图论模型最短路
- 格式:ppt
- 大小:1.40 MB
- 文档页数:25
最短路问题的求解方法最短路问题是图论中的一个经典问题,它在很多实际应用中都有着重要的作用。
在现实生活中,我们经常需要求解最短路径,比如在地图导航、网络通信、交通运输等领域。
因此,研究最短路问题的求解方法具有重要的理论意义和实际应用价值。
在图论中,最短路问题的求解方法有很多种,其中比较经典的有Dijkstra算法、Bellman-Ford算法、Floyd-Warshall算法等。
这些算法各有特点,适用于不同的场景和要求。
下面我们就逐一介绍这些算法的原理和求解方法。
Dijkstra算法是一种用于求解单源最短路径的算法,它采用贪心策略,每次找到当前距离最短的节点进行松弛操作,直到所有节点都被遍历。
Dijkstra算法的时间复杂度为O(V^2),其中V为节点的个数。
这种算法适用于边权值为正的图,可以求解从单个源点到其他所有点的最短路径。
Bellman-Ford算法是一种用于求解单源最短路径的算法,它可以处理边权值为负的图,并且可以检测负权回路。
Bellman-Ford算法的时间复杂度为O(VE),其中V为节点的个数,E为边的个数。
这种算法适用于一般情况下的最短路径求解,但是由于其时间复杂度较高,不适用于大规模图的求解。
Floyd-Warshall算法是一种用于求解所有点对最短路径的算法,它可以处理边权值为正或负的图,但是不能检测负权回路。
Floyd-Warshall算法的时间复杂度为O(V^3),其中V为节点的个数。
这种算法适用于求解图中所有点对之间的最短路径,可以同时求解多个源点到多个目标点的最短路径。
除了上述几种经典的最短路求解算法外,还有一些其他的方法,比如A算法、SPFA算法等。
这些算法在不同的场景和要求下有着各自的优势和局限性,需要根据具体情况进行选择和应用。
在实际应用中,最短路问题的求解方法需要根据具体的场景和要求进行选择,需要综合考虑图的规模、边权值的情况、时间效率等因素。
同时,对于大规模图的求解,还需要考虑算法的优化和并行化问题,以提高求解效率。
最短路问题数学模型
最短路问题是指在带权有向图中,求两个顶点之间的最短路径。
这个问题在现实生活中有很多应用,如在交通规划、电信网络设计、人工智能等领域。
为了解决这个问题,需要建立一个数学模型。
数学模型是指用数学方法对实际问题进行抽象和描述,从而进行定量分析和求解的方法。
对于最短路问题,可以使用图论和运筹学的方法建立数学模型。
在图论中,最短路问题可以使用迪杰斯特拉算法或弗洛伊德算法求解。
这些算法基于图的边权和,采用动态规划的思想,逐步计算每个节点到源节点的最短距离,最终得到整个图中每对节点之间的最短路径。
在运筹学中,最短路问题可以被看作是一种线性规划问题。
可以将每个节点看作是一个决策变量,节点之间的边权看作是线性约束条件,目标函数则是从源节点到目标节点的路径长度。
通过对目标函数进行最小化,可以得到最短路径的解。
总之,最短路问题数学模型可以通过图论和运筹学的方法进行建立和求解。
建立好的数学模型可以为实际问题提供科学解决方案,优化效率和效果。
- 1 -。
一、概述已知起点的最短路问题是图论中的一个经典问题,它在实际生活中有着广泛的应用,如交通规划、通信网络设计、物流配送等领域。
本文将对已知起点的最短路问题进行数学建模,并探讨其求解方法。
二、问题描述已知起点的最短路问题可以描述为在一个加权有向图中,从给定的起点出发,求得到其他所有顶点的最短路径。
其中,图的顶点表示位置,边的权重表示移动的代价或者距离。
问题的输入包括图的结构和起点的位置,输出包括从起点到所有其他顶点的最短路径。
三、数学建模1. 图的表示为了进行数学建模,我们需要选取恰当的数据结构来表示图。
常用的数据结构包括邻接矩阵和邻接表。
邻接矩阵适用于稠密图,适合于求解任意两个顶点之间的最短路径;邻接表适用于稀疏图,适合于求解从一个起点到其他所有顶点的最短路径。
在实际应用中,根据具体问题的规模和特点选择合适的数据结构。
2. 最短路径的定义最短路径可以通过不同的度量标准来定义,比如长度最短、耗费最少等。
在已知起点的最短路问题中,最常见的度量标准是路径的长度。
我们的数学建模将以路径的长度为目标函数。
3. 数学模型我们可以使用图论中的单源最短路径算法来解决已知起点的最短路问题。
常见的算法包括Dijkstra算法和Bellman-Ford算法。
以下是这两种算法的数学模型:(1)Dijkstra算法Dijkstra算法通过维护一个距离集合来逐步求得起点到其他各顶点的最短路径。
具体流程如下:初始化距离集合,将起点到自身的距离设为0,其余顶点的距离设为无穷大。
选择一个顶点加入最短路径集合,更新起点到所有其他顶点的距离。
重复上述步骤,直到所有顶点都加入了最短路径集合。
(2)Bellman-Ford算法Bellman-Ford算法通过对边进行松弛操作来逐步求得起点到其他各顶点的最短路径。
具体流程如下:初始化距离数组,将起点到自身的距离设为0,其余顶点的距离设为无穷大。
在图的所有边上进行|V|-1次松弛操作,其中|V|表示图的顶点数。
图论——单源最短路一、最短路两点之间的最短路:给定一个带权图,图中两点i与j的最短路是指从i到j的一条路径,这条路径经过的边的权值之和最小。
求单源最短路:给定一个带权图,求图以结点start为起点的单源最短路是指对每一个结点j<>start,求出start到j的最短路。
二、图的存储方式对于求最短路类问题的算法,图的不同存储方式会产生很大的影响,总的来说,图的存储方式有邻接矩阵,邻接表,前向星等几种。
邻接矩阵:这种存储方法需要开设一个V^2的二维数组edge,对于每两个顶点i和j,如果ij有边,则edge[i,j]=w[i,j],否则edge[i,j]=-1,这里w[i,j]为边Eij的权。
邻接表:邻接表有链表与数组两种实现方式,如果用数组实现,同邻接矩阵一样需要一个V^2的二维数组edge,edge的每个元素包含两个信息:终点和权值。
另有一个数组a记录从指定顶点出发的边数。
对于每个顶点i,edge[i, j](j=1~a[i])表示从i出发的第j条边的终点与权值。
若用链表实现邻接表,我们可以将edge减成一维,在每个edge[i]后面连一条链表,链表上的每个结点都表示由i出发的一条边。
前向星:前向星的存法只需两个一维数组pos与edge,其中edge[i]存储了第i条边的信息,这些边是按照起点由小到大排好序的,而pos[i]则表示以i为起点的第一条边的位置。
这样在edge[pos[i]~pos[i+1]-1]中便可找到从i出发的所有边的信息。
以下的例子显示了这四种存储图的方法:2 4邻接矩阵:邻接表(数组):邻接表(链表):edge各种存储方法的比较:#对于稀疏图而言,复杂度约为常数。
*需要一个O(ElogE)的预处理(排序)。
总的来说,邻接矩阵比较好编写,存储方式简单明了,适合中小规模数据;用数组实现的邻接表与邻接矩阵相差不多;用链表实现的邻接表编程复杂度较高,但效率很好,适合各种各样的图论类题目;前向星只对数组进行操作,编写不是很难,同时效率也不错,在不需要修改边的最短路问题中,前向星是遇到大数据时的最佳选择。
浅谈图论(⼀)——最短路问题图论〔Graph Theory〕是数学的⼀个分⽀。
它以图为研究对象。
图论中的图是由若⼲给定的点及连接两点的线所构成的图形,这种图形通常⽤来描述某些事物之间的某种特定关系,⽤点代表事物,⽤连接两点的线表⽰相应两个事物间具有这种关系。
(摘⾃百度百科)1.Floyd 弗洛伊德算法这种算法解决的是多源最短路问题(求任意两点之间的最短路径)若我们⽤⼆维数组e[i][j]表⽰点i到点j当前的最短距离(程序运⾏完后数组中存的就是真正的最短距离)那么我们可以⽤e[i][j]=max(e[i][j],e[i][k],e[j][k]);来更新e数组。
也就是⽐较从i到j 和从i到k+从k到j 的距离重点来啦核⼼思想:能否找到第三点使得任意两点的距离变短,即能否找到 i->k->j ⽐ i->j 短,如果能找到,就更新。
下⾯呈上代码://多元最短路 Floyd O(n^3)#include<iostream>#include<cstdlib>#include<cstdio>#include<cstring>#include<algorithm>#include<cmath>using namespace std;const int maxn=99999999;int n,m,e[1005][1005];int main(){int i,j,k,a,b,c;scanf("%d%d",&n,&m);for(i=1;i<=n;i++){for(j=1;j<=n;j++){if(i==j) e[i][j];else e[i][j]=maxn;}}for(i=1;i<=m;i++){scanf("%d%d%d",&a,&b,&c);e[a][b]=c;}//Floyd核⼼部分for(i=1;i<=n;i++)for(j=1;j<=n;j++)for(k=1;k<=n;k++)if(e[j][k]>e[j][i]+e[i][k])e[j][k]=e[j][i]+e[i][k];for(i=1;i<=n;i++){for(j=1;j<=n;j++)printf("%d ",e[i][j]);printf("\n");}return0;}Floyd很容易发现Floyd算法的时间复杂度是O(N^3)。
图论中最短路算法与程序实现图论中的最短路问题(包括无向图和有向图)是一个基本且常见的问题。
主要的算法有Dijkstra 算法和Floyd 算法。
Dijkstra 算法是求出指定两点之间的最短路,算法复杂度为 Floyd 算法是求出任意两点之间的最短路,算法复杂度为 2()O n 3()O n1.Dijkstra算法2. Floyd算法算法程序(Matlab)为:for k=1:nfor i=1 :nfor j=1:nt=B(i,k)+B(k,j);if t<B(i,j) B(i,j)=t; end endendend起点终点距离起点终点距离起点终点距离12400718160151725013450892001617140243008152851618130221230910180172724024714010111501819204346001015160182518045210111214019201404193101114130192417556230121320020211805720013344002024190673201415190212230068340142619021232707817015161702147350表1 各点距离(m)实例:已知50个点之间相互连接信息见表1及续表。
求最短距离矩阵续表1 各点距离(m)起点终点距离起点终点距离起点终点距离22441602229313640190 22452702230313738135 22481802230423839130 23242402330433941310 23292102331324041140 23302902331364050190 23441502331504250200 24251702432334344260 24281302432354345210 26271402632364546240 26343202633344648280 27281902735374849200 2829260283639n=50; %Matlab实现的Floyd算法A=zeros(n,n);for i=1:nfor j=1:nif(i==j) A(i,j)=0;else A(i,j)=100000;endendend %赋直接距离信息A(1,2)=400;A(1,3)=450; A(2,4)=300;A(2,21)=230; A(2,47)=140;A(3,4)=600;A(4,5)=210;A(4,19)=310;A(5,6)=230;A(5,7)=200; A(6,7)=320; A(6,8)=340;A(7,8)=170;A(7,18)=160;A(8,9)=200;A(8,15)=285; A(9,10)=180; A(10,11)=150; A(10,15)=160; A(11,12)=140; A(11,14)=130; A(12,13)=200; A(13,34)=400;A(14,15)=190;A(14,26)=190; A(15,16)=170; A(15,17)=250; A(16,17)=140;A(16,18)=130; A(17,27)=240; A(18,19)=204; A(18,25)=180; A(19,20)=140; A(19,24)=175; A(20,21)=180; A(20,24)=190; A(21,22)=300; A(21,23)=270; A(21,47)=350;A(22,44)=160;A(22,45)=270;A(22,48)=180;A(23,24)=240; A(23,29)=210;A(23,30)=290;A(23,44)=150;A(24,25)=170;A(24,28)=130; A(26,27)=140;A(26,34)=320;A(27,28)=190;A(28,29)=260;A(29,31)=190; A(30,31)=240;A(30,42)=130;A(30,43)=210;A(31,32)=230;A(31,36)=260; A(31,50)=210;A(32,33)=190;A(32,35)=140;A(32,36)=240;A(33,34)=210; A(35,37)=160;A(36,39)=180;A(36,40)=190;A(37,38)=135;A(38,39)=130; A(39,41)=310;A(40,41)=140;A(40,50)=190;A(42,50)=200;A(43,44)=260; A(43,45)=210;A(45,46)=240;A(46,48)=280;A(48,49)=200;for j=1:nfor i=1:j-1A(j,i)=A(i,j); %使矩阵对称endendB=A;%利用Floyd算法计算最短距离矩阵for k=1:nfor i=1 :nfor j=1:nt=B(i,k)+B(k,j);if t<B(i,j) B(i,j)=t; endendendend %输出距离矩阵到文件fid=fopen('distance.txt','w'); for i=1:nfor j=1:nfprintf(fid,'%4d ',B(i,j)); endfprintf(fid,'\n');endfclose(fid);。