算符与力学量的关系
- 格式:ppt
- 大小:363.00 KB
- 文档页数:17
第三章 力学量和算符内容简介:在上一章中,我们系统地介绍了波动力学,它的着眼点是波函数 。
用波函数描述粒子的运动状态。
本章将介绍量子力学的另一种表述,它的着眼点是力学量和力学量的测量,并证实了量子力学中的力学量必须用线性厄米算符表示。
然后进一步讨论力学量的测量,它的可能值、平均值以及具有确定值的条件。
我们将证实算符的运动方程中含有对易子,出现 。
§ 3.1 力学量算符的引入 § 3.2 算符的运算规则§ 3.3 厄米算符的本征值和本征函数 § 3.4 连续谱本征函数§ 3.5 量子力学中力学量的测量 § 3.6 不确定关系 § 3.7 守恒与对称在量子力学中。
微观粒子的运动状态用波函数描述。
一旦给出了波函数,就确定了微观粒子的运动状态。
在本章中我们将看到:所谓“确定”,是在能给出概率以及能求得平均值意义下说的。
一般说来。
当微观粒子处在某一运动状态时,它的力学量,如坐标、动量、角动量、能量等,不同时具有确定的数值,而具有一系列可能值,每一可能值、均以一定的概率出现。
当给定描述这一运动状态的波函数 后,力学量出现各种可能值的相应的概率就完全确定。
利用统计平均的方法,可以算出该力学量的平均值,进而与实验的观测值相比较。
既然一切力学量的平均值原则上可由 给出,而且这些平均值就是在 所描述的状态下相应的力学量的观测结果,在这种意义下认为,波函数描写了粒子的运动状态。
力学量的平均值对以波函数(,)r t ψ 描述的状态,按照波函数的统计解释,2(,)r t ψ表示在t 时刻在 r r d r →+中找到粒子的几率,因此坐标的平均值显然是:()2*(,)(,)(,) 3.1.1r r t rdr r t r r t dr ψψψ∞∞-∞-∞==⎰⎰坐标r 的函数()f r的平均值是:()()()*(,)(,) 3.1.2f r r t f r r t dr ψψ∞-∞=⎰现在讨论动量的平均值。
119§3.6 算符与力学量的关系重点: 完全性关系,算符与力学量的关系的基本假设 难点: 完全性关系一、厄米算符的本征函数的完全性 1.复习§3.1的两个假定假定1:量子力学中的每个力学量用一个线性厄米算符表示。
假定2:算符Fˆ的本征值集合即是测量体系力学量F 可能得到的所有量值;体系处在F ˆ的属于本征值的本征态nψ时,测力学量F ,得到确定值n λ。
但是在任意态ψ中(非F ˆ的本征态),此时Fˆ与代表的力学量F 的关系如何?这需引进新的假设,适合于一般情况,且不能与假定2相抵触,应包含它。
2.完全性:若F ˆ是满足一定条件⎟⎟⎠⎞⎜⎜⎝⎛ΦΦ级数收敛的平方可积的n n F ˆ)2(F ˆ)1(的厄米算符,且它的正交归一的本征函数系)x (1Φ、)x (2Φ…)x (n Φ…对应的本征值为1λ、2λ…n λ…,则任一函数)x (Ψ可以按)x (n Φ展为级数:)x (C )x (n nn Φ=Ψ∑ ①式中n C 是与x 无关的展开系数。
我们称本征函数)x (n Φ的这种性质为完全性,或者说)x (n Φ组成完全系。
120说明:①展开系数∫ΨΦ=∗dx )x (C n n以)x (m ∗Φ左乘)x (C )x (n nn Φ=Ψ∑,且对x 的整个区域积分有m mn n n mnn n nn m m C C dx )x ()x (C dx)x (C dx )x ()x (=δ=ΦΦ=ΦΦ=ΨΦ∑∫∑∑∫∫∗∗∗即:∫ΨΦ=∗dx )x (C n n ② ②表示力学量的算符是厄米算符,不管它是否满足完全性关系要求的条件,都可以直接将数学上证明过的定理拿来就用,即假定力学量算符本征函数的正交归一系具有完全性。
3.展开系数2n C 的物理含义:设)x (Ψ为归一化的波函数,则根据)x (n Φ是正交归一化的完全函数系,有:1dx )x ()x (ΨΨ=∫∗=dx C C n nn m mm Φ⋅Φ∑∫∑∗∗==ΦΦ∗∗∫∑dx C C n m n n ,m m n ,m n n ,m m C C δ∑∗2nn C ∑=即:1C 2nn=∑因左边是总几率,所以2n C 有几率的意义。
算符即运算规则算符即运算规则。
它作用在一个函数ψ(x)(x)上即是对上即是对ψ(x)(x)进行某进行某种运算种运算,,得到另一个函数ϕ(x)§1.7 1.7 量子力学中的力学量和算符量子力学中的力学量和算符例:)()(ˆx x Fϕψ=)()(ˆx xf x f x =)()(ˆx f x f I =dxd D =ˆ1、定义2、乘法与对易算符的乘法一般不服从交换律:)ˆ(ˆˆψψB A BA ≡AB B Aˆˆˆˆ≠例如:则算符的对易式可记为则算符的对易式可记为::若对任意若对任意ΨΨ,都有:则称和对易:引入记号: ψψA B B Aˆˆˆˆ=A ˆB ˆ]ˆ,ˆ[ˆˆˆˆB A A B B A≡−0]ˆ,ˆ[=B AI x Dˆ]ˆ,ˆ[=h i p xx =]ˆ,ˆ[易证:可定义算符的可定义算符的n n 次方为:A A AA n ˆˆˆˆ⋅⋅⋅=可定义算符的多项式和算符的函数可定义算符的多项式和算符的函数。
例如:3、线性算符设C 1, C 2为常数为常数,,若算符满足:则称其为线性算符则称其为线性算符。
量子力学态叠加原理要求力学量算符必须是线性算符例如例如,,下列算符为线性算符下列算符为线性算符::22112211ˆˆ)(ˆΨ+Ψ=Ψ+ΨF C F C C C F x pH y x x ˆ,ˆ,,2∂∂∂∂∂算符的本征值方程:4、本征函数本征函数、、本征值λ为算符的本征值的本征值,,为算符的本征值为λ的本征函数的本征函数。
例如,e 2x 是微商算符的本征函数:)()(ˆx x Fλψψ=)(x ψFˆF ˆF ˆ定态薛定谔方程:它是哈密顿算符的本征方程它是哈密顿算符的本征方程,,波函数ψ 是哈密顿算符的本征函数征函数,,能量E 是哈密顿算符的本征值是哈密顿算符的本征值。
例如例如::ψψE H=ˆ2211ˆˆΨ=ΨΨ=ΨλλF F )(ˆˆ)(ˆ221122112211Ψ+Ψ=Ψ+Ψ=Ψ+ΨC C F C F C C C F λ则:狄拉克符号:〉≡ψψ|)(r v |)(*ψψ〈≡r r ∗〉〈=〉〈≡∫ψϕϕψτϕψ||)()(*d r r v v一个算符如果满足如下关系一个算符如果满足如下关系,,则称为厄米算符则称为厄米算符,:,:其中积分遍及整个空间其中积分遍及整个空间,,函数ψ, ϕ是任意的品优函数是任意的品优函数。
II.力学量与算符1.量子力学中与力学量有关的基本假设有哪些?关于力学量及其表示,量子力学有三条基本假定:(1)有关量子体系运动的每一个力学量都可以用一个线性厄密算符来表示.(2)对于该力学量的测量值,必定是相应的线性厄米算符的本征值之一.(3)如果体系处于态,该态可按算符的本征态展开那么在态中,测量力学量取值的概率正比于展开系数的模的平方.以上三条假定,共同给出了关于力学量的完整概念.可见,在量子力学中,力学量与态是相对独立的概念。
而力学量算待与其数值也有不同含义.在经典物理中,力学量可由运动状态完全确定,不必引入算符表示.并且,力学量与其数值也是一体的概念.2. 量子力学为什么要用算符表示力学量 ?用算符表示力学量,是由于量子体系所固有的波粒二象性所要求的.这正是量子力学处理方法上的基本特点之一.我们知道,表示量子态的波函数是一种概率波.因此,即使在确定的量子态中,也并非各种力学量都有完全确定区而是一般地表现为不同数值的统计分布.这就注定了经典力学量的表示方法 (可由运动状态完全决定)不再适用,因此需要寻求新的表示方法.我们从力学量平均值的表示式出发,来说明引入算符的必要性.如果体系处于态中,则它的位置平均值为类似地,它的动量平均位也可表示为但是要求出第二个积分,必须将表示为的函数.然而这是办不到的.因为按不确定关系的表示是无意义的,因此不能直接在坐标表象中按上式求动量平均值.我们可先在动量表象中求出动量平均值,再转换到坐标表象中去.利用有可见,若在坐标表象中计算动量平均值,那么动量矢量恰与算符相当,实际上,任何一个力学量在自身表象(连续谱)中计算其平均值,都与一个特定的算符相当,这就自然地引入了算符表示的概念.用算符表示力学量的问题还可以从另一角度来说明.我们知道量子力学中,力学与力学量之间的关系,从其数值是否能同时确定来考虑,有相互对易与不对易两种,而经典力学量之间都是对易的,因此经典力学量的表示方法不能适用于量子力学.然而在数学中,算符与算符之间一般并不满足交换律.也就是存在不对易的情形.因此用算符表示力学量是适当的.3.什么是算符的本征值和本征函数?它们有什么物理意义?含有算符的方程称为的本征值方程, 为的一个本征值,而则称为的属于本征值的本征函数.如果算符代表一个力学量,上述概念物理意义如下:当体系处于的本征态时,测量的数值是确定的,恒等于,并且根据本章开头列出的假设,当体系处于任意态时,单次测量的值必等于它的诸本征值之一.4.什么是算符的期望值(平均值)?它们有什么物理意义?力学量的平均值(或称期望值)的一般定义为它的意义包括以下几点:(1)当体系处于态时,就等于对于的所有测量值的平均;(2)如为的一个本征态,则就等于对应的本征值;(3)如果可在经典力学与量子力学间建立对应关系,那么与经典力学量对应的便是量子力学中的力学量的平均值。