One-Way_ANOVA单因素方差分析
- 格式:ppt
- 大小:694.00 KB
- 文档页数:31
旅游管理专业(航空服务方向)2018年分类考试招生面试大纲(面向普通高中毕业生职业适应性测试)一、招生考试对象参加2018年安徽省考试院组织的“文化素质”考试合格的高中毕业生。
二、报考条件1.热爱祖国,遵纪守法,有志于从事航空服务事业。
2. 身高女生:163cm-174cm;男生174-184cm。
3. 五官端正、肤色好,身体暴露部位无明显疤痕、斑点,牙齿排列整齐,无明显异色,无纹身,无狐臭。
4. 视力:无色盲、色弱。
5. 口齿清晰,听力正常,善于表达。
发音基本准确,无口吃。
6. 形体匀称,动作协调、无“X”、“O”型腿,无精神病史和传染性疾病。
三、面试的主要方式和内容面试分为两个环节,考试时间为10分钟,满分300分,具体考核内容及基本要求如下。
(一)第一环节(3分钟)1.自我介绍。
考生进考场后向考官致意,就座。
然后进行自我介绍。
2.举止仪表。
举止仪表考试附着于面试整个过程,包括考试期间的言谈举止、神情气质、服饰着装、礼仪礼节等。
该环节主要考查考生的表达能力、沟通能力、心理素质、着装礼仪。
要求考生以职业形象(包括服饰妆容、精神气质及礼仪礼节)参加面试。
(二)第二环节(7分钟)回答问题。
考官抽取2个问题由考生进行回答,主要考查考生的专业兴趣、专业知识储备、专业潜质、专业适应能力,考生的逻辑思维、语言表达及沟通、反应能力。
考查考生是否具备学习该专业所需的基本素质,具备正确的职业认知和价值取向,较强的行业服务意识和学习能力。
四、面试的程序1.考生按规定的时间,凭个人身份证件进入候考室等待面试。
2.工作人员点名后,抽签确定考生面试顺序,或按照考生到达候考室的时间先后排定面试顺序。
3.面试开始前,由工作人员向考生宣读《考试注意事项》。
开考后,考生按照工作人员的引导依次进入考场进行面试。
五、评分细则考生面试满分为300分,具体评分细则如下:六、面试基本要求要求考生能正确着装,注重仪容仪表,在面试的整个环节注重礼仪,能在把握主题的基础上,注意沟通交流方式并适当运用知识和技巧,准确且充分地表达个人观点,并具有一定的创新思维和应变能力。
单因素方差分析前提单因素方差分析(One-WayAnalysisofVariance,ANOVA)是一种探讨不同条件下总体均值差异的数理统计方法。
它是统计分析中重要的统计技术之一,在数据的统计分析及研究解释中占有重要的地位。
本文将综述单因素方差分析的前提条件,期望提供一定的参考。
首先,单因素方差分析要求有足够的样本数量,以保证分析结果的稳定性和可靠性。
一般来说,每组样本数量最好超过5个,以保证统计性质满足单因素方差分析的要求。
其次,单因素方差分析要求实验条件必须是完全随机的,不能存在任何指定性因素。
除此之外,单因素方差分析的变量必须是定性的,比如“性别”,“教育程度”等,而不能是定量的,比如“收入”,“体重”等。
另外,两个以上的实验组间要求服从正态分布,方差也要求相等,并且每个实验组里的样本要求具有相同的方差。
最后,单因素方差分析还要求实验结果要能够反映客观性的现象,而不是特定的主观性假设。
总之,正确遵循单因素方差分析的诸多前提条件是很重要的,只有这样,才能保证获得的结果真实可靠,具有科学性。
首先,单因素方差分析要求有足够的样本数量,以保证分析结果的稳定性和可靠性。
在实验环节上,需要根据实际情况选择对应的样本数量。
如果实验对象量较小,要求在每组样本中至少有5个以上的样本,以保证统计性质满足单因素方差分析的要求。
其次,单因素方差分析要求实验条件必须是完全随机的,不能存在任何指定性因素。
在实验设计环节上,必须保证实验条件的独立,不能受到外部环境特定的影响。
此外,单因素方差分析的变量必须是定性的,比如“性别”,“教育程度”等,而不能是定量的,比如“收入”,“体重”等。
在实验数据收集环节上,需要精准把控,只选择定性数据,而不是定量数据。
继续来说,两个以上的实验组间要求服从正态分布,方差也要求相等,并且每个实验组里的样本要求具有相同的方差。
首先,在实验数据收集环节,实验组的样本数量应该尽量一致,以保证方差的相等性。
SPSS--单因素方差分析单因素方差分析也称作一维方差分析。
单因素方差分析是两个样本平均数比较的引伸,是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。
它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。
单因素方差分析(one-way ANOVA),用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。
采用One-way ANOVA过程要求:因变量属于正态分布总体,若因变量的分布明显是非正态,应该用非参数分析过程。
若对被观测对象的试验不是随机分组的,而是进行的重复测量形成几个彼此不独立的变量,应该用Repeated Measure菜单项,进行重复测量方差分析,条件满足时,还可以进行趋势分析。
[例子]调查不同水稻品种百丛中“稻纵卷叶螟”幼虫的数量,数据如表1-1所示。
分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。
表1-1不同水稻品种百丛中“稻纵卷叶螟”幼虫数(个/100丛)1建立因变量“虫数”和因素水平变量“品种”,然后在数据编辑窗口中输入对应的数值。
变量格式如表1-2和图1-1所示。
或者打开已存在的数据文件“虫数.sav”。
图1-12)启动分析过程从菜单中选择:分析 > 比较均值 > 单因素 ANOVA。
打开单因素方差分析对话框,如图1-2。
图1-2单因素方差分析窗口3)设置分析变量在这个对话框中,将因变量(观测变量)放到“因变量列表”框中,本例选择“虫数”。
将因素变量(自变量)放到“因子”框中。
本例选择“品种”。
4)设置多项式比较(一般选择缺省值)单击“对比”按钮,将打开如图1-3所示的对话框。
该对话框用于设置均值的多项式比较。
图1-3“对比”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。
例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。
SPSS中的单因素方差分析(One-Way Anova)SPSS中的单因素方差分析(One-Way Anova) 一、基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。
二、实验工具SPSS for Windows三、试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。
在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。
灯泡 1 2 3 4 5 6 7 8 灯丝甲 1600 1610 1650 1680 1700 1700 1780乙 1500 1640 1400 1700 1750丙 1640 1550 1600 1620 1640 1600 1740 1800丁 1510 1520 1530 1570 1640 1680 四、不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。
Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。
(2)按Analyze,然后Compared Means,然后One-Way Anova的顺序单击,打开“单因素方差分析”主对话框。
(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours 即进入Dependent List框中。
(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。
(5)在主对话框中,单击“OK”提交进行。
单因素方差分析单因素方差分析也称作一维方差分析。
它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。
还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。
One-Way ANOVA过程要求因变量属于正态分布总体。
如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。
如果几个因变量之间彼此不独立,应该用Repeated Measure过程。
[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表5-1所示。
表5-1 不同水稻品种百丛中稻纵卷叶螟幼虫数从复水稻品种1 2 3 4 51 41 33 38 37 312 39 37 35 39 343 40 35 35 38 34 数据保存在“DATA5-1.SAV”文件中,变量格式如图5-1。
图5-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。
1)准备分析数据在数据编辑窗口中输入数据。
建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图5-1所示。
或者打开已存在的数据文件“DATA5-1.SAV”。
2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图5-2。
图5-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。
本例选择“幼虫”。
因素变量:选择一个因素变量进入“Factor”框中。
本例选择“品种”。
4)设置多项式比较单击“Contrasts”按钮,将打开如图5-3所示的对话框。
该对话框用于设置均值的多项式比较。
图5-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。
例如图5-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。
单因素⽅差分析(one-wayANOVA)单因素⽅差分析(⼀)单因素⽅差分析概念是⽤来研究⼀个控制变量的不同⽔平是否对观测变量产⽣了显著影响。
这⾥,由于仅研究单个因素对观测变量的影响,因此称为单因素⽅差分析。
例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇⼥的⽣育率,研究学历对⼯资收⼊的影响等。
这些问题都可以通过单因素⽅差分析得到答案。
(⼆)单因素⽅差分析步骤第⼀步是明确观测变量和控制变量。
例如,上述问题中的观测变量分别是农作物产量、妇⼥⽣育率、⼯资收⼊;控制变量分别为施肥量、地区、学历。
第⼆步是剖析观测变量的⽅差。
⽅差分析认为:观测变量值的变动会受控制变量和随机变量两⽅⾯的影响。
据此,单因素⽅差分析将观测变量总的离差平⽅和分解为组间离差平⽅和和组内离差平⽅和两部分,⽤数学形式表述为:SST=SSA+SSE。
第三步是通过⽐较观测变量总离差平⽅和各部分所占的⽐例,推断控制变量是否给观测变量带来了显著影响。
(三)单因素⽅差分析原理总结在观测变量总离差平⽅和中,如果组间离差平⽅和所占⽐例较⼤,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响;反之,如果组间离差平⽅和所占⽐例⼩,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同⽔平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。
(四)单因素⽅差分析基本步骤1、提出原假设:H0——⽆差异;H1——有显著差异2、选择检验统计量:⽅差分析采⽤的检验统计量是F统计量,即F值检验。
3、计算检验统计量的观测值和概率P值:该步骤的⽬的就是计算检验统计量的观测值和相应的概率P值。
4、给定显著性⽔平,并作出决策(五)单因素⽅差分析的进⼀步分析在完成上述单因素⽅差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他⼏个重要分析,主要包括⽅差齐性检验、多重⽐较检验。
主题:多组等级资料比较的假设检验选择内容:1. 背景介绍:多组等级资料比较是统计学中常见的问题之一,当我们需要比较多组不同水平或处理的资料时,我们需要选择适合的假设检验方法来进行统计分析。
本文将介绍在不同情况下如何选择适合的假设检验方法。
2. 单因素方差分析(one-way ANOVA):单因素方差分析适用于比较多组不同水平的资料,例如实验中对照组、治疗组1、治疗组2等。
当我们希望比较多组资料均值之间是否存在显著差异时,可以选择单因素方差分析进行检验。
3. Kruskal-Wallis检验:当资料不符合正态分布或方差齐性的要求时,可以选择Kruskal-Wallis检验进行多组等级资料比较。
Kruskal-Wallis检验是一种非参数检验方法,不依赖于数据的分布特性,适用于小样本或不符合正态分布的资料。
4. Friedman检验:Friedman检验是针对重复测量资料的一种非参数检验方法,适用于对同一组个体在不同条件下进行多次测量的情况。
当我们希望比较多组重复测量资料的差异时,可以选择Friedman检验进行统计分析。
5. 贝叶斯统计方法:贝叶斯统计方法是一种基于贝叶斯定理的统计推断方法,常用于参数估计和假设检验。
在多组等级资料比较中,可以利用贝叶斯方法进行参数估计和假设检验,从而得到更加客观和全面的统计分析结果。
6. 结论:在进行多组等级资料比较时,我们应根据实际情况选择适合的假设检验方法,包括单因素方差分析、Kruskal-Wallis检验、Friedman检验和贝叶斯统计方法等。
通过合理选择假设检验方法,可以得到准确、可靠的统计分析结果,为科研工作和决策提供科学依据。
结构分析:1. 概述部分:介绍文章主题,提出多组等级资料比较的问题和背景。
2. 方法选择部分:详细介绍了单因素方差分析、Kruskal-Wallis检验、Friedman检验和贝叶斯统计方法在多组等级资料比较中的应用情况和适用范围。