力学量的平均值波函数随时间演化方程
- 格式:ppt
- 大小:1.10 MB
- 文档页数:63
量子力学中的时间演化与薛定谔方程量子力学是描述微观世界中粒子行为的理论框架,它与经典力学有着本质的区别。
在量子力学中,时间演化是一个重要的概念,而薛定谔方程则是描述量子系统时间演化的基本方程。
在经典力学中,我们可以通过牛顿第二定律来描述物体的运动。
而在量子力学中,粒子的运动状态由波函数来描述。
波函数是一个复数函数,它包含了粒子的位置和动量信息。
薛定谔方程就是描述波函数随时间演化的方程。
薛定谔方程的一般形式可以写作:iħ∂Ψ/∂t = HΨ其中,ħ是普朗克常数的约化形式,Ψ是波函数,H是哈密顿算符。
这个方程可以看作是量子力学中的运动方程,它告诉我们波函数随时间如何变化。
薛定谔方程的解决方法有很多种,其中最常见的是分离变量法。
通过将波函数Ψ分解成位置和时间的乘积形式,我们可以将薛定谔方程分解为两个独立的方程,一个是关于位置的方程,另一个是关于时间的方程。
这样,我们可以分别解出它们的解析解,然后将它们组合起来得到波函数的解。
薛定谔方程的解决方法还包括数值解法和近似解法。
数值解法通过离散化的方法,将薛定谔方程转化为一个矩阵方程,然后利用数值计算方法求解。
近似解法则是在一些特定情况下,对薛定谔方程进行近似处理,得到近似的解析解。
薛定谔方程的时间演化是量子力学中的一个基本概念。
它告诉我们波函数随时间如何变化,从而揭示了量子系统的动力学性质。
根据薛定谔方程,我们可以计算出波函数在任意时间的值,从而得到粒子的位置、动量等物理量的概率分布。
薛定谔方程的时间演化还可以用于描述量子系统的演化过程。
例如,在一个封闭的量子系统中,如果系统的哈密顿量不随时间变化,那么根据薛定谔方程,系统的波函数将保持不变。
这就是所谓的定态解,它描述了系统处于一个稳定的状态。
然而,如果系统的哈密顿量随时间变化,那么根据薛定谔方程,系统的波函数将随时间演化。
这种演化可以描述系统从一个态向另一个态的转变过程。
例如,在一个受到外界扰动的量子系统中,系统的波函数将随时间逐渐演化到一个新的稳定态。
第五章 力学量随时间的演化与守恒量§1 力学量随时间的变化在经典力学中,处于一定状态下的体系的每一个力学量作为时间的函数,每一个时刻都有一个确定值;但是, 在量子力学中,只有力学量的平均值才可与实验相比较,力学量随时间的演化实质是平均值和测量值的几率分布随时间的演化。
一、守衡量力学量ˆA在任意态()t ψ上的平均值随时间演化的规律为 ˆˆ1ˆˆ,dA A A H dt t i ∂⎡⎤=+⎣⎦∂, 其中ˆH为体系的哈密顿量。
[证明] 力学量ˆA的平均值表示为()ˆ()(),()A t t A t ψψ=,()A t 对时间t 求导得 ()()ˆ()()()ˆˆ,()(),(),()ˆ11ˆˆˆˆ (),()(),()ˆ11ˆˆˆˆ (),()(),()1 d A t t t A A t t A t t dt t t t A H t A t t AH t i i t A t HA t t AH t i i tψψψψψψψψψψψψψ⎛⎫⎛⎫⎛⎫∂∂∂=++ ⎪ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫⎛⎫=++⎪ ⎪∂⎝⎭⎝⎭∂=-+ψ+∂=ˆˆˆ,AA H i t∂⎡⎤+⎣⎦∂1ˆˆ,A H i ⎡⎤+⎣⎦1、 守恒量的定义若ˆA不显含t , 即ˆ0A t ∂∂=, 当ˆˆ,0A H ⎡⎤=⎣⎦,那么力学量ˆA 称为守恒量。
2、守恒量的性质(1)、在任意态()t ψ上,守恒量的平均值都不随时间变化0dA dt =。
(2)、在任意态()t ψ上,守恒量的取值几率分布都不随时间变化。
[证明] 由于ˆˆ[,]0A H =知,存在正交归一的共同本征函数组{}nψ(n 是一组完备的量子数),即 ˆˆn n nn n nH E A A ψψψψ⎧=⎪⎨=⎪⎩ 正交归一化条件(),n m mn ψψδ=对于体系的任意状态()t ψ可展开为: ()()n nnt a t ψψ=∑, 展开系数为()(),()n n a t t ψψ=在体系的任意态()t ψ上测量力学量ˆA 时,得到本征值nA 的几率为2|()|n a t , 而 ()()()()()()*2*()()()()()()(),,()(),,1()1() ,,()(),,11ˆ (),,()n n n n n n n n n n n n n n n da t da t d a t a t a t dt dt dtt t t t t t t t i t t i i t i t H t t i i ψψψψψψψψψψψψψψψψψψψψ=+∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭∂∂⎛⎫⎛⎫=-+ ⎪ ⎪∂∂⎝⎭⎝⎭=-+()()()()()()()()()()ˆ(),,()11ˆˆ (),,()(),,() (),,()(),,()0n n n n n n n n n n n n t H t t H t t H t i i E Et t t t i i ψψψψψψψψψψψψψψψψψψψψ=-+=-+= 这表明2|()|n a t 是与时间无关的量。