人教版-数学-七年级上册-1.4 有理数的乘除法 第二课时
- 格式:doc
- 大小:935.00 KB
- 文档页数:3
七年级数学上章1.4有理数的乘除法(人教版)4 有理数的乘除法.4.1 有理数的乘法第1课时有理数的乘法法则.了解有理数乘法的实际意义..理解有理数的乘法法则..能熟练的进行有理数乘法运算.阅读教材P28~30,思考并回答下列问题.知识探究.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘..通过有理数的乘法,进一步体会有理数运算包含两步思考:先确定积的符号,再计算积的绝对值..乘积为1的两个数互为倒数.如:-3的倒数是-13,0.5的倒数是2,-212的倒数是-25.自学反馈计算:×=1,×=-6,0×=0,123×=-2,×=5,-│-3│×=6.运用乘法法则,先确定积的符号,再把绝对值相乘;0没有倒数.活动1 小组讨论例1 计算:×9;8×;×.解:×9=-27.×=-8.×=1.例2 用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1气温的变化量为-6℃,攀登3后,气温有什么变化?解:×3=-18.答:气温下降18℃.活动2 跟踪训练.计算:×0.2=-1;×=2;×=1;0.1×=-0.001..若a×=1,则a=-65.已知一个有理数的倒数的绝对值是7,则这个有理数是±17..判断对错:两数相乘,若积为正数,则这两个数都是正数.两数相乘,若积为负数,则这两个数异号.互为相反的数之积一定是负数.正数的倒数是正数,负数的倒数是负数.活动3 课堂小结.有理数的乘法法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘..倒数:乘积是1的两个数互为倒数.第2课时多个有理数的乘法进一步学习有理数乘法运算,掌握多个有理数相乘积的符号的确定.阅读教材P31,思考并回答下列问题.知识探究体会几个不等于零的有理数相乘,积的符号的确定方法:.几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;当负因数的个数是奇数时,积为负..几个数相乘,如果其中有因数为0,那么积等于0.自学反馈计算:××=-30,×3×=1,××××0=0.活动1 小组讨论例计算:×56××;×6××14.解:-98.6.活动2 跟踪训练计算:×0.01×0=0;×××=-250.活动3 课堂小结.几个不为0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数..任何数同0相乘,都得0.第3课时有理数的乘法运算律.进一步应用乘法法则进行有理数的乘法运算..能自主探究理解乘法交换律、结合律、分配律在有理数运算中的应用..培养学生通过观察、思考找到合理解决问题的能力.阅读教材P32~33,思考并回答下列问题.知识探究乘法交换律的文字表达:两个数相乘,交换因数的位置,积相等.乘法交换律的字母表达:ab=ba.乘法结合律的文字表达:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律的字母表达:c=a.乘法分配律的文字表达:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.乘法分配律的字母表达:a=ab+ac.自学反馈.计算:×56××××.解:-9..计算:-34×;1819×.解:-4310.-299419.运用运算律进行简便运算.活动1 小组讨论例计算:×××113;×12;×;××722×2122;×27-1117×8+117×8.解:-1.-1270.-5.-4.3.活动2 跟踪训练.运用分配律计算×,下面有四种不同的结果,其中正确的是A.×4-3×2-3×3B.×-3×2-3×3c.×+3×2-3×3D.×-3×2+3×3.在运用分配律计算3.96×时,下列变形较合理的是A.×B.×c.3.96×D.3.96×.对于算式XX×+×,逆用分配律写成积的形式是A.XX×B.-XX×c.XX×D.-XX×.计算1357×316,最简便的方法是A.×316B.×316c.×316D.×316.计算:×8××0.1××10;×117;×-4.73×-25×;解:-10.1921.250.活动3 课堂小结.有理数乘法交换律..有理数乘法结合律..有理数乘法分配律.4.2 有理数的除法第1课时有理数的除法法则.理解除法的意义,掌握有理数的除法法则..能熟练进行有理数的除法运算.阅读教材P34,思考并回答下列问题.知识探究.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数..两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.自学反馈计算:÷9=-2;0÷=0;25÷=-32.活动1 小组讨论例计算:÷9;÷.解:÷9=-=-4.÷=×=45.在做除法运算时,先定符号,再算绝对值.若算式中有小数、带分数,一般情况下化成真分数和假分数进行计算.活动2 跟踪训练.两个不为零的有理数的和等于0,那么它们的商是A.正数B.-1c.0D.±1.计算:-0.125÷;÷1110.解:13.-2.活动3 课堂小结.a÷b=a•1b..两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不为0的数仍得第2课时有理数的乘除混合运算.掌握有理数除法法则,能够化简分数..能熟练地进行有理数的乘除混合运算.阅读教材P35,思考并回答下列问题.自学反馈.化简:204=5;-255=-5..计算:5÷15=25;÷3×4=-16.活动1 小组讨论例1 化简下列分数:-123;-45-12;解:-123=÷3=-4.-45-12=÷=45÷12=154.例2 计算:÷;-2.5÷58×.解:2517.1.活动2 跟踪训练.化简:-729;-30-45;0-75.解:-8.23.0..计算:÷×0;-112÷34××134÷1.4×.解:0.-310.活动3 课堂小结.化简分数..乘除混合运算要先将除法化成乘法,然后确定积的符号,最后求出结果.第3课时有理数的加减乘除混合运算.能熟练地掌握有理数加减乘除混合运算的顺序,并能准确计算..能解决有理数加减乘除混合运算应用题..了解用计算器进行有理数的加减乘除运算.阅读教材P36~37,思考并回答下列问题.知识探究有理数加减乘除混合运算的顺序:先乘除,后加减,有括号的先算括号内的.自学反馈计算:-÷;×+÷7;÷8-×;2×+÷.解:2.-16.-156.-25.在做有理数的乘除混合运算时:①先将除法转化为乘法;②确定积的符号;③适时运用运算律;④若出现带分数可化为假分数,小数可化为分数计算;⑤注意运算顺序.活动1 小组讨论例1 计算:-8+4÷;×-90÷.解:-8+4÷=-8+=-10.×-90÷=35-=35+6=41.例2 一架直升机从高度450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒,这时直升机所在高度是多少?解:210米.活动2 跟踪训练.计算:×-÷;|-512|÷×.解:-1.3..高度每增加1千米,气温大约降低6℃,今测量高空气球所在高度的温度为-7℃,地面温度为17℃,求气球的大约高度.解:4千米..某探险队利用温度测量湖水的深度,他们利用仪器侧得湖面的温度是12℃,湖底的温度是5℃,已知该湖水温度每降低0.7℃,深度就增加30米,求该湖的深度.解:300米.活动3 课堂小结有理数加减乘除混合运算的顺序:无括号,先算乘除,后算加减;有括号,先算括号里面的.。
1.4 有理数的乘除法1.4.2 有理数的除法第2课时 有理数的加、减、乘、除混合运算1计算:1/5÷5等于( )A.1B.25C.1/25D.1/52、下列方程的解x 是正数的有( )(1)4x=-8; (2)-4x=12; (3)-4x=-36; (4)-1/5x=0.A.1个B.2个C.3个D.4个 3、一个非零的有理数和它的相反数之积( )A.符号必为正B.符号必为负C.一定不小于零D.一定不大于零4、当a <5时,|a-5|÷(5-a)=( ) (5题)A .4—2a ;B .0;C .1;D .—1.5、右图是一数值转换机,若输入的x 为-3,则输出的结果为( )A 、11B 、-11C 、-30D 、306、已知代数式x -5y 的值是100,则代数式2x -10y +5的值是( )A 、100B 、200C 、2005D 、不能确定7、已知a 、b 、c 都是非正数且∣x —a ∣+∣y —b ∣+∣z —c ∣=0,则(xyz )5的值是( )A 、负数B 、非负数C 、正数D 、非正数8、磁悬浮列车是一种科技含量很高的新型交通工具,它的速度快,爬坡能力强,能耗低等优点.它每个座位的平均能耗仅为飞机每个座位平均能耗的四分之一,汽车每个座位平均能耗的65%.那么,汽车每个座位的平均能耗是飞机每个座位平均能耗的( )A 、1/65B 、1/13C 、5/13D 、13/59、下列运算正确的是( )A .236222⨯=B .22÷2=1C .(-2)3÷1/2=-16D .842222÷=10、 ( )A .—1B.1 C.—25 D.—62511、若a <0,则|4a÷(—2a )|的结果是_____。
12、已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于1,则(a+b )x 3+x 2-cdx =__。
13、计算2005×2004-20052=____。
人教版数学七年级上册1.4.2有理数的除法第2课时有理数的加减乘除混合运算同步课时训练自主预习基础达标要点1有理数的加减乘除混合运算1. 有理数的加减乘除混合运算顺序:在有理数的加减乘除混合运算中,若没有括号,则先算,再算,若有括号,则按照先算括号里的,再算括号外的顺序计算.2. 同级运算要按从至的顺序进行运算.要点2用计算器进行有理数的混合运算计算器的使用步骤:1.按开启键ON;2. 按照算式的输入数据,看显示器上的显示是否正确;3. 按=键执行运算,此时显示出计算结果.每次新的运算要按一下清零键AC.课后集训巩固提升1. 计算12+(-18)÷(-6)-(-3)×2的结果是()A. 7B. 8C. 21D. 362. 若两个数的和为0,且商为-1,则这两个数()A. 互为相反数B. 互为倒数C. 互为相反数且不为零D. 以上都不对3. 下列说法错误的是()A. 开启计算器使之工作的按键是ON键B. 输入-5.8的按键顺序是-5·8或(-)5·8C. 输入0.58的按键顺序是·58D. 按键69-87-=能计算-69-87的结果4. 在算式1-|-2※3|中的※里,填入下列哪种运算符号,使得算式的值最小()A. +B. -C. ×D. ÷5. 已知ac b<0,a >c ,ac <0,则下列结论正确的是( ) A. a <0,b <0,c >0 B. a >0,b >0,c <0C. a <0,b <0,c <0D. a >0,b >0,c >06. 计算12-7×(-4)+8÷(-2)的结果是 .7. 若ab <0,a >b ,则b 0;若ab c <0,ac >0,则b 0;若a b >0,b c<0,则ac 0. 8. 用计算器计算(结果保留两位小数):(1)2.52÷(-15)≈ ;(2)-2.34×(-0.12)-3.74÷(-2.68)≈ ;(3)-5.28÷0.75×(-3.14)≈ ;(4)37.5-(-4.2)×31÷(-16)≈ .9. 计算:(1)(-7.5)×(+25)×(-0.04); (2)(-12+16-38+512)×(-24);(3)(-112+116-1112)÷(-112); (4)-1108÷[124-(-112)-172];(5)(79-56+318)×18-1.45×6+3.95×6.10. 如果对于任意非零有理数a ,b ,定义新运算※如下:a ※b =(a -2b )÷(2a -b ).求(-3)※5的值.11. 已知m ,n 互为相反数,x ,y 互为倒数,求(4m +4n -24)÷(8xy -3)-2(m +n )的值.12. 已知有理数m,n,且在数轴上表示m的点距离原点的距离为4,|n|=12,求nm(m+n)的值.13. 有两个数-4和+6,它们相反数的和为a,倒数的和为b,和的倒数为c,求a÷b÷c的值.14. 若有理数a,b,c满足:|a-1|+|b-3+a|+|2a+b-c+1|=0.(1)求a,b,c的值;(2)求3a-2b+4(3-c)b-c的值.15. 赵先生将甲、乙两种股票都以1200元的价格同时卖出,其中甲股票盈利20%,乙股票亏损20%,问这次赵先生是盈利还是亏损?盈利或亏损多少元?16. 阅读材料,回答问题.计算:(-130)÷(23-110+16-25).解:方法一:原式=(-130)÷[(23+16)-(110+25)]=(-130)÷(56-12)=(-130)÷13=-110.方法二:原式的倒数为(23-110+16-25)÷(-130)=(23-110+16-25)×(-30)=-20+3-5+12=-10.故原式=-110.根据材料用适当的方法计算:(-142)÷(16-314+23-27). 参考答案自主预习 基础达标要点1 1. 乘除 加减 2. 左 右要点2 2. 书写顺序课后集训 巩固提升1. C2. C3. D4. C5. B6. 367. < < <8. (1)-0.17 (2)1.68 (3)22.11 (4)29.369. 解:(1)原式=7.5.(2)原式=7.(3)原式=17.(4)原式=-112. (5)原式=17.10. 解:由新运算知:(-3)※5=[(-3)-2×5]÷[2×(-3)-5]=(-3-10)÷(-6-5)=(-13)÷(-11)=1311. 11. 解:因为m ,n 互为相反数,所以m +n =0.因为x ,y 互为倒数,所以xy =1.所以(4m +4n -24)÷(8xy -3)-2(m +n )=(-24)÷5-0=-245. 12. 解:根据题意,可知|m |=4,得m =-4或m =4.由|n |=12,得n =-12或n =12.当m =4且n =12时,n m (m +n )=916;当m =4且n =-12时,n m (m +n )=-716;当m =-4且n =12时,n m (m +n )=716;当m =-4且n =-12时,n m (m +n )=-916.综上可知,n m (m +n )的值为±916或±716. 13. 解:由题意,得a =4+(-6)=-2,b =-14+16=-112,c =1-4+6=12,所以a ÷b ÷c =-2÷(-112)÷12=2×12×2=48. 14. 解:(1)由题意,得a -1=0,即a =1,b -3+a =b -3+1=0,即b =2,2a +b -c +1=2×1+2-c +1=0,即c =5.(2)原式=3a -2b -4c +12b -c =3×1-2×2-4×5+122-5=3.15. 解:由题意得1200×2-[1200÷(1+20%)+1200÷(1-20%)]=2400-(1200÷1.2+1200÷0.8)=2400-(1000+1500)=2400-2500=-100(元),因为-100<0,所以赵先生在这次交易中共亏损了100元.16. 解:原式的倒数为(16-314+23-27)÷(-142)=(16-314+23-27)×(-42)=-7+9-28+12=-14.故原式=-114.。
有理数的除法一、选择题
1.11
4
的倒数与4的相反数的商为()
A.+5 B.-5 C.1
5
D.-
1
5
2.如果a
a
=-1,那么a是( )
A.正数 B.负数 C.非负数 D.非正数
3.如果两个非零数互为相反数,那么下列说法中错误的是 ( )
A.它们的和一定为零 B.它们的差一定是正数
C.它们的积一定是负数 D.它们的商一定等于-1
4.两个不为0的有理数相除,如果交换被除数与除数的位置,它们的商不变,则()A.两数相等 B.两数互为相反数
C.两数互为倒数 D.两数相等或互为相反数
5.若mn≠0,则m n
m n
+的值不可能是()
A.0 B.1 C.2 D.-2 二、填空题
1.当x=_______时,
3
3
x-
没有意义。
2.计算:(一29
11
)÷31=______;4÷(-0.25)=_________。
3.若a
b
>0,
b
c
<0,则ac____0;若
a
b
<0,a<b则-b_____ 0 。
4.已知:m=21
7
,n=4
2
3
则m:
1
n
=_______。
5.一个数的相反数的倒数是41
3
,则这个数为________。
三、解答题
1.计算:(1)(一54)×21
4
÷(-4
1
2
)×
2
9
(2)-1÷
1
10
÷(
1
100
-
)÷
1
1999
2.某冷冻厂的一个冷库的室温是-2℃,现有一批食品需要在-28℃冷藏.如果每小时降温
4℃,问几小时能降到所需要的温度?
3.数学老师将甲、乙两种股票同时卖出,卖价均为a元,其中甲种股票盈利25%,乙种股票亏损25%,问数学老师这样做是盈利还是亏本?数目是多少?
4.初一(3)班现有学生45人,其中身高1.50米的有6人,身高是1.53米有20人,身高是1.60米的有15人,身高是1.62米的有2人,身高是1.68米的有2人.求这个班学生的平均身高.
5.已知a b
a b
+=0。
求
ab
a b•
的值.
6.如果a、b、c是非零有理数,那么请写出a b c
a b c
++的所有可能值.
7.已知a、b互为相反数,c、d互为倒数,x的绝对值等于2,求x2+(a+b+cd)x+(-cd)1995+(a+b)1995的值.
8.已知:a,b互为相反数,c,d互为倒数,x的绝对值是2,
求:2x2-(a+b)+
x
cd
-
22
a b
cd
+
的值。
答案:。