单因素试验方差分析(试验数据处理)
- 格式:ppt
- 大小:628.50 KB
- 文档页数:18
单因素实验设计报告:因素实验报告设计单因素实验设计举例正交实验单因素实验设计方案篇一:实验报告单因素方差分析5.1、实验步骤: 1(建立数据文件。
定义2个变量:PWK和DCGJSL,分别表示排污口和大肠杆菌数量。
2. 选择菜单“分析?比较均值?单因素”,弹出“单因素方差分析”对话框。
在对话框左侧的变量列表中,选择变量“DCGJSL”进入“因变量”列表框,选择变量“PWK”进入“因子”列表框。
3(单击“确定”按钮,得到输出结果。
结果解读:由以上结果可以看到,观测变量大肠杆菌数量的总离差平方和为460.438;如果仅考虑“排污口”单个因素的影响,则大肠杆菌数量总变差中,排污口可解释的变差为308.188,抽样误差引起的变差为152.250,它们的方差(平均变差)分别为102.729和12.688,相除所得的F统计量的观测值为8.097,对应的概率P值为0.003。
在显著性水平α为0.05的情况下。
由于概率P值小于显著性水平α,则应拒绝零假设,认为不同的排污口对大肠杆菌数量产生了显著影响,它对大肠杆菌数量的影响效应不全为0。
因此,可判断各个排污口的大肠杆菌数量是有差别的。
5.2、实验步骤: 1(建立数据文件。
定义2个变量:Branch和Turnover,分别表示分店和日营业额。
将Branch的值定义为1=第一分店,2=第二分店,3=第三分店,4=第四分店,5=第五分店。
2. 选择菜单“分析?比较均值?单因素”,弹出“单因素方差分析”对话框。
在对话框左侧的变量列表中,选择变量“Turnover”进入“因变量”列表框,选择变量“Branch”进入“因子”列表框。
3(单击“确定”按钮,得到输出结果。
结果解读:由以上结果可以看到,观测变量日营业额的总离差平方和为1187668.733;如果仅考虑“分店”单个因素的影响,则日营业额总变差中,分店可解释的变差为366120.900,抽样误差引起的变差为821547.833,它们的方差(平均变差)分别为91530.225和14937.233,相除所得的F统计量的观测值为6.128,对应的概率P 值近似为0。
第二节单因素试验资料的方差分析在方差分析中,根据所研究试验因素的多少,可分为单因素、两因素和多因素试验资料的方差分析。
单因素试验资料的方差分析是其中最简单的一种,目的在于正确判断该试验因素各水平的优劣。
根据各处理内重复数是否相等,单因素方差分析又分为重复数相等和重复数不等两种情况。
上节讨论的是重复数相等的情况。
当重复数不等时,各项平方和与自由度的计算,多重比较中标准误的计算略有不同。
本节各举一例予以说明。
一、各处理重复数相等的方差分析【例6.3】抽测5个不同品种的若干头母猪的窝产仔数,结果见表6-12,试检验不同品种母猪平均窝产仔数的差异是否显著。
表6-12五个不同品种母猪的窝产仔数这是一个单因素试验,k=5,n=5。
现对此试验结果进行方差分析如下:1、计算各项平方和与自由度2、列出方差分析表,进行F检验表6-13不同品种母猪的窝产仔数的方差分析表根据df1=df t=4,df2=df e=20查临界F值得:F0.05(4,20)=2.87,F0.05(4,20)=4.43,因为F>F0.01(4,20),即P<0.01,表明品种间产仔数的差异达到1%显著水平。
3、多重比较采用新复极差法,各处理平均数多重比较表见表6-14。
表6-14不同品种母猪的平均窝产仔数多重比较表(SSR法)-8.2 -9.6因为MS e=3.14,n=5,所以为:根据df e=20,秩次距k=2,3,4,5由附表6查出α=0.05和α=0.01的各临界SSR 值,乘以=0.7925,即得各最小显著极差,所得结果列于表6-15。
表6-15SSR值及LSR值将表6-14中的差数与表6-15中相应的最小显著极差比较并标记检验结果。
检验结果表明:5号品种母猪的平均窝产仔数极显著高于2号品种母猪,显著高于4号和1号品种,但与3号品种差异不显著;3号品种母猪的平均窝产仔数极显著高于2号品种,与1号和4号品种差异不显著;1号、4号、2号品种母猪的平均窝产仔数间差异均不显著。
单因素试验的数据怎么看
在单因素试验中,我们研究一个因素对某个感兴趣的变量的影响。
为了了解数据,可以采取以下步骤:
1. 数据收集:收集试验所需的数据。
确保数据是准确、完整的。
2. 描述性统计:对数据进行描述性统计分析,以了解数据的基本特征。
可以计算均值、中位数、标准差等。
3. 绘制图表:绘制适当的图表来展示数据。
常见的图表包括直方图、箱线图、散点图等。
4. 探索异常值:检查是否存在异常值或离群点。
异常值可能会对结果产生影响,需要进行特殊处理。
5. 方差分析:使用方差分析(ANOVA)来评估因素对变量的影响是否显著。
ANOVA可以帮助确定是否有统计显著性。
6. 解释结果:根据数据分析的结果,解释因素对变量的影响程度和统计显著性。
以上是一般的步骤,具体分析方法可能会根据试验设计和数据类型的不同而有所差异。
如果您有具体的数据和问题,我可以为您提供更详细的分析建议。
数据分析第七篇:⽅差分析(单因素⽅差分析)在试验中,把考察的指标称为试验指标,影响试验指标的条件称为因素。
因素可分为两类,⼀类是⼈为可控的测量数据,⽐如温度、⾝⾼等;⼀类是不可控的随机因素,例如,测量误差,⽓象条件等。
因素所处的状态称为因素的⽔平。
如果在试验过程中,只有⼀个因素在改变,称为单因素试验。
⽅差分析(Analysis of Variance,简称ANOVA)主要⽤于验证两组样本,或者两组以上的样本均值是否有显著性差异(是否⼀致)。
举个例⼦,有三台机器⽤来⽣产规格相同的铝合⾦薄板,试验的指标是铝合⾦薄板的厚度,机器是因素,不同的三台机器是因素的三个⽔平。
试验的⽬的是为了考察每台机器所⽣产的薄板的厚度是否有显著的差异,即考察机器这⼀因素对薄板厚度有⽆显著的影响,如果厚度有显著差异,就表明机器对厚度的影响是显著的。
⼀,单因素⽅差分析对多个总体均值进⾏检验,需要⽤到⽅差分析⽅法,例如,某⼯⼚有A、B、C三台轧制板材的设备,如果想知道这三台设备轧制板材的厚度是否⼀致,就可以转化为检验来⾃三个总体的均值是否相同的问题。
以上⾯所说轧制板材为例,检验A、B、C三台设备轧制的板材厚度是否⼀致,可以建⽴如下假设:H0: µ1=µ2=…=µr;H1: µ1,µ2,…,µr不全相等。
三个总体均值是否相等⽆从知道,但是可以通过样本均值是否有显著差异来检验总体均值是否相等。
因为,如果H0为真时,则可以期望样本均值很接近,如果样本均值很接近,则推断总体均值相等的证据很充分,就可以接受H0。
否则,当样本均值相距较远,就认为总体均值相等的证据不充分,从⽽拒绝H0,接受H1。
样本均值之间距离的所谓远近是相对的,是通过假定的共同⽅差的两个点估计值⽐较得出的。
第⼀个点估计是组内⽅差,⽤各个样本⽅差估计得到的,只与每个样本内部的⽅差有关,反映各个⽔平内部随机性的变动。
单因素方差分析步骤单因素方差分析的计算步骤一、单因素方差分析的计算步骤假定实验或观察中只有一个因素(因子)A,且A有m个水平,分别记为A1,A2, Am,在每一种水平下,做n次实验,在每一次试验后可得一实验值,记做xij表示在第j个水平下的第i个试验值i 1,2, n;j 1,2, m 。
结果如下表3.1:表3.1 单因素方差分析数据结构表为了考察因素A对实验结果是否有显著性影响,我们把因素A的m个水平A1,A2, Am看成是m个正态总体,而xij i 1,2, n;j 1,2, m 看成是取自第j总体的第i个样品,。
因此,可设xij~Naj, ,i 1,2, n;j 1,2, m可以认为aj j, j是因素A的第j个水平Aj所引起的差异。
因此检验因素A的各水平之间是否有显著的差异,就相当于检验:2H0:a1 a2 am 或者H0: 1 2 m 0具体的分析检验步骤是:(一)计算水平均值令xj表示第j种水平的样本均值,xj xi 1njijnj式中,xij是第j种水平下的第i个观察值,nj表示第j种水平的观察值次数(二)计算离差平方和在单因素方差分析中,离差平方和有三个,它们分别是总离差平方和,组内离差平方和以及组间平方和。
首先,总离差平方和,用SST代表,则,SST (xij x)2 其中x xnij,它反映了离差平方和的总体情况。
其次,组内离差平方和,用SSE表示,其计算公式为: 2 SSE x ij jj i其中j反映的是水平内部或组内观察值的离散状况,即反映了随机因素带来的影响。
最后,组间平方和,用SSA表示,SSA的计算公式为:SSA j x njj x用各组均值减去总均值的离差的平方,乘以各组观察值个数,然后加总,即得到SSA。
可以看出,它所表现的是组间差异。
其中既包括随机因素,也包括系统因素。
根据证明,SST,SSE,SSA之间存在着一定的联系,这种联系表现在:22 SST SSE S SA因为:x ij x x ij j j x2 2 2 x ij j j x2 x ij j j x在各组同为正态分布,等方差的条件下,等式右边最后一项为零,故有,2(xij x)2 (xij j)2 (j x)2即SST SSE S SA(三)计算平均平方用离差平方和除以各自自由度即可得到平均平方。
单因素方差分析方法首先在单因素试验结果的基础上,求出总方差V 、组内方差vw、组间方差vB。
总方差 v=()2ijx x -∑组内方差 v w =()2ij x x i-∑ 组间方差 v B=b ()2ix x -∑从公式可以看出,总方差衡量的是所有观测值xij对总均值x 的偏离程度,反映了抽样随机误差的大小,组内方差衡量的是所有观测值xij对组均值x 的偏离程度,而组间方差则衡量的是组均值x i对总均值x 的偏离程度,反映系统的误差。
在此基础上,还可以得到组间均方差和组内均方差: 组间均方差2Bs ∧=1B-a v组内均方差 2ws∧=aab vw-在方差相等的假定下,要检验n 个总体的均值是否相等,须首先给定原假设和备择假设。
原假设 H 0:均值相等即μ1=μ2=…=μn备择假设H 1:均值不完全不相等则可以应用F 统计量进行方差检验:F=)()(b ab a vv w--1B =22∧∧ss WB该统计量服从分子自由度a-1,分母自由度为ab-a 的F 分布。
给定显著性水平a ,如果根据样本计算出的F 统计量的值小于等于临界值)(a ab 1a F --,α,则说明原假设H 0不成立,总体均值不完全相等,差异并非仅由随机因素引起。
下面通过举例说明如何在Excel 中实现单因素方差分析。
例1:单因素方差分析某化肥生产商需要检验三种新产品的效果,在同一地区选取3块同样大小的农田进行试验,甲农田中使用甲化肥,在乙农田使用乙化肥,在丙地使用丙化肥,得到6次试验的结果如表2所示,试在0.05的显著性水平下分析甲乙丙化肥的肥效是否存在差异。
表2 三块农田的产量要检验三种化肥的肥效是否存在显著差异,等同于检验三者产量的均值是否相等:给定原假设H 0:三者产量均值相等;备择假设H 1:三者的产量均不相等,对于影响产量的因素仅化肥种类一项,因此可以采用单因素方差分析进行多总体样本均值检验。
⑴新建工作表“例1”,分别单击B3:D8单元格,输入表2的产量数值。