速度瞬心法作机构速度分析
- 格式:ppt
- 大小:498.50 KB
- 文档页数:16
第三章平面机构的运动分析3.2平面机构运动分析的图解法3.2.1速度瞬心法化1) 速度瞬心与位置图3.2F01所示的两构件1、2均作平面运动,在任一瞬时的相对运动都可以看作是绕平面上某一点的相对转动,而该点则称为它们的速度瞬心,简称为瞬心,以P12表示。
瞬心是两构件上相对速度为零的点,或者说是两构件上速度相等的点。
若在该瞬心的绝对速度为零,则称为绝对瞬心。
若不为零,则称为相对瞬心。
由于每两个构件具有一个瞬心,所以对于由N个构件组成的机构,根据排列组合的知识可知,其瞬心总数K 为K =N(N-1)/2 (3.1)【点击链接转摆变换的平面六杆机构的二维动画】对于例图,瞬心数目K为K =6(6-1)/2=15 (3.1')(1) 通过运动副直接相连的两构件的瞬心位置(a) 以转动副相连的两构件,如图3.1(a)所示,其瞬心在转动副的中心上。
(b) 以移动副相连的两构件,如图3.1b 所示,由于在平面任一点处两构件相对运动的速度方向均平行于移动副导路,所以,P12一定位于无穷远。
(c) 以平面高副相连的两构件,如图3.1c 所示,若高副两元素之间为纯滚动(ω12为相对滚动的角速度),则两元素的接触点M即为瞬心P12。
(d) 若高副两元素间既有相对滚动,又有相对滑动(V12为相对滑动速度),则瞬心P12必定位于高副过接触点的公法线n-n上,如图3.1d 所示,具体位置需要根据其他条件来确定。
(2) 不直接通过运动副相连的两构件的瞬心位置不直接通过运动副相连接的两构件的瞬心位置由三心定理予以确定。
所谓三心定理是指三个彼此作平面相对运动的构件的三个瞬心必定位于同一直线上。
只有K在P12、P13的连线上,V K2与V K3才能方向相同,当位置合适, V K2与V K3大小一样,为此。
平面相对运动的构件的三个瞬心必定位于同一直线上。
2) 用速度瞬心作机构的速度分析(1) 铰链四杆机构如图 3.3 所示,比例尺为μL (单位为m/mm)的铰链四杆机构,若已知原动件1以角速度ω1顺时针方向回转,求从动件2、3的角速度ω2、ω3。
第二讲平面机构的运动分析一用速度瞬心法作机构的速度分析1 速度瞬心的定义:作平面相对运动两构件上任一瞬时其速度相等的点,称为这个瞬时的速度中心。
分类:相对瞬心-重合点绝对速度不为零绝对瞬心-重合点绝对速度为零(与机架组成的瞬心)2 瞬心数目 K=N(N-1)/23 机构瞬心位置的确定直接观察法:适用于求通过运动副直接相联的两构件瞬心位置。
1)两构件组成转动副时,转动副中心即是它们的瞬心。
2)若两构件组成移动副时,其瞬心位于移动方向的垂直无穷远处。
3)若两构件形成纯滚动的高副时,其高副接触点就是它们的瞬心。
4)若两构件组成滚动兼滑动的高副时,其瞬心应位于过接触点的公法线上。
不直接形成运动副的两构件利用三心定理来确定其具体位置。
三心定理:三个彼此作平面平行运动的构件共有三个瞬心,且它们位于同一条直线上。
此法特别适用于两构件不直接相联的场合。
4传动比的计算ωi /ωj=P1j P ij / P1i P ij(其中1为机架)两构件的角速度之比等于绝对瞬心至相对瞬心的距离之反比。
5.角速度方向的确定相对瞬心位于两绝对瞬心的同一侧,两构件转向相同相对瞬心位于两绝对瞬心之间,两构件转向相反。
注:特殊位置的速度瞬心有些会重合或趋向无穷远处,标注需要特别注意,如下四图中前三图的构件2此瞬时的角速度均为0,d图的构件2的角速度始终为0(2做平动)。
2利用速度瞬心求解速度。
ωi /ωj=P1j P ij / P1i P ij 四杆机构题型:(江苏大学2014)哈工大东华2014 四杆以上机构题型:二、用矢量方程图解法作机构的速度和加速度分析 1.同一构件上两点之间速度,加速度的关系。
①由各速度矢量构成的图形称为速度多边形(或速度图);由各加速度矢量构成的图形称为加速度多边形(或加速度图)。
p ,'p 称为极点。
②在速度多边形中,由极点p 向外放射的矢量,代表构件上相应点的绝对速度。
而连接两绝对速度矢端的矢量,则代表构件上相应两点间的相对速度,方向与角标相反,如bc 代表CB v (C 点相对B 点的速度)。
平面复杂机构速度分析的速度瞬心法李晋山( 开封大学机械系, 河南开封475004)摘要:利用速度瞬心法,通过有目的地找出相关瞬心和目标瞬心,解决了多自由度的平面复杂机构速度分析问题。
关键词:瞬心;相关瞬心;目标瞬心;构件关系图;相关构件关系图分类号: T H112文献标识码:A问题的提出1机构运动分析的方法很多,一般认为,对简单的平面机构来说,应用速度瞬心法进行速度分析,特别是对平面高副机构比较简便。
但是,如果是多杆机构,则由于瞬心数目很多,因而将速度分析问题复杂化,这是瞬心法的缺点。
因此,对于复杂机构多采用矢量方程图解法和解析法。
笔者通过研究,认为对于复杂机构的速度分析,只需要找出少数相关瞬心,利用本文中的方法,找出目标瞬心,就可以把问题简单化。
该方法为我们在解决平面复杂机构速度分析的问题时提供了一个既方便又简洁的好方法。
平面复杂机构速度分析的速度瞬心法2对于一个复杂机构,按比例绘出其机构运动简图,对构件进行编号( 包括机架) ,由复杂机构的运动输入端到运动输出端将复杂机构分解成若干个简单的子机构,由机构学知识知道,一般来说,上一个子机构的输出机构即是下一个子机构的输入机构。
从第一个子机构开始,分别作各简单机构的构件关系图。
构件关系图的作法:按环形布置几个点,点的个数与简单机构的构件个数相同,点的编号应与机构中构件号的顺序一致,则任意两点的连线即表示该两构件的瞬心,为了方便解题,用实线表示成副构件的瞬心,用虚线表示不成副构件的瞬心。
这样,成副构件的瞬心直接可以求得,不成副构件的瞬心可利用三心定理求得。
要最终找出目标瞬心(即复杂机构的原动构件与待求构件的瞬心) 还应画一个复杂机构的相关构件关系图,在该图上只需要描述四个点即可。
这四个点分别是原动件、待求构件、机架和最后一个简单机构的输入构件,其结构如图1 。
图中实线相连两构件的瞬心, 我们称之为相关瞬心,虚线相连两构件的瞬心即目标瞬心。
收稿日期:1999 - 11 - 08作者简介:李晋山(1969 - ) ,男,河南开封人,开封大学机械系教师。
第二讲平面机构的运动分析一用速度瞬心法作机构的速度分析1 速度瞬心的定义:作平面相对运动两构件上任一瞬时其速度相等的点,称为这个瞬时的速度中心。
分类:相对瞬心-重合点绝对速度不为零绝对瞬心-重合点绝对速度为零2 瞬心数目 K=N(N-1)/23 机构瞬心位置的确定直接观察法:适用于求通过运动副直接相联的两构件瞬心位置。
1)两构件组成转动副时,转动副中心即是它们的瞬心。
2)若两构件组成移动副时,其瞬心位于移动方向的垂直无穷远处。
3)若两构件形成纯滚动的高副时,其高副接触点就是它们的瞬心。
4)若两构件组成滚动兼滑动的高副时,其瞬心应位于过接触点的公法线上。
不直接形成运动副的两构件利用三心定理来确定其具体位置。
三心定理:三个彼此作平面平行运动的构件共有三个瞬心,且它们位于同一条直线上。
此法特别适用于两构件不直接相联的场合。
4传动比的计算ωi /ωj=P1j P ij / P1i P ij两构件的角速度之比等于绝对瞬心至相对瞬心的距离之反比5.角速度方向的确定相对瞬心位于两绝对瞬心的同一侧,两构件转向相同相对瞬心位于两绝对瞬心之间,两构件转向相反。
常见题型:1.速度瞬心的求解(会用正多形法)2利用速度瞬心求解速度。
ωi /ωj =P 1j P ij / P 1i P ij例题:在图示四杆机构中,AB l =60mm ,CD l =90mm ,AD l =BC l =120mm ,2ω=10rad/s ,试用瞬心法求: (1)当ϕ=45°时,点C 的速度C v;(2)当ϕ=165°时,构件3的BC 线上(或其延长线上)速度最小的一点E 的位置及其速度大小;(3)当C v =0时,ϕ角之值(有两个解)。
P 13C(a)解:以选定的比例尺0.005/l m mm μ=作机构运动简图如图3-2所示。
(1)定瞬心P 13的位置,求v c 。
131331 6.07rad /AP DP l l s ωω==30.547/c l v CD m s μω==(2)如图(b )所示,定出构件2的BC 线上速度最小的一点E 位置及速度的大小。
内 容2. 解析法:计算精度高,随着数学软件和计算机辅助设计软件的不断完善和发展,采用解析法解决机构的分析、综合过程中的相关问题越来越普及。
利用计算机求解,相当方便。
例如:杆组法——将机构拆成若干基本杆组,在对机构进行运动分析时调用相应的杆组运动分析的通用子程序,进行计算,非常方便。
3. 实验法:在现有设备上测运动参数,能反映机构在工作环境下的真实运动,但需要设备。
3-2 速度瞬心及其在平面机构速度分析中的应用 一、 速度瞬心1.瞬心的定义、分类:彼此作平面相对运动的两刚体,在任一瞬时,其相对运动都可以看做是绕某一重合点的转动,此重合点称为瞬时速度中心,简称瞬心。
显然,速度瞬心是相对运动的两构件上绝对速度相等(相对速度为零)的瞬时重合点。
若两构件之一是静止的,则该瞬心处的绝对速度为零,称为绝对瞬心;若两构件都是运动的,则其瞬心处的绝对速度不为零,称为相对瞬心。
通常用ijP 或jiP 表示构件i 、j 的速度瞬心。
2. 瞬心的数目由于任意两个构件形成一个瞬心,若机构由N 个构件(含机架)组成,则瞬心的数目为:2)1(2-=N N C N 。
如:四杆机构有6个瞬心。
其中3个绝对瞬心,3个相对瞬心。
3、瞬心的求法A )、直接接触的两构件间的瞬心(如图3-2所示) ● 转动副相连的两构件,转动副的中心为12P ,图a● 移动副联接的两构件,其瞬心在垂直于导路的无穷远处,图b ● 两构件组成高副时,若为纯滚动,则接触点为瞬心,图c ;● 若为滚动兼滑动:瞬心在过接触点的公法线上,具体位置另需条件确定。
图3-4 内 容B )、不直接接触的两构件间的瞬心不直接接触的两构件其瞬心常借助于“三心定理”来确定。
“三心定理”——三个彼此作平面运动的3个构件,共有3个瞬心,它们必位于同一条直线上。
例【3-1】:求铰链四杆机构的瞬心(如图3-4所示) 其中哪些是绝对瞬心,哪些是相对瞬心? 思考:构件3上速度为零的点是哪一点?二、速度瞬心法在机构速度分析上的应用用速度瞬心法对机构进行速度分析的一般方法是:找到已知构件与待求构件的相对瞬心,它是这两个构件上绝对速度大小相等、方向相同的点,建立待求运动构件与已知运动构件的速度关系即可求解。