论过的坐标算符、动量算符和 能量算符都是厄密算符 例:证明动量算符x p i x∂=-∂是厄密算符 证明:***()x u p vdx u ivdx i u vdx xx∧+∞+∞+∞-∞-∞-∞∂∂=-=-∂∂⎰⎰⎰**** =[()]=|i u v dx u vdx x xi u v i u vdx x+∞+∞-∞-∞+∞+∞-∞-∞∂∂--∂∂∂-+∂⎰⎰⎰因为u 和v 都是满足波函数标准条件的波函数,它们在无穷远处的边界应为0,上式右边第一项为0,而第二项可写为**()()x iu vdx p u vdx x+∞+∞-∞-∞∂-=∂⎰⎰,所以有**()x x u p vdx p u vdx ∧+∞+∞-∞-∞=⎰⎰故动量算符x p 是厄密算符二. 厄密算符的性质1. 厄密算符的本征值都是实数,表示为*λλ=证明:设F 为厄密算符,λ表示它的的本征值,u 表示对应的本征函数,即:Fu u λ=由厄密算符的定义式可得:**()u F udx F u udx ∧∧=⎰⎰⇒**()u udx u udx λλ=⎰⎰,即***u udx u udx λλ=⎰⎰由此得:*λλ=即λ是实数。
2. 厄密算符的本征值代表力学量的确定值表示力学量的算符的本征值是测量该力学量可能得到的数值,这些数值必须是实数,因此表示力学量的算符必须是厄密算符。
根据波函数应满足态叠加原理的要求,表示力学量的算符还必须是线性的,因此表示力学量的算符应是线性厄密算符。
那么体系处于什么状态时,力学量具有确定的数值呢?设体系处于波函数(,)r t ψ所描写的状态。
测量力学量为F ,它是一个线性厄密算符。
.n n nc ψφ=∑第四章 态和力学量的表象量子力学中态和力学量的具体表示方式称为表象。
在前面,我们采用的表象是坐标表象,还可以用其它表象表示体系状态。
在选定了一定的表象后,力学量算符用矩阵表示,算符的运算归结为矩阵的运算。
因此,引入表象理论后的量子力学也称为矩阵力学。
本章首先给出态、算符和量子力学公式的表象表示,以及它们在不同表象间的变换关系,并证明量子力学在幺正变换下的不变性。
之后介绍文献中常见的狄拉克(Dirac )符号,最后在粒子数表象中重新讨论了线形谐振子问题。
§4.1态的表象表示由前两章讨论可知,任意波函数可按某力学量的本征函数做完全性展开例如,动量的本征函数表示组成完全系,任意波函数(,)x t ψ可以按 ()x p x ψ展开为(,)(,)()xx p x x t c p t x dp ψψ=⎰ ,展开系数(,)x c p t 由下式给出()(),(),x x p c p t x x t dx ψψ*=⎰. 设 (,)x t ψ已归一化,则容易证明(,)x c p t 也是归一化的,2(,)x t dx ψ代表体系处于(,)x t ψ所描写的态中,发现粒子位置在x x dx →+范围内的几率;2(,)x x c p t dp 代表在该态下发现粒子动量在 x x x p p dp →+范围内的几率。
(,)x c p t 和 (,)x t ψ描写同一状态。
我们称(,)x t ψ是这个状态在x -表象(坐标表象)中的波函数;(,)x c p t 是同一状态在p -表象(动量表象)中的波函数。
动量表象中的波函数(,)x c p t 以动量为自变量,它的获得是通过动量本征函数系的完全性展开取得展开系数得来的。
在量子力学中,选定一组本征函数系作为基失,就称为选定了一个表象。
这与三维空间中的坐标系类似。
表象中的基矢与坐标系中的单位矢量一样具有正交归一完全性。
所不同的是本征函数有多个,所以态矢量所在的空间是多维的函数空间。
§4.5 力学量测量结果的几率平均值
重点:
在本征态和任意态中测量力学量的物理过程
(一)力学量测量结果的几率
的本征函数组成正交归一完全系,它所属的本征值
设算符
(4.5-2)
根据本征函数的守全性,可看作是各本征态的线性迭加:
(4.5-3)
根据态迭加原理,也是体系的可能状态,但它显然不是的本征态,因为
我们得不到关系式即在态中,将得不到确定的数值,由于态可看成是
各个本征态
的迭加,因此在测量的某一瞬刻、体系实际上是处于各本征态的
某一个中,故可能测量到数值将是本征值谱
中的某一个,所以我们称各次测
量到的数值为可能值。
出现的相对次数即相对几率分别为这些几率正好
设测得
分别是的展开式(4.5-3)中各项系数模的平方,即
(4.5-4)设已归一化的,即
(4.5-5)的正交归一性,就得到
注意到
我们看到具有几率的意义,它表明态中测量力学量F得到结果是的本的几率,故c n常称为几率振幅。
征值
可以证明,当的本征值组成连续谱时,也类似的结果,即
(4.5-8)
而
(4.5-9)
是在
态中,测得体系的力学量F的数值为的几率,其中右由(4.4-17)
式即
(4.5-10)
算出。
归纳上面的讨论,我们引进量子力学中关于力学量与算符关系的一个基本假定:
量子力学中表示力学量的算符都是厄密算符,它的本征函数组成完全系,
的属于本征值的本征态中,测量力学量F所得的数值,就是的
如果体系处在
;如果体系所处的状态不是的本征态,可以测到力学量F的各
本征值
的本征值谱之中,而且测得数值为的几率是。
种可能值,这些可能值都是在
这个假定的正确性,如同薛定谔方程一样,由理论与实验结果符合而得到验证。
(二)平均值
当体系所处状态不是的本征态时,测量力学量得到的可能值是以一定的几率出现,但是多次测量的平均值是确定的,按照由几率求平均值的法则,可以求得力学量F在态中的平均值是
(4.5-11)
这式子可改写为
(4.5-12)
的正交归一性(4.4-8)式来证明,即
这两个式子相等可以用(4.4-14)式及
对于没有归一化的波函数,乘进归一化因子后,(4.5-12)式改写为
(4.5-13)。