1.4.1有理数的乘法第二课时
- 格式:ppt
- 大小:262.50 KB
- 文档页数:15
1.4.1 有理数的乘法第2课时有理数乘法的运算律及运用教学目标:使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便.教学重难点:熟练运用运算律进行计算.教与学互动设计:(一)创设情境,导入新课想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好.那在学习过程中,大家有没有思考多个有理数相乘该如何来计算?做一做(出示胶片)下列题目你能运算吗?(1)2×3×4×(-5);(2)2×3×(-4)×(-5);(3)2×(-3)×(-4)×(-5);(4)(-2)×(-3)×(-4)×(-5);(5)-1×302×(-2004)×0.由此我们可总结得到什么?(二)合作交流,解读探究交流讨论不难得到结论:几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负,并把绝对值相乘.几个数相乘,如果其中有因数为0,积等于0.(三)应用迁移,巩固提高【例1】计算(-3)××(-)×(-)×(-8)×(-1).【例2】计算(-1999)×(-2000)×(-2001)×(-2002)×2003×(-2004)×0.导入运算律(1)通过计算:①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5;(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等;(3)用公式的形式表示为:ab=ba;(4)分组计算,比较[3×(-4)]×(-5)与3×[(-4)×(-5)]的结果,讨论、归纳出乘法结合律;(5)全班交流,规范结合律的两种表达形式:文字语言、公式形式;(6)分组计算、比较:5×[3+(-7)]与5×3+5×(-7)的结果,讨论归纳出乘法分配律;(7)全班交流、规范分配律的两种表达形式:文字语言、公式形式.【例3】用简便方法计算:(1)(-5)×89.2×(-2);(2)(-8)×(-7.2)×(-2.5)×.【例4】用两种方法计算(+-)×12.(四)总结反思,拓展升华本节课我们的成果是探究出有理数的乘法运算律并进行了应用.可见,运算律的运用十分灵活,各种运算律常常是混合应用的.这就要求我们要有较好的掌握运算律进行计算的能力,要寻找最佳解题途径,不断总结经验,使自己的能力得到提高.(五)课堂跟踪反馈夯实基础1.计算题:(1)(-)××(-)×(-2);(2)6.878×(-15)+6.878×(-12)-6.878×(-37);(3)×(-16)×(-)×(-1)×8×(-0.25);(4)(-99)×36.提升能力2.若a、b、c为有理数,且│a+1│+│b+2│+│c+3│=0.求(a-1)(b+2)(c-3)的值.第八章 8.2.2消元——解二元一次方程组(一)知识点1:加减消元法两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.知识点2:列二元一次方程组解实际应用题的步骤列二元一次方程组解应用题与列一元一次方程解应用题的思路基本相似,也是审题、设元、列方程、检验、作答几个步骤.其中与列一元一次方程解应用题不同的是,列一元一次方程解应用题的时候,我们需要考虑设哪个未知量为x,运用哪个相等关系来列方程,而列二元一次方程组解应用题时,如果题目有两个未知量,两个相等关系,我们直接将未知量设为x和y,两个相等关系都用来列方程.考点1:先化简再求方程组的解【例1】解方程组解:原方程组可化为②×5-①,得26y=104,解得y=4.把y=4代入②,得x+20=28,解得x=8.所以原方程组的解为点拨∶对于比较复杂的二元一次方程组,首先将两个方程化简成ax+by=c的形式,然后再使用代入消元法或加减消元法求解.考点2:换元法解方程组【例2】解方程组解:设a=,b=,则原方程组可变形为解得∴解得点拨:仔细观察方程组,我们不难发现两个方程中均出现和,我们可将和分别看作两个未知数a,b,这个复杂的方程组就可以转化成一个简单的方程组来解决了,这种方法叫做换元法.考点3:轮对称的二元一次方程组的求解策略【例3】解方程组解:①+②,得27x+27y=81,化简得x+y=3.③①-②,得-x+y=-1.④③+④,得2y=2,解得y=1.③-④,得2x=4,解得x=2.∴原方程组的解是点拨:呈现形式的方程组称为轮对称方程组.考点4:一个二元一次方程组与一个二元一次方程同解的问题【例4】若关于x,y的方程组的解也是方程3x+2y=17的解,求m的值.解法一:①-②,得3y=-6m,即y=-2m.把y=-2m代入①,得x-4m=3m,解得x=7m.把x=7m,y=-2m代入3x+2y=17,得21m-4m=17,解得m=1.解法二:①×3-②,得2x+7y=0.根据题意可得:解这个方程组,得把代入①,得7-4=3m,解得m=1.点拨:解法一:把m看作已知数,用含m的代数式表示x,y,然后把x,y的值代入3x+2y=17中,得到一个关于m的一元一次方程,解这个一元一次方程即可求出m的值.解法二:由原方程组消去m,得到一个关于x,y的二元一次方程,这个二元一次方程和3x+2y=17组成一个方程组,解出x,y的值,然后代入原方程组中任意一个方程求出m的值.3.2 解一元一次方程(一)——合并同类项与移项第1课时用合并同类项的方法解一元一次方程教学目标:1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.3.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.教学重点:建立方程解决实际问题,会解“ax+bx=c”类型的一元一次方程.教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程.教学过程:一、设置情境,提出问题(出示背景资料)约公元820年,中亚细亚的数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.出示课本P86问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?二、探索分析,解决问题引导学生回忆:实际问题一元一次方程设问1:如何列方程?分哪些步骤?师生讨论分析:(1)设未知数:前年这个学校购买计算机x台;(2)找相等关系:前年购买量+去年购买量+今年购买量=140台.(3)列方程:x+2x+4x=140.设问2:怎样解这个方程?如何将这个方程转化为“x=a”的形式?学生观察、思考:根据分配律,可以把含x的项合并,即x+2x+4x=(1+2+4)x=7x老师板演解方程过程:略.为帮助有困难的学生理解,可以在上述过程中标上箭头和框图.设问3:在以上解方程的过程中“合并”起了什么作用?每一步的根据是什么?学生讨论回答,师生共同整理:“合并”是一种恒等变形,它使方程变得简单,更接近“x=a”的形式.三、拓广探索,比较分析学生思考回答:若设去年购买计算机x台,得方程+x+2x=140.若设今年购买计算机x台,得方程++x=140.课本P87例2.问题:①每相邻两个数之间有什么关系?②用x表示其中任意一个数,那么与x相邻的两个数怎样表示?③根据题意列方程解答.四、综合应用,巩固提高1.课本P88练习第1,2题.2.一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?(学生思考、讨论出多种解法,师生共同讲评.)3.有一列数按一定规律排成-1,2,-4,8,-16,32,……,其中某三个相邻数的和是-960.求这三个数.五、课时小结1.你今天学习的解方程有哪些步骤,每一步的依据是什么?2.今天讨论的问题中的相等关系有何共同特点?学生思考后回答、整理:解方程的步骤及依据分别是:合并和系数化为1;总量=各部分量的和.。
XX 市XXX 中学统一备课用纸科 目 数学年 级七年级班 级授课时间 年 月 日 课 题1.4.1 有理数的乘法(2)课 型新授课教学目标 1.能确定多个因数相乘时,积的符号,•并能用法则进行多个因数的乘积运算.2. 经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳•验证等能力.3. 培养学生主动探索,积极思考的学习兴趣.教学重点 能运用乘法运算律进行乘法运算. 教学难点 灵活运用运算律进行乘法运算. 教具准备 多媒体及课件教学内容及过程教学方法和手段一、复习引入P30 练习 第1题有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数乘法的步骤:两个有理数相乘,先确定积的_____,再确定积的______.二、新课讲解问题1 观察下列各式,它们的积是正的还是负的?思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?几个不是0的数相乘,负因数的个数是______时,积是正数;负因数的个数是_________时,积 是负数. 问题2你能看出下列式子的结果吗?如果能,请说明理由.几个数相乘,如果其中有因数为0,积等于____ 问题3 计算下列式子的结果 先确定____,再计算____【练习】234(5)⨯⨯⨯-23(4)(5)⨯⨯-⨯-(2)(3)(4)(5)-⨯-⨯-⨯-2(3)(4)(5)⨯-⨯-⨯-7.8(8.1)0(19.6).⨯-⨯⨯-591(3)()()654-⨯⨯-⨯-问题四 简便运算,并说出根据是什么:摇身一变问题4 计算下列各题,并比较它们的结果, 你有什么发现?请再举几个例子验证你的发现.一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等. 乘法交换律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
乘法结合律: 问题5 阅读,并思考在上述运算过程中,你得到什么规律呢?一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 分配律: 问题6 用两种方法计算:问题7 分配律的逆用2. 用简便方法计算(-23) ×25-6 ×25+18 ×25+253.逆用分配律正确的是( )A.25×(-23-6+18)B.25×(-23-6+18+1)C.- 5×(23+6+18)D.-25×(23+6-18+1)) ( 12)216141)(2()( 25804.0125)1(⨯++⨯⨯⨯12)216141)(2()25(8)04.0()125)(1(⨯-+-⨯⨯-⨯-[]53(7)5(4)20⨯+-=⨯-=-535(7)153520⨯+⨯-=-=-。
第2课时有理数的乘法运算律知能演练提升能力提升1.大于-3且小于4的所有整数的积为()A.-12B.12C.0D.-1442.3.125×(-23)-3.125×77=3.125×(-23-77)=3.125×(-100)=-312.5,这个运算运用了()A.加法结合律B.乘法结合律C.分配律D.分配律的逆用3.下列运算过程有错误的个数是()①×2=3-4×2;②-4×(-7)×(-125)=-(4×125×7);③9×15=×15=150-;④[3×(-25)]×(-2)=3×[(-25)×(-2)]=3×50.A.1B.2C.3D.44.绝对值不大于2 018的所有整数的积是.5.在-6,-5,-1,3,4,7中任取三个数相乘,所得的积最小是,最大是.6.计算(-8)×(-2)+(-1)×(-8)-(-3)×(-8)的结果为.7.计算(1-2)×(2-3)×(3-4)×…×(2 016-2 017)×(2 017-2 018)的结果是.8.计算:(1)×0.25××9;(2)(-11)×+(-11)×+(-11)×.9.已知|a+1|+|b+2|+|c+3|=0,求(a-1)×(b-2)×(c-3)的值.10.在学习有理数的乘法时,李老师和同学们做了这样的游戏,将2 018这个数说给第一名同学,第一名同学把它减去它的的结果告诉第二名同学,第二名同学再把听到的结果减去它的的结果告诉第三名同学,第三名同学再把听到的结果减去它的的结果告诉第四名同学,……照这样的方法直到全班40人全部传完,最后一名同学把听到的结果告诉李老师,你知道最后的结果吗?创新应用★11.学习了有理数的运算后,老师给同学们出了一道题.计算:19×(-9).下面是两名同学的解法:小方:原式=-×9=-=-179;小杨:原式=×(-9)=-19×9-×9=-179.(1)两名同学的解法中,谁的解法较好?(2)请你写出另一种更好的解法.参考答案知能演练·提升能力提升1.C大于-3且小于4的所有整数中有一个为0,故乘积为0.2.D3.A①错误,3也应乘2;②③④正确.4.0符合条件的整数中有一个为0,所以它们的积为0.5.-1682106.0原式=(-8)×[(-2)+(-1)-(-3)]=(-8)×[(-2)+(-1)+(+3)]=(-8)×0=0.7.-1原式==-1.8.解(1)原式=×9×=1.(2)原式=(-11)×=-11×2=-22.9.解因为|a+1|+|b+2|+|c+3|=0,所以a+1=0,b+2=0,c+3=0,所以a=-1,b=-2,c=-3.所以原式=(-1-1)×(-2-2)×(-3-3)=(-2)×(-4)×(-6)=-48.10.解2 018××…×=2 018××…×=2 018××…×=2 018×=50.45.创新应用11.解(1)小杨的解法较好.(2)19×(-9)=×(-9)=20×(-9)-×(-9)=-180+=-179.10。
负负得正一、教材分析:本课是新课标人教版七年级数学上册的1.4.1有理数的乘法的第二课时,它是建立在非负数的加减乘除混合运算和负数的加减运算的基础上。
二、学情分析:学生对数的乘法并不陌生,他们根据已有经验,对异号得负的运算进行猜测、验证。
对于教难理解的“负负得正”通过观察多媒体的情境演示、独立思考探究和小组合作交流,能够达到教学目标要求。
三、教学目标知识与技能目标理解并掌握“负负得正”这个运算法则,并会用它解题。
初步掌握负负得正在日常生活中的实际应用。
过程和方法目标通过自主合作探究经历探索有理数运算的过程,发展观察、归纳、猜想等能力。
情感态度和价值观目标在探究问题的动手操作活动中,体验学习数学的乐趣,调动学习的积极性。
在独立思考的基础上体验合作交流的重要性,培养学生的合作交流意识。
在探索解决未知问题的学习过程中,让学生体会到解决问题、获得新知的那种成就感。
四、重点难点教学重点:有理数的乘法法则的理解和运用;教学难点:体会有理数乘法法则规定的合理性;探究出确定两个负数相乘和多个有理数相乘的符号符号规律。
五、教法学法教法:引导式学法:自主探索、合作交流六、教学过程1、情境引入:为了更贴近学生生活实际,我对课本情景进行了改编:首先思考两个简单问题:小丽以每小时2km 的速度沿着一条直线跑步:如果向右跑2km记作+2km,那么向左跑2km应记作 .中午12时的时间记作零:如果12时后3小时记作+3小时,那么12时前3小时应记作 .【设计意图】问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心情景导入:小丽沿着一条直线跑步。
中午12时她恰好跑到A处。
(规定:①向右为正。
②12时的时间为零,12时以后的时间为正。
)情景假设1:①小丽一直以每小时2km 的速度向右跑,那么下午3时小丽在什么位置?A-8 -6 -4 -2 0 2 4 6 8结果:下午3时小丽应在A点的右边6km处。
1.4.1有理数的乘法(2):1.有理数的乘法法则:两数相乘,同号得正,异号得负,并把所得的绝对值相乘。
任何数与0相乘,都得0.2.乘积是1的两个数互为倒数。
3.几个不是0的数相乘,负因数的个数是偶数时,积是正数,负因数的个数是奇数时,积是负数。
4.几个数相乘,如果其中有因数为0,那么积等于0.5、有理数乘法的法则:(1)两个数相乘,交换因数的位置,积相等。
a×b=b×a(2)三个数相乘,先把前两个相乘,或者先把后两个数相乘,积相等。
(ab)c=a(bc)(3)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a(b+c)=ab+ac自主学习一:阅读p32页,例如:5×(—6)= ,(—6)×5=则:5×(—6)(—6)×5乘法的交换律:ab=例如:计算[3×(—4)]×(—5)3×[(—4)×(—5)]比较它们的结果。
乘法结合律:(ab)c=例如:5×[3+(—7)] 5×3+5×(—7)乘法的分配律:a(b+c)=例4:用两种方法计算111+462⨯(—)12练一练:1.(—85)×(—25)×(—4)2.9130 1015⎛⎫⨯ ⎪⎝⎭—3.711587⎛⎫⨯⨯⎪⎝⎭—(—1)4.62617++5353⎛⎫⨯⨯⎪⎝⎭—(—)(—)()5.81.25825⎛⎫⨯⨯⎪⎝⎭—(—)自主探究:314⨯(—35)(—7)1832⨯—25157116⨯(—8)综合应用:111721+7732222⨯⨯⨯(3)(31121111+43232322⨯⨯⨯⨯(—2)(—4)—(—2)(4)—21.下列说法正确的有( )①.两数相乘,若积为正数,则这两个因数都是整数②同号两数相乘,取原来的符号,并把绝对值相乘③两数相乘,若积为负数,则这两个因数都是负数④.一个数乘以—1,便得这个数的相反数A.1个B.2个C.3个D.4个2.下列计算正确的是( )A.—5×(—4)×(—2)×(—2)=5×4×2×2=80B.11=++=34⨯(—12)(——1)—4310C.(—9)×(—4)×5×0=9×4×5=180D.—2×5—2×(—1)—(—2)×2=—2×(5+1—2)=—83.|—3|的倒数是( )A. —3B. 3C. 13—D. 134.如果两个数的乘积是正数,那么这两个有理数一定是( )A.都是正数B. 都是负数C. 符号相同D. 符号相反5.在—2,3,4,—5这四个数中,任取两个数相乘,所得的积是最大的是()A.20B. —20C. 12D.—126.已知|a|=1,|b|=2,则a 与b 的乘积等于( )A. 2B. —2C. ±2D. 07.计算41+=+54⨯—(10 ,这一步应用的运算律是( )A.加法结合律B. 乘法结合律C. 乘法交换律D.乘法分配律8.绝对值不大于4的所有的负整数的积等于( )A.—24B. 24C. 0D. —6 9.已知a <0,—1<b <0,则a ,ab ,ab 2,由大到小的顺序排列10.如果有理数a 的倒数的相反数是23—,那么这个数a 是11.已知|m|=8,|n|=6,m+n <0,则 1mn=212.计算:+⨯⨯(—6)(25)(—0.04) (97 -65 +43 -187 )×36(-5)×(+731 )+(+7)×(-731)-(+12)×73113.运用运算规律计算:1.25⨯⨯⨯⨯⨯(—2.5)(—0.5)428 249925⨯(—5)14.设A B A B A B *=⨯++,例如,2*3=2×3+2+3=11,试计算下列各式,(1)1135*(—)(—)(2)[(—2)*4]*(—6)。
1.4 有理数乘法与除法1.4.1 有理数乘法第2课时 有理数乘法的运算律及运用 学习目标:1. 熟练掌握有理数的乘法法则2. 会运用乘法运算率简化乘法运算.3. 了解互为倒数的意义,并回求一个非零有理数的倒数 学习难点:运用乘法运算律简化计算 教学过程: 一、探索1、同加法运算律在有理数范围内仍然适用的验证活动一样,从复习有理数的乘法运算开始,由问题“在含有负数的乘法运算中,乘法交换律,结合律和分配律还成立吗?”引发学生思考。
观察下列各有理数乘法,从中可得到怎样的结论 (1)(-6)×(-7)= (-7)×(-6)= (2)[(-3)×(-5)]×2 = (-3)×[(-5)×2]= (3)(-4)×(-3+5)= (-4)×(-3)+(-4)×5= 结论?(4)请学生再举几组数试一试,看上面所得的结论是否成立?例如对扑克牌上数字的正负规定(黑正,红负),用抽两张扑克牌的方法验证有理数乘法运算律。
2.有理数乘法运算律交换律 a ×b=b ×a 结合律 ( a ×b)×c=a ×(b ×c) 分配律 a ×(b +c)=a ×b +a ×c 二、问题讲解 问题1.计算: (1)8×(-32)×(-0.125) (2))()()(9141531793170-⨯-⨯-⨯ (3)(1276521-+)×(-36) (4))()()()()()(7251272577255-⨯---⨯-+-⨯-练一练:书39页2 问题2.计算 (1)991716×20 (2)(—992524)×5练一练:(1)(-28)×99 (2)(—5181)×9 问题3.计算(1)8×81 (2)(—4)×(—41) (3)(—87)×(—78) 互为倒数的意义______________________________________倒数等于本身的数是 ;绝对值等于本身的数是 ;相反数等于本身的数是 . 练一练:书39页1【知识巩固】1.运用运算律填空.(1)-2×()-3=()-3×(_____).(2)[()-3×2]×(-4)=()-3×[(______)×(______)].(3)()-5×[()-2+()-3]=()-5×(_____)+(_____)×()-3 2.选择题(1)若a ×b<0 ,必有 ( )A a<0 ,b>0B a>0 ,b<0C a,b 同号D a,b 异号 (2)利用分配律计算98(100)9999-⨯时,正确的方案可以是 ( ) A 98(100)9999-+⨯ B 98(100)9999--⨯C 98(100)9999-⨯D 1(101)9999--⨯3.运用运算律计算:(1)(-25)×(-85)×(-4) (2) ⎝ ⎛⎭⎪⎫14-12-18×16(3)60×37-60×17+60×57 (4)(—100)×(103-21+51-0.1)(5)(-7.33)×(42.07)+(-2.07)×(-7.33) (6)18×⎝ ⎛⎭⎪⎫-23+13×23-4×234. 已知:互为相反数,c 、d 互为倒数,x 的绝对值是1,求:3x —[(a +b)+cd ]x 的值5. 定义一种运算符号△的意义:a △b=ab —1,求:2△(—3)、2△[(—3)—5]的值6. 有6张不同数字的卡片:—3,+2,0, —8, 5, +1,如果从中任取3张, (1)使数字的积最小,应如何抽?最小积是多少? (2)使数字的积最大,应如何抽?最大积是多少?2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,一副三角尺按不同的位置摆放,摆放位置中∠α=∠β的图形个数共有( )A.4个B.3个C.2个D.1个2.下列关于角的说法正确的个数是:( )①由两条射线组成的图形一定是角 ②角的边长,角越大 ③在角的一边的延长线取一点D ④角可以看作由一条射线绕着它的端点旋转而成的图形 A .1 B .2 C .3 D .43.如图,AB ∥CD ,CD ⊥EF ,若∠1=125°,则∠2=( )A .25° B.35° C.55° D.65°4.若x=-2是关于x 的方程2x+m=3的解,则关于x 的方程3(1-2x )=m-1的解为( )A.B.C.D.15.3x 的倒数与293x -互为相反数,那么x 的值为( ) A.32 B.32- C.3 D.-36.有一玻璃密封器皿如图①,测得其底面直径为20厘米,高20厘米,先内装蓝色溶液若干。