人教版-数学-七年级上册-1.4 有理数的乘除法 第二课时
- 格式:doc
- 大小:935.00 KB
- 文档页数:3
七年级数学上章1.4有理数的乘除法(人教版)4 有理数的乘除法.4.1 有理数的乘法第1课时有理数的乘法法则.了解有理数乘法的实际意义..理解有理数的乘法法则..能熟练的进行有理数乘法运算.阅读教材P28~30,思考并回答下列问题.知识探究.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘..通过有理数的乘法,进一步体会有理数运算包含两步思考:先确定积的符号,再计算积的绝对值..乘积为1的两个数互为倒数.如:-3的倒数是-13,0.5的倒数是2,-212的倒数是-25.自学反馈计算:×=1,×=-6,0×=0,123×=-2,×=5,-│-3│×=6.运用乘法法则,先确定积的符号,再把绝对值相乘;0没有倒数.活动1 小组讨论例1 计算:×9;8×;×.解:×9=-27.×=-8.×=1.例2 用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1气温的变化量为-6℃,攀登3后,气温有什么变化?解:×3=-18.答:气温下降18℃.活动2 跟踪训练.计算:×0.2=-1;×=2;×=1;0.1×=-0.001..若a×=1,则a=-65.已知一个有理数的倒数的绝对值是7,则这个有理数是±17..判断对错:两数相乘,若积为正数,则这两个数都是正数.两数相乘,若积为负数,则这两个数异号.互为相反的数之积一定是负数.正数的倒数是正数,负数的倒数是负数.活动3 课堂小结.有理数的乘法法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘..倒数:乘积是1的两个数互为倒数.第2课时多个有理数的乘法进一步学习有理数乘法运算,掌握多个有理数相乘积的符号的确定.阅读教材P31,思考并回答下列问题.知识探究体会几个不等于零的有理数相乘,积的符号的确定方法:.几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;当负因数的个数是奇数时,积为负..几个数相乘,如果其中有因数为0,那么积等于0.自学反馈计算:××=-30,×3×=1,××××0=0.活动1 小组讨论例计算:×56××;×6××14.解:-98.6.活动2 跟踪训练计算:×0.01×0=0;×××=-250.活动3 课堂小结.几个不为0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数..任何数同0相乘,都得0.第3课时有理数的乘法运算律.进一步应用乘法法则进行有理数的乘法运算..能自主探究理解乘法交换律、结合律、分配律在有理数运算中的应用..培养学生通过观察、思考找到合理解决问题的能力.阅读教材P32~33,思考并回答下列问题.知识探究乘法交换律的文字表达:两个数相乘,交换因数的位置,积相等.乘法交换律的字母表达:ab=ba.乘法结合律的文字表达:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律的字母表达:c=a.乘法分配律的文字表达:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.乘法分配律的字母表达:a=ab+ac.自学反馈.计算:×56××××.解:-9..计算:-34×;1819×.解:-4310.-299419.运用运算律进行简便运算.活动1 小组讨论例计算:×××113;×12;×;××722×2122;×27-1117×8+117×8.解:-1.-1270.-5.-4.3.活动2 跟踪训练.运用分配律计算×,下面有四种不同的结果,其中正确的是A.×4-3×2-3×3B.×-3×2-3×3c.×+3×2-3×3D.×-3×2+3×3.在运用分配律计算3.96×时,下列变形较合理的是A.×B.×c.3.96×D.3.96×.对于算式XX×+×,逆用分配律写成积的形式是A.XX×B.-XX×c.XX×D.-XX×.计算1357×316,最简便的方法是A.×316B.×316c.×316D.×316.计算:×8××0.1××10;×117;×-4.73×-25×;解:-10.1921.250.活动3 课堂小结.有理数乘法交换律..有理数乘法结合律..有理数乘法分配律.4.2 有理数的除法第1课时有理数的除法法则.理解除法的意义,掌握有理数的除法法则..能熟练进行有理数的除法运算.阅读教材P34,思考并回答下列问题.知识探究.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数..两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.自学反馈计算:÷9=-2;0÷=0;25÷=-32.活动1 小组讨论例计算:÷9;÷.解:÷9=-=-4.÷=×=45.在做除法运算时,先定符号,再算绝对值.若算式中有小数、带分数,一般情况下化成真分数和假分数进行计算.活动2 跟踪训练.两个不为零的有理数的和等于0,那么它们的商是A.正数B.-1c.0D.±1.计算:-0.125÷;÷1110.解:13.-2.活动3 课堂小结.a÷b=a•1b..两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不为0的数仍得第2课时有理数的乘除混合运算.掌握有理数除法法则,能够化简分数..能熟练地进行有理数的乘除混合运算.阅读教材P35,思考并回答下列问题.自学反馈.化简:204=5;-255=-5..计算:5÷15=25;÷3×4=-16.活动1 小组讨论例1 化简下列分数:-123;-45-12;解:-123=÷3=-4.-45-12=÷=45÷12=154.例2 计算:÷;-2.5÷58×.解:2517.1.活动2 跟踪训练.化简:-729;-30-45;0-75.解:-8.23.0..计算:÷×0;-112÷34××134÷1.4×.解:0.-310.活动3 课堂小结.化简分数..乘除混合运算要先将除法化成乘法,然后确定积的符号,最后求出结果.第3课时有理数的加减乘除混合运算.能熟练地掌握有理数加减乘除混合运算的顺序,并能准确计算..能解决有理数加减乘除混合运算应用题..了解用计算器进行有理数的加减乘除运算.阅读教材P36~37,思考并回答下列问题.知识探究有理数加减乘除混合运算的顺序:先乘除,后加减,有括号的先算括号内的.自学反馈计算:-÷;×+÷7;÷8-×;2×+÷.解:2.-16.-156.-25.在做有理数的乘除混合运算时:①先将除法转化为乘法;②确定积的符号;③适时运用运算律;④若出现带分数可化为假分数,小数可化为分数计算;⑤注意运算顺序.活动1 小组讨论例1 计算:-8+4÷;×-90÷.解:-8+4÷=-8+=-10.×-90÷=35-=35+6=41.例2 一架直升机从高度450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒,这时直升机所在高度是多少?解:210米.活动2 跟踪训练.计算:×-÷;|-512|÷×.解:-1.3..高度每增加1千米,气温大约降低6℃,今测量高空气球所在高度的温度为-7℃,地面温度为17℃,求气球的大约高度.解:4千米..某探险队利用温度测量湖水的深度,他们利用仪器侧得湖面的温度是12℃,湖底的温度是5℃,已知该湖水温度每降低0.7℃,深度就增加30米,求该湖的深度.解:300米.活动3 课堂小结有理数加减乘除混合运算的顺序:无括号,先算乘除,后算加减;有括号,先算括号里面的.。
1.4 有理数的乘除法1.4.2 有理数的除法第2课时 有理数的加、减、乘、除混合运算1计算:1/5÷5等于( )A.1B.25C.1/25D.1/52、下列方程的解x 是正数的有( )(1)4x=-8; (2)-4x=12; (3)-4x=-36; (4)-1/5x=0.A.1个B.2个C.3个D.4个 3、一个非零的有理数和它的相反数之积( )A.符号必为正B.符号必为负C.一定不小于零D.一定不大于零4、当a <5时,|a-5|÷(5-a)=( ) (5题)A .4—2a ;B .0;C .1;D .—1.5、右图是一数值转换机,若输入的x 为-3,则输出的结果为( )A 、11B 、-11C 、-30D 、306、已知代数式x -5y 的值是100,则代数式2x -10y +5的值是( )A 、100B 、200C 、2005D 、不能确定7、已知a 、b 、c 都是非正数且∣x —a ∣+∣y —b ∣+∣z —c ∣=0,则(xyz )5的值是( )A 、负数B 、非负数C 、正数D 、非正数8、磁悬浮列车是一种科技含量很高的新型交通工具,它的速度快,爬坡能力强,能耗低等优点.它每个座位的平均能耗仅为飞机每个座位平均能耗的四分之一,汽车每个座位平均能耗的65%.那么,汽车每个座位的平均能耗是飞机每个座位平均能耗的( )A 、1/65B 、1/13C 、5/13D 、13/59、下列运算正确的是( )A .236222⨯=B .22÷2=1C .(-2)3÷1/2=-16D .842222÷=10、 ( )A .—1B.1 C.—25 D.—62511、若a <0,则|4a÷(—2a )|的结果是_____。
12、已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于1,则(a+b )x 3+x 2-cdx =__。
13、计算2005×2004-20052=____。
有理数的除法一、选择题
1.11
4
的倒数与4的相反数的商为()
A.+5 B.-5 C.1
5
D.-
1
5
2.如果a
a
=-1,那么a是( )
A.正数 B.负数 C.非负数 D.非正数
3.如果两个非零数互为相反数,那么下列说法中错误的是 ( )
A.它们的和一定为零 B.它们的差一定是正数
C.它们的积一定是负数 D.它们的商一定等于-1
4.两个不为0的有理数相除,如果交换被除数与除数的位置,它们的商不变,则()A.两数相等 B.两数互为相反数
C.两数互为倒数 D.两数相等或互为相反数
5.若mn≠0,则m n
m n
+的值不可能是()
A.0 B.1 C.2 D.-2 二、填空题
1.当x=_______时,
3
3
x-
没有意义。
2.计算:(一29
11
)÷31=______;4÷(-0.25)=_________。
3.若a
b
>0,
b
c
<0,则ac____0;若
a
b
<0,a<b则-b_____ 0 。
4.已知:m=21
7
,n=4
2
3
则m:
1
n
=_______。
5.一个数的相反数的倒数是41
3
,则这个数为________。
三、解答题
1.计算:(1)(一54)×21
4
÷(-4
1
2
)×
2
9
(2)-1÷
1
10
÷(
1
100
-
)÷
1
1999
2.某冷冻厂的一个冷库的室温是-2℃,现有一批食品需要在-28℃冷藏.如果每小时降温
4℃,问几小时能降到所需要的温度?
3.数学老师将甲、乙两种股票同时卖出,卖价均为a元,其中甲种股票盈利25%,乙种股票亏损25%,问数学老师这样做是盈利还是亏本?数目是多少?
4.初一(3)班现有学生45人,其中身高1.50米的有6人,身高是1.53米有20人,身高是1.60米的有15人,身高是1.62米的有2人,身高是1.68米的有2人.求这个班学生的平均身高.
5.已知a b
a b
+=0。
求
ab
a b•
的值.
6.如果a、b、c是非零有理数,那么请写出a b c
a b c
++的所有可能值.
7.已知a、b互为相反数,c、d互为倒数,x的绝对值等于2,求x2+(a+b+cd)x+(-cd)1995+(a+b)1995的值.
8.已知:a,b互为相反数,c,d互为倒数,x的绝对值是2,
求:2x2-(a+b)+
x
cd
-
22
a b
cd
+
的值。
答案:。