最新人教版高中数学选修4-4测试题全套及答案
- 格式:docx
- 大小:124.52 KB
- 文档页数:15
选修4-4综合检测卷(一)(满分150分, 考试时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分)1.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所围成的图形的面积等于( )A .πB .4πC .8πD .9π 2.柱坐标⎝ ⎛⎭⎪⎫2,π3,1对应的点的直角坐标是( )A .(3,-1,1)B .(3,1,1)C .(1,3,1)D .(-1,3,1) 3.在极坐标系中,点A 的极坐标是(1,π),点P 是曲线C :ρ=2sin θ上的动点,则|PA |的最小值是( )A .0 B. 2 C.2+1D.2-14.直线⎩⎨⎧x =sin θ+t sin 15°,y =cos θ-t sin 75°(t 为参数,θ是常数)的倾斜角是( )A .105°B .75°C .15°D .165° 5.双曲线⎩⎪⎨⎪⎧x =tan θ,y =21cos θ(θ为参数)的渐近线方程为( )A .y =±22xB .y =±12xC .y =±2xD .y =±2x6.极坐标方程ρ=cos θ和参数方程⎩⎨⎧x =-1-t ,y =2+3t (t 为参数)所表示的图形分别是( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线7.已知点P 的极坐标为(π,π),则过点P 且垂直于极轴的直线的极坐标方程为( ) A .ρ=π B .ρ=cos θ C .ρ=πcos θ D .ρ=-πcos θ8.直线l :y +kx +2=0与曲线C :ρ=2cos θ相交,则k 满足的条件是( ) A .k ≤-34B .k ≥-34C .k ∈RD .k ∈R 且k ≠09.参数方程⎩⎪⎨⎪⎧x =1+sin θ,y =cos 2⎝ ⎛⎭⎪⎫π4-θ2(θ为参数,0≤θ<2π)所表示的曲线是( )A .椭圆的一部分B .双曲线的一部分C .抛物线的一部分,且过点⎝ ⎛⎭⎪⎫-1,12D .抛物线的一部分,且过点⎝ ⎛⎭⎪⎫1,1210.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14B.3-34C.2-34D.1311.设曲线C 的参数方程为⎩⎨⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 的距离为71010的点的个数为( ) A .1 B .2 C .3D .4 12.已知直线⎩⎨⎧x =2-t sin 30°,y =-1+t sin 30°(t 为参数)与圆x 2+y 2=8相交于B 、C 两点,O 为原点,则△BOC 的面积为( )A .27 B.30 C.152 D.302二、填空题(本大题共4小题,每小题5分,共20分)13.将参数方程⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数)转化成普通方程为________.14.在极坐标中,直线ρsin ⎝ ⎛⎭⎪⎫θ+π4=2被圆ρ=4截得的弦长为________.15.已知曲线C 的参数方程为⎩⎨⎧x =2cos t ,y =2sin t (t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为________.16.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎨⎧x =t 2,y =t3(t 为参数)相交于A ,B 两点,则|AB |=________.三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =2+2sin α(α为参数),M 是C 1上的动点,P 点满足OP 2OM =,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.18.(本小题满分12分)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎨⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.19.(本小题满分12分)已知方程y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0,(0≤θ<2π). (1)试证:不论θ如何变化,方程都表示顶点在同一椭圆上的抛物线; (2)θ为何值时,该抛物线在直线x =14上截得的弦最长,并求出此弦长.20.(本小题满分12分) 曲线的极坐标方程为ρ=21-cos θ,过原点作互相垂直的两条直线分别交此曲线于A 、B 和C 、D 四点,当两条直线的倾斜角为何值时,|AB |+|CD |有最小值?并求出这个最小值.21.(本小题满分12分)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝ ⎛⎭⎪⎫θ-π4=2 2. (1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数).求a ,b 的值.22.(本小题满分12分)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.选修4-4综合检测卷(一)答题卡 成绩:一、选择题(本题满分60分)二、填空题(本题满分20分)13 . 14. 15.16.三、解答题(本题满分70分)班级 姓名 座号密 封 装 订 线选修4-4综合检测卷(一)参考答案一、选择题(本大题共12小题,每小题5分,共60分)1.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所围成的图形的面积等于( )A .πB .4πC .8πD .9π 解析:选B 设P 点的坐标为(x ,y ), ∵|PA |=2|PB |,∴(x +2)2+y 2=4[(x -1)2+y 2]. 即(x -2)2+y 2=4.故P 点的轨迹是以(2,0)为圆心,以2为半径的圆,它的面积为4π. 2.柱坐标⎝ ⎛⎭⎪⎫2,π3,1对应的点的直角坐标是( )A .(3,-1,1)B .(3,1,1)C .(1,3,1)D .(-1,3,1)解析:选C由直角坐标与柱坐标之间的变换公式⎩⎨⎧x =ρcos θ,y =ρsin θ,z =z可得⎩⎨⎧x =1,y =3,z =1.3.在极坐标系中,点A 的极坐标是(1,π),点P 是曲线C :ρ=2sin θ上的动点,则|PA |的最小值是( )A .0 B. 2 C.2+1D.2-1解析:选D A 的直角坐标为(-1,0),曲线C 的直角坐标方程为x 2+y 2=2y ,即x 2+(y -1)2=1,|AC |=2,则|PA |min =2-1.4.直线⎩⎨⎧x =sin θ+t sin 15°,y =cos θ-t sin 75°(t 为参数,θ是常数)的倾斜角是( )A .105°B .75°C .15°D .165°解析:选A 参数方程⎩⎨⎧ x =sin θ+t sin 15°,y =cos θ-t sin 75°⇒⎩⎨⎧x =sin θ+t cos 75°,y =cos θ-t sin 75°,消去参数t 得,y -cos θ=-tan 75°(x -sin θ),∴k =-tan 75°=tan (180°-75°)=tan 105°. 故直线的倾斜角是105°. 5.双曲线⎩⎪⎨⎪⎧x =tan θ,y =21cos θ(θ为参数)的渐近线方程为( )A .y =±22xB .y =±12xC .y =±2xD .y =±2x解析:选D 把参数方程化为普通方程得y 24-x 2=1,渐近线方程为y =±2x .6.极坐标方程ρ=cos θ和参数方程⎩⎨⎧x =-1-t ,y =2+3t (t 为参数)所表示的图形分别是( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线解析:选A ∵ρ=cos θ,∴x 2+y 2=x 表示圆. ∵⎩⎨⎧x =-1-t ,y =2+3t ,∴y +3x =-1表示直线. 7.已知点P 的极坐标为(π,π),则过点P 且垂直于极轴的直线的极坐标方程为( ) A .ρ=π B .ρ=cos θ C .ρ=πcos θ D .ρ=-πcos θ解析:选D设M (ρ,θ)为所求直线上任意一点,由图形知|OM |cos ∠POM =π,∴ρcos(π-θ)=π.∴ρ=-πcos θ.8.直线l :y +kx +2=0与曲线C :ρ=2cos θ相交,则k 满足的条件是( ) A .k ≤-34B .k ≥-34C .k ∈RD .k ∈R 且k ≠0解析:选A 由题意可知直线l 过定点(0,-2),曲线C 的普通方程为x 2+y 2=2x ,即(x -1)2+y 2=1.由图可知,直线l 与圆相切时,有一个交点,此时|k +2|k 2+1=1,得-k =34.若满足题意,只需-k ≥34.即k ≤-34即可.9.参数方程⎩⎪⎨⎪⎧x =1+sin θ,y =cos 2⎝ ⎛⎭⎪⎫π4-θ2(θ为参数,0≤θ<2π)所表示的曲线是( )A .椭圆的一部分B .双曲线的一部分C .抛物线的一部分,且过点⎝ ⎛⎭⎪⎫-1,12 D .抛物线的一部分,且过点⎝ ⎛⎭⎪⎫1,12解析:选D 由y =cos 2⎝ ⎛⎭⎪⎫π4-θ2=1+cos ⎝ ⎛⎭⎪⎫π2-θ2=1+sin θ2,可得sin θ=2y -1,由x =1+sin θ得x 2-1=sin θ,∴参数方程可化为普通方程x 2=2y , 又x =1+sin θ∈[0,2].∴表示抛物线的一部分,且过点⎝ ⎛⎭⎪⎫1,12.10.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14B.3-34C.2-34D.13解析:选B 三条直线的直角坐标方程依次为y =0,y =3x ,x +y =1,如图所示,围成的图形为△OPQ ,可得S △OPQ =12|OQ |·|y P |=12×1×33+1=3-34.11.设曲线C 的参数方程为⎩⎨⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 的距离为71010的点的个数为( ) A .1 B .2 C .3D .4解析:选B 曲线C 的标准方程为(x -2)2+(y +1)2=9,它表示以(2,-1)为圆心,3为半径的圆,其中圆心(2,-1)到直线x -3y +2=0的距离d =|2+3+2|10=71010且3-71010<71010,故过圆心且与l 平行的直线与圆交于两点,满足题意的点即为该两点. 12.已知直线⎩⎨⎧x =2-t sin 30°,y =-1+t sin 30°(t 为参数)与圆x 2+y 2=8相交于B 、C 两点,O 为原点,则△BOC 的面积为( )A .27 B.30 C.152 D.302解析:选C⎩⎨⎧x =2-t sin 30°,y =-1+t sin 30°⇒⎩⎪⎨⎪⎧x =2-12t =2-22t ′,y =-1+12t =-1+22t ′(t ′为参数).代入x 2+y 2=8,得t ′2-32t ′-3=0,∴|BC |=|t ′1-t ′2|=(t ′1+t ′2)2-4t ′1t ′2=(32)2+4×3=30, 弦心距d =8-304=22,S △BCO =12|BC |·d =152. 二、填空题(本大题共4小题,每小题5分,共20分) 13.将参数方程⎩⎪⎨⎪⎧ x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数)转化成普通方程为________.解析:参数方程变为⎩⎪⎨⎪⎧2x a =t +1t ,2y b =t -1t ,∴(2x )2a 2-(2y )2b 2=4,∴x 2a 2-y 2b2=1.答案:x 2a 2-y 2b2=114.在极坐标中,直线ρsin ⎝ ⎛⎭⎪⎫θ+π4=2被圆ρ=4截得的弦长为________.解析:直线ρsin ⎝ ⎛⎭⎪⎫θ+π4=2可化为x +y -22=0,圆ρ=4可化为x 2+y 2=16,由圆中的弦长公式,得2r 2-d 2=242-⎝⎛⎭⎪⎫2222=4 3. 答案:4 315.已知曲线C 的参数方程为⎩⎨⎧x =2cos t ,y =2sin t (t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为________.解析:曲线C 的普通方程为:x 2+y 2= ( 2 cos t )2+( 2 sin t )2=2(cos 2t +sin 2t )=2,由圆的知识可知,圆心(0,0)与切点(1,1)的连线垂直于切线l ,从而l 的斜率为-1,由点斜式可得直线l 的方程为y -1=-(x -1),即x +y -2=0.由ρcos θ=x ,ρsin θ=y ,可得l 的极坐标方程为ρcos θ+ρsin θ-2=0.答案:ρsin ⎝ ⎛⎭⎪⎫θ+π4= 216.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎨⎧x =t 2,y =t3(t 为参数)相交于A ,B 两点,则|AB |=________.解析:ρcos θ=4化为直角坐标方程为x =4,①⎩⎨⎧x =t 2,y =t3化为普通方程为y 2=x 3,② ①②联立得A (4,8),B (4,-8), 故|AB |=16. 答案:16三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =2+2sin α(α为参数),M 是C 1上的动点,P 点满足OP ―→=2OM ―→,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.解:(1)设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y 2.由于M 点在C 1上,所以⎩⎪⎨⎪⎧x2=2cos α,y 2=2+2sin α,即⎩⎨⎧ x =4cos α,y =4+4sin α.从而C 2的参数方程为⎩⎨⎧x =4cos α,y =4+4sin α.(α为参数) (2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ1=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以|AB |=|ρ2-ρ1|=2 3.18.(本小题满分12分)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =t +1,y =2t(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.解:因为直线l 的参数方程为⎩⎨⎧x =t +1,y =2t (t 为参数),由x =t +1,得t =x -1,代入y=2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎨⎧y =2(x -1),y 2=2x ,解得公共点的坐标为(2,2),⎝ ⎛⎭⎪⎫12,-1.19.(本小题满分12分)已知方程y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0,(0≤θ<2π). (1)试证:不论θ如何变化,方程都表示顶点在同一椭圆上的抛物线; (2)θ为何值时,该抛物线在直线x =14上截得的弦最长,并求出此弦长.解:(1)证明:将方程y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0可配方为(y -3sin θ)2=2(x -4cos θ)∴图象为抛物线.设其顶点为(x ,y ),则有⎩⎨⎧x =4cos θ,y =3sin θ,消去θ得顶点轨迹是椭圆x 216+y 29=1.(2)联立⎩⎨⎧x =14,y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0 消去x ,得y 2-6y sin θ+9sin 2θ+8cos θ-28=0. 弦长|AB |=|y 1-y 2|=47-2cos θ, 当cos θ=-1,即θ=π时,弦长最大为12. 20.(本小题满分12分) 曲线的极坐标方程为ρ=21-cos θ,过原点作互相垂直的两条直线分别交此曲线于A 、B 和C 、D 四点,当两条直线的倾斜角为何值时,|AB |+|CD |有最小值?并求出这个最小值.解:由题意,设A (ρ1,θ),B (ρ2,π+θ),C ⎝ ⎛⎭⎪⎫ρ3,θ+π2,D ⎝ ⎛⎭⎪⎫ρ4,θ+3π2.则|AB |+|CD |=(ρ1+ρ2)+(ρ3+ρ4) =21-cos θ+21+cos θ+21+sin θ+21-sin θ=16sin 22θ.∴当sin 22θ=1即θ=π4或θ=3π4时,两条直线的倾斜角分别为π4,3π4时,|AB |+|CD |有最小值16.21.(本小题满分12分)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝ ⎛⎭⎪⎫θ-π4=2 2. (1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数).求a ,b 的值.解:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4, 直线C 2的直角坐标方程为x +y -4=0.解⎩⎨⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎨⎧ x 1=0,y 1=4,⎩⎨⎧x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝ ⎛⎭⎪⎫4,π2,⎝ ⎛⎭⎪⎫22,π4.注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0.由参数方程可得y =b 2x -ab2+1,所以⎩⎪⎨⎪⎧b2=1,-ab2+1=2,解得a =-1,b =2.22.(本小题满分12分)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎨⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎨⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎨⎧ x =1,y =0或⎩⎨⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.。
2.1.1 参数方程的概念►预习梳理1.参数方程的定义.一般地,在平面直角坐标系中,如果曲线C 上任一点P 的坐标x 和y 都可以表示为某个变量t 的函数:______________;反过来,对于t 的每个允许值,由函数式⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点P (x ,y )________________,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )叫作曲线C 的__________,变量t 是参变数,简称参数.相对于参数方程而言,直接给出__________________的方程叫做普通方程,参数方程可以转化为普通方程.2.关于参数的说明.参数方程中参数可以有物理意义、几何意义,也可以没有明显意义.3.曲线的参数方程可通过消去参数而得到普通方程;若知道变数x 、y 中的一个与参数t 的关系,可把它代入普通方程,求另一变数与参数t 的关系,则所得的⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是参数方程.►预习思考以下表示x 轴的参数方程的是( )A.⎩⎪⎨⎪⎧x =t 2+1,y =0(t 为参数) B.⎩⎪⎨⎪⎧x =0,y =3t +1(t 为参数) C.⎩⎪⎨⎪⎧x =1+sin θ,y =0(θ为参数) D.⎩⎪⎨⎪⎧x =4t +1,y =0(t 为参数), 预习梳理1.⎩⎪⎨⎪⎧x =f (t ),y =g (t ) 都在曲线C 上 参数方程 点的坐标间关系 预习思考 D一层练习1.当参数θ变化时,由点P (2cos θ,3sin θ)所确定的曲线过点( )A .(2,3)B .(1,5)C.⎝⎛⎭⎪⎫0,π2 D .(2,0)1.D2.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程是( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x ≤3)D .y =x +2(0≤y ≤1) 2.C3.在方程⎩⎪⎨⎪⎧x =sin 2θ,y =cos 2θ(θ为参数)所表示的曲线上其中一个点的坐标是( )A .(2,7) B.⎝ ⎛⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,12 D .(1,-1) 3.D4.将参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ(θ为参数)化为普通方程是____________.4.(x -1)2+y 2=45.曲线⎩⎪⎨⎪⎧x =1+cos θ,y =2sin θ(θ为参数)经过点⎝ ⎛⎭⎪⎫32,a ,则a =____________.5.± 3 二层练习6.若一直线的参数方程为⎩⎪⎨⎪⎧x =x 0+12t ,y =y 0-32t (t 为参数),则此直线的倾斜角为( )A .60°B .120°C .30°D .150°6.B7.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( ) A .直线 B .圆 C .线段 D .射线 7.C8.(2015·湛江市高三(上)调考)直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________.8.命题立意:本题主要考查了直线的参数方程,以及直线和圆的方程的应用,考查计算能力,属于基础题.解析:∵直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数),∴直线的普通方程为x +y -1=0, 圆心到直线的距离为d =12=22, 弦长=24-⎝⎛⎭⎪⎫222=14. 答案:149.(2015·惠州市高三第一次调研考试)已知在平面直角坐标系xOy 中圆C 的参数方程为:⎩⎨⎧x =3+3cos θ,y =1+3sin θ(θ为参数),以Ox 为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为________.9.解析:圆C ⎩⎨⎧x =3+3cos θy =1+3sin θ(θ为参数)表示的曲线是以点(3,1)为圆心,以3为半径的圆,将直线ρcos ⎝ ⎛⎭⎪⎫θ+π6=0的方程化为3x -y =0,圆心(3,1)到直线3x -y =0的距离d =|3×3-1|(3)+12=1,故圆C 截直线所得弦长为232-12=4 2.答案:4 210.圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.10.(1,0)三层练习11.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.11.1612.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立即坐标系,则曲线C 的极坐标方程为____________________.12.ρcos 2θ-sin θ=013.已知动点P ,Q 都在曲线C :⎩⎪⎨⎪⎧x =2cos β,y =2sin β(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 13.解析:(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cosα+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹过坐标原点.14.边长为a 的等边三角形ABC 的两个端点A 、B 分别在x 轴、y 轴两正半轴上移动,顶点C 和原点O 分别在AB 两侧,记∠CAx =α,求顶点C 的轨迹的参数方程.14.解析: 如下图,过点C 作CD ⊥x 轴于点D ,设点C 的坐标为(x ,y ).则由⎩⎪⎨⎪⎧x =OA +AD ,y =DC ,得⎩⎪⎨⎪⎧x =a cos ⎝ ⎛⎭⎪⎫2π3-α+a cos α,y =a sin α(α为参数), 即为顶点C 的轨迹方程.1.求曲线参数方程的主要步骤.第一步 设点:画出轨迹草图.设M (x ,y )为轨迹上任意一点的坐标,画图时注意根据几何条件选择点的位置,以利于发现变量之间的关系.第二步 选参:选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标(x ,y )与参数的关系比较明显,容易列出方程.二是x ,y 的值可以由参数唯一确定.例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点的“有向距离”,直线的倾斜角、斜率、截距等也常常被选为参数.第三步 表示、结论:根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式.证明可以省略.2.将参数方程化为普通方程时消去参数的常用方法.(1)代入法.先由一个方程求出参数的表达式(用直角坐标变量表示),再代入另一个方程.(2)利用代数或三角函数中的恒等式消去参数,例如对于参数方程⎩⎪⎨⎪⎧x =a ⎝ ⎛⎭⎪⎫t +1t cos θ,y =a ⎝ ⎛⎭⎪⎫t -1t sin θ,如果t 是常数,θ是参数,那么可以利用公式sin 2θ+cos 2θ=1消参;如果θ是常数,t 是参数,那么适当变形后可以利用(m +n )2-(m -n )2=4mn 消参.高中数学 1.2极点坐标练习 新人教A 版选修4-4►预习梳理1.极坐标系的建立.在平面上取一个定点O ,自点O 引一条射线Ox ,同时确定____________和______________________(通常取逆时针方向为正方向),这样就建立了一个极坐标系(其中O 称为极点,射线Ox 称为极轴).设M 为平面内一点,极点O 与点M 的距离|OM |叫作点M 的________,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫作点M 的________,记为θ,有序实数对________叫作点M 的极坐标,记作________,一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数.2.直角坐标与极坐标的互化.以直角坐标系的O 为极点,x 轴正半轴为极轴,且在两坐标系中取相同的单位长度,平面内的任一点P的直角坐标和极坐标分别为(x ,y )和(ρ,θ),则⎩⎪⎨⎪⎧x = ,y = 或⎩⎪⎨⎪⎧ρ2= ,tan θ= (x ≠0). ►预习思考 1.写出下图中各点的极坐标:A ________,B ________,C ________.2.已知点M 的极坐标为⎝⎛⎭⎪⎫5,π3,则它化成直角坐标为________.,预习梳理1.一个长度单位 一个角度单位及其正方向 极径 极角 (ρ,θ) M (ρ,θ) 2.ρcos θ ρsin θ x 2+y 2yx预习思考1.(4,0) ⎝⎛⎭⎪⎫2,π4 ⎝⎛⎭⎪⎫3,π22.⎝ ⎛⎭⎪⎫52,532一层练习1.极坐标系中,和点⎝⎛⎭⎪⎫3,π6表示同一点的是________.1.⎝⎛⎭⎪⎫3,-11π62.极坐标系中,与点⎝⎛⎭⎪⎫3,-π3关于极轴所在直线对称的点的极坐标是________.2.⎝⎛⎭⎪⎫3,π33.在极坐标中,若等边△ABC 的两个顶点是A ⎝⎛⎭⎪⎫2,π4、B ⎝ ⎛⎭⎪⎫2,5π4,那么顶点C 的坐标可能是________.3.⎝⎛⎭⎪⎫23,3π4 4.在极坐标系中,已知M 1⎝ ⎛⎭⎪⎫2,74π,M 2⎝ ⎛⎭⎪⎫2,π4,则|M 1M 2|=________.4.25.以极点为原点,极轴的方向为x 轴的正方向,建立直角坐标系,则极坐标M ⎝⎛⎭⎪⎫2 014,5π3表示的点在第________象限. 二层练习5.解析:由于x =ρcos θ=2014cos 5π31007,y =ρsin θ=2014sin5π3=-10073, 故点(1007,-10073)在第四象限. 答案:四6.已知A 、B 两点极坐标为A ⎝ ⎛⎭⎪⎫4,π3,B ⎝ ⎛⎭⎪⎫6,-2π3,则线段AB 中点的极坐标为________.6.⎝⎛⎭⎪⎫1,-2π37.在极坐标系中,已知A ⎝⎛⎭⎪⎫2,π6,B ⎝ ⎛⎭⎪⎫4,π3,则△AOB 的面积S =________.7.28.极坐标系中,点A 的极坐标是⎝⎛⎭⎪⎫3,π6(规定ρ>0,θ∈[0,2π)),则:(1)点A 关于极轴对称的点的极坐标是________; (2)点A 关于极点对称的点的极坐标是________;(3)点A 关于直线θ=π2的对称点的极坐标是________________.8.(1)⎝ ⎛⎭⎪⎫3,11π6 (2)⎝ ⎛⎭⎪⎫3,7π6 (3)⎝ ⎛⎭⎪⎫3,5π6 9.已知圆C :(x +1)2+(y -3)2=1,则圆心C 的极坐标为__________(ρ>0,0≤θ<2π).9.⎝⎛⎭⎪⎫2,2π310.将下列各点的直角坐标化为极坐标(ρ>0,0≤θ<2π). (1)(3,3); (2)(-1,-1);(3)(-3,0).10.解析:(1)ρ=(3)2+32=23,tan θ=33= 3.又因为点在第一象限,所以θ=π3.所以点(3,3)的极坐标为⎝ ⎛⎭⎪⎫23,π3. (2)ρ=(-1)2+(-1)2=2,tan θ=1. 又因为点在第三象限,所以θ=5π4.所以点(-1,-1)的极坐标为⎝⎛⎭⎪⎫2,5π4. (3)ρ=(-3)2+02=3,画图,可知极角为π,所以点(-3,0)的极坐标为(3,π) 三层练习11.在极坐标系中,点A 和点B 的极坐标分别为⎝⎛⎭⎪⎫2,π3和(3,0),O 为极点,则三角形OAB 的面积=________.11.33212.在极坐标系中,定点A ⎝ ⎛⎭⎪⎫2,32π,点B 的一个极坐标为⎝⎛⎭⎪⎫ρ,116π(ρ>0),当线段AB 最短时,点B 的极坐标为________________.12.⎝ ⎛⎭⎪⎫1,11π6+2k π(k ∈Z)13.以直角坐标系Oxy 的坐标原点为极点,x 轴的正半轴为极轴建立极坐标系(ρ,θ)(0≤θ<2π),正六边形ABCDEF 的顶点极径都是ρ=2,且A 、B 、C 、D 、E 、F 依逆时针次序排列.若点A 的极坐标为⎝⎛⎭⎪⎫2,π3,则点B 的直角坐标为________.13.(-1,3)14.在极轴上求与点A ⎝ ⎛⎭⎪⎫42,π4的距离为5的点M 的坐标. 14.解析:设M (r ,0),因为A ⎝ ⎛⎭⎪⎫42,π4,所以(42)2+r 2-82r ·cos π4=5,即r 2-8r +7=0.解得r =1或r =7. 所以点M 的坐标为(1,0)或(7,0).答案:(1,0)或(7,0)1.极坐标系的四要素:①极点;②极轴;③长度单位;④角度单位和它的正方向.四者缺一不可.2.在极坐标系中找点的位置,应先确定极角,再确定极径,最终确定点的位置. 3.极坐标与直角坐标的互化.我们把极轴与平面直角坐标系xOy 的x 轴的正半轴重合,且两种坐标系取相同的长度单位,设P (x ,y )是平面上的任意一点,如右图:则有换算公式:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,① 或⎩⎪⎨⎪⎧ρ=x 2+y 2,tan θ=y x (x ≠0).② 在换算公式①和②中,一般θ∈[0,2π)就可以了.【习题1.2】1.解析:由题图可知各点的坐标分别为A (3,0),B ⎝ ⎛⎭⎪⎫2,π4,C ⎝ ⎛⎭⎪⎫3,π2,D ⎝⎛⎭⎪⎫1,5π6,E (2.5,π),F ⎝⎛⎭⎪⎫5,4π3,G (4,5π3). 2.解析:以广东省汕尾市为极点,正东方向的射线为极轴(单位长度为1公里)建立极坐标系,如右图所示,则该台风中心所在位置的极坐标为A ⎝⎛⎭⎪⎫440,7π4.3.解析:因为∠AOB =2π3-⎝ ⎛⎭⎪⎫-π3=π,所以A ,O ,B 三点共线.所以A ,B 两点间的距离为|AB |=3+1=4.4.解析:直角坐标与极坐标的互化公式为x =ρcos θ,y =ρsin θ,分别将极坐标⎝ ⎛⎭⎪⎫3,π4,⎝ ⎛⎭⎪⎫2,2π3,⎝ ⎛⎭⎪⎫4,π2,⎝ ⎛⎭⎪⎫32,π代入上述公式得各点的直角坐标分别为⎝ ⎛⎭⎪⎫322,322,()-1,3,(0,4),⎝ ⎛⎭⎪⎫-32,0.5.解析:直角坐标与极坐标的互化公式为ρ2=x 2+y 2,tan θ=yx(x ≠0),分别将直角坐标()3,3,⎝ ⎛⎭⎪⎫0,-53,⎝ ⎛⎭⎪⎫72,0,()-2,-23代入上述公式得各点的极坐标分别为⎝ ⎛⎭⎪⎫23,π6,⎝ ⎛⎭⎪⎫53,3π2,⎝ ⎛⎭⎪⎫72,0,⎝ ⎛⎭⎪⎫4,4π3.高中数学 1.3简单曲线的极点坐标方程练习 新人教A 版选修4-4►预习梳理 1.定义.如果曲线C 上的点与方程f (ρ,θ)=0有如下关系: (1)曲线C 上任一点的坐标__________方程f (ρ,θ)=0;(2)方程f (ρ,θ)=0的________为坐标的点______________.则曲线C 的方程是f (ρ,θ)=0.2.圆的极坐标方程.(1)圆心在(a ,0)(a >0)半径为a 的圆的极坐标方程为________________. (2)圆心在极点,半径为r 的圆的极坐标的方程为____________. 3.直线的极坐标方程.(1)直线l 经过极点,从极轴到直线l 的角为π4,则直线l 的极坐标方程为____________.(2)过点A (a ,0)(a >0)且垂直于极轴的直线l 的极坐标方程为________________. (3)直线l 过点P (ρ1,θ1)且与极轴所成的角为α,则直线l 的极坐标方程为____________________________.►预习思考1.几个特殊位置的圆的极坐标方程:(1)圆心位于极点,半径为1的圆的极坐标方程为__________; (2)圆心位于M (1,0),半径为1的圆的极坐标方程为________;(3)圆心位于M ⎝⎛⎭⎪⎫1,π2,半径为1的圆的极坐标方程为________.2.几个特殊位置的直线的极坐标方程:(1)直线过极点且过点M ⎝⎛⎭⎪⎫1,π6的极坐标方程为__________________;(2)直线过点M (1,0)且垂直于极轴的极坐标方程为________;(3)直线过点M ⎝⎛⎭⎪⎫1,π2且平行于极轴的极坐标方程为________.,预习梳理1.(1)符合 (2)所有解 都在曲线C 上 2.(1)ρ=2a cos θ (2)ρ=r 3.(1)θ=π4,ρ∈R (2)ρcos θ=a(3)ρsin(α-θ)=ρ1sin(α-θ1) 预习思考1.(1)ρ=1 (2)ρ=2cos θ (3)ρ=2sin θ 2.(1)θ=π6,ρ∈R (2)ρcos θ=1 (3)ρsin θ=1一层练习1.曲线的极坐标方程ρ=4cos θ化成直角坐标方程为________. 1.(x -2)2+y 2=42.极坐标方程分别为ρ=cos θ和ρ=sin θ的两个圆的圆心距是________. 2.223.极坐标方程ρ=cos ⎝ ⎛⎭⎪⎫π4-θ所表示的曲线是________. 3.圆4.(2014·湛江高考调研)极坐标系内,点⎝⎛⎭⎪⎫1,π2到直线ρcos θ=2的距离是________.4.命题立意:本题考查极坐标与直角坐标的转化,难度较小.解析:点⎝⎛⎭⎪⎫1,π2的直角坐标为(0,1),直线ρcos θ=2的直角坐标方程为x =2,故点(0,1)到直线x =2的距离是d =2.答案:25.(2014·揭阳二模)在极坐标系中,过点A ⎝ ⎛⎭⎪⎫4,-π2引圆ρ=4sin θ的一条切线,则切线长________.二层练习5.命题立意:本题考查极坐标方程与直角坐标方程的互相转化,难度中等. 解析:先将圆的极坐标方程转化为普通方程,将点的极坐标转化为直角坐标,再利用解直角三角形求其切线长.圆的普通方程为x 2+(y -2)2=4,点A 的直角坐标为(0,-4),点A 与圆心的距离为|-4-2|=6,所以切线长为62-22=4 2.答案:4 26.过点P ⎝⎛⎭⎪⎫2,π3且平行于极轴的直线的极坐标方程是________.6.ρsin θ= 37.(2014·湛江二模拟)极坐标系中,圆O :ρ2+2ρcos θ-3=0的圆心到直线ρcosθ+ρsin θ-7=0的距离是________.7.命题立意:本题考查极坐标方程与直角坐标方程的互化,点到直线的距离,难度中等.解析:先将圆与直线的极坐标方程转化为直角坐标方程,再由点到直线的距离公式求距离大小.圆的直角坐标方程为(x +1)2+y 2=4,圆心为(-1,0),直线的直角坐标方程为x +y -7=0,所以圆心到直线的距离为|-1+0-7|2=4 2.答案:4 28.(2014·汕头质量检测)如图所示的极坐标系中,以M ⎝⎛⎭⎪⎫4,π6为圆心,半径r =1的圆M 的极坐标方程是________.8.命题立意:本题考查曲线的直角坐标方程与极坐标方程间的转化,难度中等. 解析:依题意,题中的圆M 的圆心的直角坐标是(23,2),因此圆M 的直角坐标方程是(x -23)2+(y -2)2=1,即x 2+y 2-43x -4y +15=0,相应的极坐标方程是ρ2-43ρcos θ-4ρsin θ+15=0,即ρ2-8ρcos ⎝⎛⎭⎪⎫θ-π6+15=0.答案:ρ2-8ρcos ⎝⎛⎭⎪⎫θ-π6+15=09.(2014·佛山一模)在极坐标系中,设曲线C 1:ρcos θ=1与C 2:ρ=4cos θ的交点分别为A ,B ,则|AB |=________.9.命题立意:本题考查曲线的直角坐标方程与极坐标方程的转化,难度中等. 解析:依题意,两条曲线相应的直角坐标方程分别是x =1与x 2+y 2=4x ,而圆x 2+y 2=4x 的圆心坐标是C 2(2,0)、半径是2,圆心C 2(2,0)到直线x =1的距离为1,因此|AB |=222-12=2 3.答案:2 310.在极坐标系中,直线l :ρcos θ=t (常数t >0)与曲线C :ρ=2sin θ相切,则t =________.10.111.在极坐标系中,已知直线l :ρ(sin θ-cos θ)=a 把曲线C :ρ=2cos θ所围成的区域分成面积相等的两部分,则常数a 的值是________.11.-112.(2014·深圳第二次调研)在极坐标系中,A ,B 分别是直线3ρcos θ-4ρsin θ+5=0和圆ρ=2cos θ上的动点,则A ,B 两点之间距离的最小值是________.12.命题立意:本题考查直线与圆的极坐标方程、点到直线的距离,难度中等. 解析:由题意,得直线的平面直角坐标方程为3x -4y +5=0,圆的普通方程为(x -1)2+y 2=1,则圆心(1,0)到直线的距离d =|3×1-4×0+5|32+42=85,所以A ,B 两点之间距离的最小值为d -r =85-1=35.答案:35三层练习13.(2014·陕西高考文科·T 15)在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1的距离是________.13.解题提示:把直线的极坐标方程化为直角坐标方程,把点的极坐标化为直角坐标,从而求得此点到直线的距离.解析:由于直线的极坐标方程是ρsin ⎝⎛⎭⎪⎫θ-π6=1,化为直角坐标方程为x -3y +2=0,点⎝⎛⎭⎪⎫2,π6的直角坐标为(3,1).故该点到直线的距离d =3-3·1+21+3=1.答案:114.(2014·上海高考理科·T 7)已知曲线C 的极坐标方程为ρ(3cos θ-4sin θ)=1,则C 与极轴的交点到极点的距离是________.14.解题提示:首先将极坐标方程化为直角坐标方程为3x -4y =1,则C 与极轴的交点即为直线,与x 轴的交点,即得结论.解析:将极坐标方程化为直角坐标方程为3x -4y =1,则C 与极轴的交点即为直线与x 轴的交点⎝ ⎛⎭⎪⎫13,0,极点即为原点,故距离为13.答案:1315.(2014·广东高考文科·T 14)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为________. 15.解析:2ρcos 2θ=sin θ即2ρ2cos 2θ=ρsin θ,则2x 2=y ,ρcos θ=1即x =1. 联合解得,x =1,y =2.曲线C 1与C 2交点的直角坐标为(1,2). 答案:(1,2)误区警示:曲线C 1的方程化为直角方程看不出思路,可通过等式变形找关系. 16.(2014·天津高考理科·T 13)在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=α相交于A ,B 两点.若△AOB 是等边三角形,则α的值为________.16.解析:圆的普通方程为x 2+(y -2)2=4,直线为y =α.因为△AOB 是等边三角形,所以其中一个交点坐标为⎝⎛⎭⎪⎫α3,α,代入圆的方程可得α=3.答案:3 17.6217.(2015·韶关市高三模拟考试)在极坐标中,已知直线l 方程为ρ(cos θ+sin θ)=1,点Q 的坐标为⎝⎛⎭⎪⎫2,π3,则点Q 到l 的距离d 为________. 18.(2015·全国卷Ⅰ,数学文理23)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.18.解析:(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.1.建立曲线的极坐标方程的方法步骤: (1)在曲线上任取一点P (ρ,θ);(2)建立起直角三角形(或斜三角形),利用锐角的三角函数概念、正弦定理、余弦定理建立起ρ、θ的方程;(3)验证求得的方程为曲线的方程.2.利用极坐标思想方法亦可简便解决一些轨迹问题,尤其是涉及线段间数量关系的问题.求极坐标系下的轨迹方程与求直角坐标系下的轨迹方程的方法一致.如定义法、直接法、参数法等.3.不论曲线的直角坐标系的方程如何,只要我们将极坐标系的极点放在曲线的焦点上,总可将方程化成较简单的极坐标方程.反过来,有了适当的极坐标方程和直角坐标系与极坐标系的位置关系,也可以得到曲线在直角坐标系内的方程.这样,在解题过程中,我们就可以灵活地变换坐标系,使解题过程大为简化.如果对极坐标方程不熟悉,可转化为直角坐标方程解答.4.处理极坐标系中的直线与圆的问题大致有两种思路: (1)化极坐标方程为直角坐标方程再处理; (2)根据ρ、θ的几何意义进行旋转或伸缩变换.【习题1.3】1.解析:(1)表示圆心在极点,半径为5的圆(图略). (2)表示过极点,倾斜角为5π6的直线(图略).(3)表示过极点,圆心在⎝⎛⎭⎪⎫1,π2半径为1的圆(图略).2.解析:(1)θ=π3(ρ∈R).(2)如图所示,设过点A ⎝⎛⎭⎪⎫2,π3且与极轴垂直的直线与极轴交于点B ,点P (ρ,θ)是直线上任意一点.因为∠AOB =π3,OA =2,所以OB =2cos π3=1,从而cos θ=OB OP ,即cos θ=1ρ,所以所求的极坐标方程为ρcos θ=1.(3)如图所示,设P (ρ,θ)是圆上任意一点.当O ,A ,P 三点不共线时,在△OPA 中利用余弦定理得到|OA |2+|OP |2-2|OA |·|OP |cos ⎝ ⎛⎭⎪⎫θ-π4=|AP |2,所以1+ρ2-2ρcos ⎝ ⎛⎭⎪⎫θ-π4=1,即ρ=2cos ⎝⎛⎭⎪⎫θ-π4.①当O ,A ,P 三点共线时,点P 的坐标为⎝⎛⎭⎪⎫0,3π4或⎝ ⎛⎭⎪⎫2,π4,这两点的坐标满足①,所以①就是所求的圆的极坐标方程.(4)如图所示,设P (ρ,θ)是圆上任意一点,当O ,A ,P 三点不共线时,在△OPA 中利用余弦定理得|OA |2+|OP |2-2|OA |·|OP |cos ⎝ ⎛⎭⎪⎫π2-θ=|AP |2,所以a 2+ρ2-2a ρsin θ=a 2,即ρ=2a sin θ.②当O ,A ,P 三点共线时,点P 的坐标为(0,0)或⎝ ⎛⎭⎪⎫2a ,π2,这两点的坐标满足②,所以②就是所求的圆的极坐标方程.3.(1)ρcos θ=4. (2)ρsin θ=-2.(3)2ρcos θ-3ρsin θ-1=0. (4)ρ2cos 2θ=16. 4.(1)y =2. (2)2x +5y -4=0. (3)(x +5)2+y 2=25. (4)(x -1)2+(y +2)2=5.5.解析:以极点为直角坐标原点,极轴为x 轴正半轴建立平面直角坐标系,把直线的极坐标方程ρsin ⎝ ⎛⎭⎪⎫θ+π4=22化为直角坐标方程得x +y =1,把点A 的极坐标⎝ ⎛⎭⎪⎫2,7π4化为直角坐标得(2,-2).在平面直角坐标系下,由点到直线的距离公式得A (2,-2)到直线x +y =1的距离d =22.所以点A ⎝ ⎛⎭⎪⎫2,7π4到直线ρsin ⎝⎛⎭⎪⎫θ+π4=22的距离为22.6.(1)证明:以椭圆中心O 为原点,长轴所在的直线为x 轴建立直角坐标系,则椭圆的直角坐标方程为x 2a 2+y 2b 2=1.将椭圆的直角坐标方程化为极坐标方程得(ρcos θ)2a 2+(ρsin θ)2b 2=1,即ρ2=a 2b 2b 2cos 2θ+a 2cos 2 θ,由于OA ⊥OB ,可设A (ρ1,θ1),B ⎝⎛⎭⎪⎫ρ2,θ1+π2,则ρ21=a 2b 2b 2cos 2 θ1+a 2sin 2 θ1,ρ22=a 2b 2b 2sin 2 θ1+a 2cos 2 θ1.于是1|OA |2+1|OB |2=1ρ21+1ρ22=b 2cos 2θ1+a 2sin 2 θ1+b 2sin 2 θ1+a 2cos 2 θ1a 2b 2=a 2+b 2a 2b 2.所以1|OA |2+1|OB |2为定值.(2)解析:依题意得到S△AOB=12|OA ||OB |=12ρ1ρ2=12·a 2b 2(b 2cos 2θ1+a 2sin 2θ1)(b 2sin 2θ1+a 2cos 2θ1)=12·a 2b 2(a 2-b 2)2sin 22θ14+a 2b2,当且仅当sin 22θ1=1,S △AOB 有最小值为a 2b 2a 2+b 2;当sin 22θ1=0,S △AOB 有最大值为ab 2.2.4 渐开线与摆线►预习梳理1.以基圆圆心O 为原点,直线OA 为x 轴,建立平面直角坐标系,可得圆的渐开线的参数方程为:________________________________________________________________________(其中r 为基圆的半径).2.在研究平摆线的参数方程中,取定直线为x 轴,定点M 滚动时落在直线上的一个位置为原点,建立直角坐标系,设圆的半径为r ,可得摆线的参数方程为:______________________________________________________. ►预习思考半径为8的圆的渐开线参数方程为⎩⎪⎨⎪⎧x =8cos φ+8φsin φ,y =8sin φ-8φcos φ(φ为参数),摆线参数方程为______________.,预习梳理1.⎩⎪⎨⎪⎧x =r (cos φ+φsin φ),y =r (sin φ-φcos φ)(φ为参数) 2.⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ为参数)预习思考⎩⎪⎨⎪⎧x =8φ-8sin φ,y =8-8cos φ(φ为参数)一层练习1.关于渐开线和摆线的叙述,正确的是( ) A .只有圆才有渐开线B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才能得到不同的图形C .正方形也可以有渐开线D .对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线形状就不同 1.C2.半径为1的圆的渐开线的参数方程为( )A.⎩⎪⎨⎪⎧x =θ-sin θ,y =1-cos θ(θ为参数)B.⎩⎪⎨⎪⎧x =1-sin θ,y =θ-cos θ(θ为参数) C.⎩⎪⎨⎪⎧x =cos θ+θsin θ,y =sin θ-θcos θ(θ为参数) D.⎩⎪⎨⎪⎧x =cos θ-θsin θ,y =sin θ+θcos θ 2.C3.给出下列说法:①圆的渐开线的参数方程不能转化为普通方程;②圆的渐开线也可以转化为普通方程,但是转化后的普通方程比较麻烦,且不容易看出坐标之间的关系,所以常使用参数方程研究圆的渐开线问题;③在求圆的摆线和渐开线方程时,如果建立的坐标系原点和坐标轴选取不同,可能会得到不同的参数方程;④圆的渐开线和x 轴一定有交点而且是唯一的交点.其中正确的说法有( )A .①③B .②④C .②③D .①③④ 3.C4.基圆半径为2的渐开线的参数方程是__________.⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ)(φ为参数) 二层练习5.如下图所示,ABCD 是边长为1的正方形,曲线AEFGH …叫作“正方形的渐开线”,其中AE ,EF ,FG ,GH ,…的圆心依次按B ,C ,D ,A 循环,它们依次相连接,则曲线AEFGH 的长是( )A .3πB .4πC .5πD .6π 5.C6.已知摆线的生成圆的直径为80 mm ,则摆线的参数方程为____________________________________,其一拱的宽为________,拱高为________.6.⎩⎪⎨⎪⎧x =40(φ-sin φ),y =40(1-cos φ)(φ为参数) 80π mm 80 mm7.已知参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2sin α(α为参数),则该圆的渐开线参数方程为__________________________,摆线参数方程为____________________________.7.⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ)(φ为参数) ⎩⎪⎨⎪⎧x =2(φ-sin φ),y =2(1-cos φ)(φ为参数) 8.渐开线⎩⎪⎨⎪⎧x =6(cos φ+φsin φ),y =6(sin φ-φcos φ)(φ为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍(纵坐标不变)得到的曲线的焦点坐标为________________.8.(63,0)和(-63,0)9.当φ=π2,π时,求出渐开线⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ(φ为参数)上的对应点A ,B ,并求出A ,B 间的距离.9.解析:将φ=π2代入⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ.得x =cos π2+π2sin π2=1,y =sin π2-π2cos π2=1.∴A ⎝ ⎛⎭⎪⎫π2,1.将φ=π代入⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ,得x =cos π+πsin π=-1,y =sin π-πcos π=π.∴B (-1,π). 故A ,B 间的距离为|AB |=(1-π)2+⎝ ⎛⎭⎪⎫π2+12=45π2-π+2. 三层练习10.已知圆的直径为2,其渐开线的参数方程对应的曲线上两点A ,B 对应的参数分别为π3和π2,求点A 、B 的直角坐标. 10.解析:根据题设条件可知圆的半径为1,所以对应的渐开线的参数方程为⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ(φ为参数). 将φ=π3代入得x =cos π3+π3sin π3=12+36π, y =sin π3-π3cos π3=32-π6. ∴A 点的坐标为⎝⎛⎭⎪⎫3+3π6,33-π6.当φ=π2时,同理可求得B 点的坐标为⎝ ⎛⎭⎪⎫π2,1.11.求摆线⎩⎪⎨⎪⎧x =2(φ-sin φ),y =2(1-cos φ)(φ为参数且0≤φ≤2π)与直线y =2的交点的直角坐标.11.解析:当y =2时,有2(1-cos φ)=2, ∴cos φ=0.又0≤φ≤2π, ∴φ=π2或φ=3π2.当φ=π2时,x =π-2;当φ=3π2时,x =3π+2.∴摆线与直线y =2的交点为(π-2,2),(3π+2,2).12.设圆的半径为4,沿x 轴正向滚动,开始时圆与x 轴相切于原点O ,记圆上动点为M ,它随圆的滚动而改变位置,写出圆滚动一周时M 点的轨迹方程,画出相应曲线,求此曲线上纵坐标y 的最大值.12.解析:依题意可知,轨迹是摆线,其参数方程为⎩⎪⎨⎪⎧x =4(φ-sin φ),y =4(1-cos φ)(φ为参数).且0≤φ≤2π.其曲线是摆线的第一拱(0≤φ≤2π),如下图所示:易知,当x =4π时,y 有最大值8.13.已知一个圆的摆线方程是⎩⎪⎨⎪⎧x =4φ-4sin φ,y =4-4cos φ(φ为参数),求该圆的面积和对应的圆的渐开线的参数方程.13.分析:首先根据所给出的摆线方程判断出圆的半径为4,易得圆的面积,再代入渐开线的参数方程的标准形式,即可得圆的渐开线的参数方程.解析:首先根据摆线的参数方程可知圆的半径为4,所以面积是16π,该圆对应的渐开线参数方程是⎩⎪⎨⎪⎧x =4cos φ+4φsin φ,y =4sin φ-4φcos φ(φ为参数).14.已知一个圆的摆线过一定点(2,0),请写出该圆的半径最大时该摆线的参数方程以及对应的圆的渐开线的参数方程.14.分析:根据圆的摆线的参数方程⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ为参数),只需把点(2,0)代入参数方程求出r 的表达式,根据表达式求出r 的最大值,再确定对应的摆线和渐开线的参数方程即可.解析:令y =0,可得r (1-cos φ)=0,由于r >0,即得cos φ=1,所以φ=2k π(k ∈Z).代入x =r (φ-sin φ),得x =r (2k π-sin 2k π).又因为x =2,所以r (2k π-sin 2k π)=2,即得r =1k π. 又由实际可知r >0,所以r =1k π(k ∈N *).易知,当k =1时,r 取最大值为1π. 代入即可得圆的摆线的参数方程为⎩⎪⎨⎪⎧x =1π(φ-sin φ),y =1π(1-cos φ)(φ为参数);圆的渐开线的参数方程为⎩⎪⎨⎪⎧x =1π(cos φ+φsin φ),y =1π(sin φ-φcos φ)(φ为参数).1.渐开线的实质是直线在圆上滚动时直线上定点的轨迹.圆的摆线的实质是一个圆沿着一条定直线无滑动地滚动时圆周上一个定点的轨迹.2.渐开线上任一点M 的坐标由圆心角φ(以弧度为单位)唯一确定,而在圆的摆线中,圆周上定点M 的位置也可以由圆心角φ唯一确定.3.圆的渐开线和摆线的参数方程均不宜化为普通方程,既繁琐又没有实际意义. 4.有关已知摆线过定点求摆线及渐开线的参数方程等问题,可进行如下思路解题:代入摆线的参数方程⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ为参数),可求出φ,进一步求的r ,这样就可以写出该圆的摆线和渐开线的参数方程.【习题2.4】1.解析:因为基圆的直径是225 mm ,所以基圆的半径是112.5 mm ,齿廓线AB 所在的渐开线的参数方程为⎩⎪⎨⎪⎧x =112.5(cos φ+φsin φ),y =112.5(sin φ-φcos φ)(φ是参数).2.解析:将φ=π2,3π2分别代入⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ,得到A ,B 两点的坐标分别为⎝ ⎛⎭⎪⎫π2,1,⎝ ⎛⎭⎪⎫-3π2,-1,由两点间的距离公式得|AB |=⎝⎛⎭⎪⎫π2+3π22+(1+1)2=2π2+1.3.解析:设轮子的圆心为B ,以BM 的延长线与直线轨道垂直时的一个垂足O 为原点,直线轨道为x 轴,建立如图所示的直角坐标系.设圆滚动使点M 绕圆心B 转过φ角后点M 的坐标为(x ,y ),则x =OD =OA -DA =OA -MC =aφ-b sin φ,y =DM =AC =AB -CB =a -b cosφ,所以点M 的轨迹方程为⎩⎪⎨⎪⎧x =aφ-b sin φ,y =a -b cos φ(φ是参数).4.解析:建立如下图所示的直角坐标系,设点M 的坐标为(x ,y ),此时∠BOA =φ.因为OB =4CB ,所以∠BCM =4φ,∠MCD =π2-3φ.由于x =OF =OE +EF =3r cos φ+r sin ⎝ ⎛⎭⎪⎫π2高中数学 2.2.3抛物线的参数方程练习 新人教A 版选修4-4►预习梳理1.抛物线y =2x 2的焦点坐标为________,准线方程是________; 抛物线x 2=2y 的焦点坐标为________,准线方程是________. 2.曲线C的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,t ∈R)其中p 为正的常数.这是焦点在______________上的抛物线参数方程.►预习思考抛物线y 2=x 的一个参数方程为____________________., 预习梳理1.F ⎝ ⎛⎭⎪⎫0,18 y =-18 F ⎝ ⎛⎭⎪⎫0,12 y =-12 2.x 轴正半轴 预习思考⎩⎪⎨⎪⎧x =t 2,y =t (t 为参数)一层练习1.圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.1.(1,0)2.点P (1,0)到曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数,t ∈R)上的点的最短距离为( )A .0B .1 C. 2 D .2 2.B 3.若曲线⎩⎪⎨⎪⎧x =2pt ,y =2pt2(t 为参数)上异于原点的不同两点M 1、M 2所对应的参数分别是t 1、t 2,则弦M 1M 2所在直线的斜率是( )A .t 1+t 2B .t 1-t 2 C.1t 1+t 2 D.1t 1-t 23.A4.在平面直角坐标系中,已知直线l 与曲线C的参数方程分别为l :⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数)和C :⎩⎪⎨⎪⎧x =t +2,y =t2(t 为参数),若l 与C 相交于A 、B 两点,则|AB |=________.4. 25.连接原点O 和抛物线x 2=2y 上的动点M ,延长OM 到点P ,使|OM |=|MP |,求点P 的轨迹方程,并说明它是何种曲线.5.解析:设抛物线x 2=2y 的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t2(t 为参数).∵点M 在抛物线上, ∴M 的坐标为(2t ,2t 2).设P 的坐标为(x 0,y 0),由|OM |=|MP |知,M 为OP 的中点,∴⎩⎪⎨⎪⎧x 0=4t ,y 0=4t 2.消去参数t ,得 y 0=14x 20,即点P 的轨迹方程是x 2=4y ,表示的曲线为抛物线.二层练习6.参数方程⎩⎪⎨⎪⎧x =sin θ+cos θ,y =sin θcos θ(θ为参数)表示的曲线为( )6.C7.曲线⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数)上两点A 、B 所对应的参数分别为t 1、t 2,且t 1+t 2=0,则|AB |为 ( )A .|2p (t 1-t 2)|B .2p (t 1-t 2)C .2p (t 21+t 22) D .2p (t 1-t 2)27.A 8.设曲线C的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.8.ρcos 2θ-sin θ=09.(2015·广东卷Ⅱ,数学文14)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t 2y =22t(t 为参数),则C 1与C 2交点的直角坐标为________.9.解析:曲线C 1的直角坐标方程为x +y =-2,曲线C 2的普通方程为y 2=8x ,由⎩⎪⎨⎪⎧x +y =-2y 2=8x 得:⎩⎪⎨⎪⎧x =2y =-4,所以C 1与C 2交点的直角坐标为(2,-4). 答案:(2,-4)10.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.10.16三层练习11.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t(t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标.11.解析:∵直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t .∴消去参数t 后得直线的普通方程为2x -y -2=0.① 同理得曲线C 的普通方程为y 2=2x .②①②联立方程组解得它们公共点的坐标为(2,2),⎝ ⎛⎭⎪⎫12,-1.12.已知抛物线y 2=2px (p >0)过顶点的两弦OA ⊥OB ,求分别以OA 、OB 为直径的两圆的另一交点Q 的轨迹.12.解析:设A (2pt 21,2pt 1),B (2pt 22,2pt 2),则以OA 为直径的圆的方程为x 2+y 2-2pt 21。
高中数学学习材料金戈铁骑整理制作数学选修4-4综合测试卷A (含答案)一、选择题:本大题共14小题,每小题4分,共56分.在每小题的4个选项中,只有一项是符合题目要求的.1.将参数方程22sin=+2=y x sin (为参数)化为普通方程为().A .y =x -2B .y =x +2C .y =x -2(2≤x ≤3)D .y =x +2(0≤y ≤1)2.设椭圆的参数方程为sin=cos =b y a x (a >0,0≤≤),M(x 1,y 1),N(x 2,y 2)是椭圆上两点,M ,N 对应的参数为1,2且x 1<x 2,则().A .1<2B .1>2C .1≥2D .1≤23.参数方程为2=1+=y tt x (t 为参数)表示的曲线是().A .一条直线B .两条直线C .一条射线D .两条射线4.在极坐标系中,点P(,)关于极点对称的点的一个坐标是().A .(-,-)B .(,-)C .(,-)D .(,+)5.在同一坐标系中,将曲线y =2sin 3x 变为曲线y =sin x 的伸缩变换是().A .'y y 'x x 21=3=B .y'y x 'x 21=3=C .'y y 'x x 2=3=D .y'y x 'x 2=3=6.圆2=(cos +sin )的圆心坐标是().A .4π1,B .4π2,C .4π2,D .4π22,。
高中数学学习材料金戈铁骑整理制作数学选修4-4综合测试卷A (含答案)一、选择题:本大题共14小题,每小题4分,共56分.在每小题的4个选项中,只有一项是符合题目要求的.1.将参数方程⎪⎩⎪⎨⎧θθ22sin = + 2 = y x sin (θ 为参数)化为普通方程为( ).A .y =x -2B .y =x +2C .y =x -2(2≤x ≤3)D .y =x +2(0≤y ≤1)2.设椭圆的参数方程为⎩⎨⎧θθsin = cos =b y a x (a >0,0≤θ≤π),M (x 1,y 1),N (x 2,y 2)是椭圆上两点,M ,N 对应的参数为θ 1,θ2且x 1<x 2,则( ).A .θ 1<θ2B .θ 1>θ2C .θ 1≥θ2D .θ 1≤θ23.参数方程为⎪⎩⎪⎨⎧2=1+=y t t x (t 为参数)表示的曲线是( ). A .一条直线 B .两条直线 C .一条射线 D .两条射线4.在极坐标系中,点P (ρ,θ)关于极点对称的点的一个坐标是( ). A .(-ρ,-θ)B .(ρ,-θ)C .(ρ,π-θ)D .(ρ,π+θ)5.在同一坐标系中,将曲线y =2sin 3x 变为曲线y =sin x 的伸缩变换是( ). A .⎪⎩⎪⎨⎧'y y 'x x 21=3=B .⎪⎩⎪⎨⎧y 'y x'x 21=3=C .⎪⎩⎪⎨⎧'y y 'x x 2=3=D .⎪⎩⎪⎨⎧y 'y x'x 2=3=6.圆2= ρ(cos θ+sin θ)的圆心坐标是( ). A .⎪⎭⎫⎝⎛4π 1 ,B .⎪⎭⎫ ⎝⎛4π 2 ,C .⎪⎭⎫ ⎝⎛4π 2 ,D .⎪⎪⎭⎫⎝⎛4π 22 ,7.点(ρ,θ )满足3ρ cos 2 θ +2ρ sin 2 θ =6cos θ ,则 ρ2的最大值为( ). A .27B .4C .29D .58.极坐标方程 ρ=cos ⎪⎭⎫⎝⎛θ-4π表示的曲线是( ).A .双曲线B .椭圆C .抛物线D .圆9.两圆 ρ=2cos θ,ρ=2sin θ 的公共部分面积是( ). A .4π-21B .π-2C .2π-1 D .2π 10.直线12+=x y 的参数方程是( ).A .⎪⎩⎪⎨⎧+1==22t y tx 2(t 为参数)B .⎩⎨⎧1+4=1-2=t y t x (t 为参数)C .⎩⎨⎧1-2=-=t y t x 1(t 为参数)D .⎩⎨⎧1+ sin =sin =θθ2y x (t 为参数)11.已知过曲线 sin 4=cos 3=⎩⎨⎧θθy x (θ 为参数,0≤θ ≤π)上一点P 和原点O 的直线OP 的倾斜角为4π,则P 点坐标是( ). A .(3,4) B .⎪⎭⎫ ⎝⎛512512-- ,C .(-3,-4)D .⎪⎭⎫⎝⎛512512 ,12.在符合互化条件的直角坐标系和极坐标系中,直线l :y +k x +2=0与曲线C :ρ=2cos θ 相交,则k 的取值范围是( ).A .k <-43B .k ≥-43C .k ∈RD .k ∈R 但k ≠013.当θ∈R 时,由⎪⎪⎩⎪⎪⎨⎧22=2cos 3sin 22=2sin +3cos θθθθy -x y x (θ 为参数)表示的图形是( ). A .圆B .椭圆C .双曲线D .抛物线14.参数方程⎪⎪⎩⎪⎪⎨⎧1 -1=1=2t t y tx (t 为参数)所表示的曲线是( ).A B C D二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中横线上. 15.已知点A (6,6π)和B (10,6π),则A ,B 两点间的距离为 .16.把曲线的极坐标方程 ρ=tan θ·θcos 1化为直角坐标方程为___________________. 17.过点P (2,4π)并且与极轴垂直的直线方程是 . 18.在直径为a 的圆上取一定点作为极点O ,自O 到圆心引射线作为极轴.过O 点作圆的弦OP ,并延长OP 到M 点,使|PM |=a ,当P 点在圆周上移动时,动点M 的轨迹方程是 .三、解答题:本大题共3小题,共28分.解答应写出文字说明、证明过程或演算步骤. 19.在平面直角坐标系中已知点A (3,0),P 是圆x 2+y 2=1上一个动点,且∠AOP 的平分线交PA 于Q 点,建立适当的极坐标系求Q 点的轨迹的极坐标方程.20.点P 在椭圆1=9+1622x y 上,求点P 到直线3424x y -=的最大距离和最小距离21.已知曲线C 的极坐标方程是ρ=4cos θ (0<θ<2π),以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)写出曲线C 的普通方程,并说明它表示什么曲线;x yxy xxyO OOO y(2)过点P(-2,0)作倾斜角为α 的直线l与曲线C相交于A,B两点,证明|PA|·|PB|为定值,并求倾斜角α 的取值范围.参考答案一、选择题1.C 解析:由于0≤sin 2θ ≤1,故2≤x ≤3, y 代入后移项即为y =x -2;从而选C . 2.B 解析:由x 1<x 2知a cos θ1<a cos θ2,而余弦函数在[0,π]是减函数,故θ1>θ2,. 3.D 解析:y =2表示一条平行于x 轴直线,而x ≥2,或x ≤-2,所以表示两条射线. 4.D 解析:关于极点对称即为反向延长,故其坐标为(ρ,π+θ). 5.B 解析:把y =2sin 3x 化为=2y sin 3x ,则令y y'= 2,3x =x'即可.6.A 解析:圆方程可化为ρ=2cos ⎪⎭⎫ ⎝⎛4π -θ,故圆心坐标为⎪⎭⎫⎝⎛4π1 ,.另解:其直角坐标系下的方程是x 2+y 2-2x -2y =0,圆心坐标为⎪⎪⎭⎫ ⎝⎛2222,,故极坐标为⎪⎭⎫⎝⎛4π1 ,.7.B 解析: 由3ρ cos 2 θ +2ρ sin 2 θ =6cos θ,两边乘 ρ,化为3x 2+2y 2=6x , 解出 y 2=3x -23x 2代入到x 2+y 2, 得x 2+y 2=-21x 2+3x =-21(x 2-6x +9)+29=-21(x -3)2+29. 但因为22233 = x x -y ≥0,可得0≤x ≤2,故当x = 2 时,ρ2=x 2+y 2的最大值为4. 8.D 解析:展开后两边同乘 ρ 即知是圆. 9.C 解析:作图可知公共部分是两个四分之一圆重叠部分,恰好是两个四分之一圆面积和减去正方形面积.即2π-1. 1O xy-1(第9题)10.C 解析:变量x ∈R ,故排除A ,D .而B 中消去参数t 为y =2x +3,也不符合, 11.D 解析:因为OP 的倾斜角为4π,所以横坐标等于纵坐标,且在第一象限,故选D . 12.A 解析:因曲线C 是半径为1的圆,圆心(1 ,0)到直线l :y +k x +2=0的距离为1+ 2 + =2k k ||d <1,解得k <-43.13.B 解析:把两式分别平方,再相加得1 = 4+922y x .14.D 解析:因为变量x ,y 同号且x ≠0,故选D . 二、填空题15.4.解析:作图可知O ,A ,B 在同一直线上,且A ,B 在O 点同侧,所以|AB |=10-6=4.16.2x y =因为ρ=tan θ·θcos 1=θθ cos sin 2,ρcos 2 θ=sin θ,ρ2cos 2 θ=ρsin θ,故x 2=y . 17.ρcos θ=2.解析:设直线与极轴交点为Q ,M (ρ,θ)为直线上任意一点,∵∠POQ =4π, |OP |=2, ∴|OQ |=2. 在△MOQ 中,|OQ |=|OM |cos θ,即 2=ρcos θ,故所求的直线方程为 ρcos θ= 2. 18.ρ=α(1+cos θ).解析:设动点M 的坐标为(ρ,θ),则P 点为(ρ a ,θ),已知圆的方程为 ρ=a cos θ, 因为P 点的圆上,∴|OP |=a cos θ,即 ρ-a =a cos θ,故所求的方程为 ρ=a (1+cos θ). 三、解答题19.解:以O 为极点,x 轴正半轴为极轴建立极坐标系,设Q (ρ,θ),则P (1,2θ). ∵S △OQA +S △OQP =S △OAP , ∴21·3 ρsin θ+21 ρsin θ=21·3·1· sin 2θ, 故 23=ρcos θ.QAPO(第19题)20.解:设P (4cos θ,3sin θ),则d =5-12sin - cos 1224θθ,即d =5-4π cos 21224⎪⎭⎫ ⎝⎛+θ, 当⎪⎭⎫ ⎝⎛4π cos +θ=-1时,d max =512(2+2);当⎪⎭⎫ ⎝⎛4π cos +θ=1时,d min =512(2-2).21.解:(1)由ρ=4cos θ (0<θ<2π)得 ρ2=4ρcos θ,且x >0,y >0. 所以曲线C 的普通方程为 x 2+y 2=4x (y >0),它表示以C (2,0)为圆心、半径为2的圆在x 轴上方的圆弧. (2)解:设直线l 的参数方程是⎩⎨⎧ααsin = +-t y t x =cos 2(t 是参数),代人x 2+y 2=4x (y >0), 化简得t 2-8t cos α+12=0, 则|PA ||PB |=|t 1t 2|=12为定值, 结合曲线C 的图象可知,α 为锐角, 又由∆=16(4cos 2 α-3)>0, 则cos α>23, ∴0<α<6π. (第21题)B A42OPxy。
【高二】高中数学选修4 4模块测试题和答案(新课标人教版)【高二】高中数学选修4-4模块测试题和答案(新课标人教版)选修课4-4模块模拟检测本试卷分ⅰ卷()和第ⅱ卷(非)两部分。
第ⅰ卷50分,第ⅱ卷100分,共150分,考试时间120分钟。
第一卷(选择题,共50分)题号12345678910总分答复一、选择题(本大题共10小题,每小题5分,共50分)A.①, ② 和③ 都是直线。
B.只有② 这是一条直线c.①、②是直线,③是圆d.②是直线,①、③是圆(1,5)对于具有倾角的直线,以从固定点到移动点P的位移为参数的参数方程为a.b.c.d.3.直线的倾角为a.b.c.d.4.圆心到直线的距离为a.b.c.2d.5.如果直线和圆在两点B和C相交,则值为a.b.c.d.6.极坐标方程表示的曲线为a.一条射线和一个圆b.两条直线c.一条直线和一个圆d.一个圆7.如果P的极坐标已知,则通过点P并垂直于极轴的直线的极坐标方程为a.b.c.d.8.极坐标方程分别为和,两个圆心之间的距离为a.2b.c.5d.9.在极坐标系中,曲线大约为a.直线对称b.直线对称c.点中心对称d.极点中心对称10.在满足相互条件的直角坐标系和极坐标系中,如果直线与曲线相交,则取值范围为a.b.c.d.二、问题(本大题共有5个子题,每个子题得5分,共计25分)11.直线与曲线的公共点个数是。
12.当取所有实数时,双曲线中心的轨迹方程为。
13.已知直线的极坐标方程为,则极点到该直线的距离是。
14.如果等式和表示同一条直线,则关系为。
15.若是椭圆的焦点,p为椭圆上不在轴上的点,则的轨迹方程为。
三、回答问题(主要问题中有6个小问题,共75分)16.(本小题满分12分)将下列曲线的直角坐标方程化为极坐标方程。
17.(本课题满分为12分)a点和B点相距12分,运动点满足极坐标方程,可求出该点的轨迹。
18.(本小题满分12分)分别在下列两种情况下,把参数方程化为普通方程。
数学选修4-4综合测试卷C (含答案)满分:150分 时间:120分钟一、选择题(每小题5分,共50分)1.将点的极坐标)2,(ππ-化为直角坐标为( )A .)0,(π B.)2,(ππ C.)0,(π- D.)0,2(π-2.若直线的参数方程为12()23x tt y t=+⎧⎨=-⎩为参数,则直线的斜率为( )A .23B .23-C .32D .32-3.参数方程⎪⎪⎩⎪⎪⎨⎧+=+-=2221211t t y t t x (t 为参数)化为普通方程为( ) A .122=+y x B.122=+y x 去掉(0,1)点 C. 122=+y x 去掉(1,0)点 D.122=+y x 去掉(-1,0)点 4.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆 5.极坐标方程cos 20ρθ=表示的曲线为( ) A .极点 B .极轴 C .一条直线 D .两条相交直线6.与参数方程为()21x tt y t⎧=⎪⎨=-⎪⎩为参数等价的普通方程为( )A .214y +=2x B .21(01)4y x +=≤≤2x C .21(02)4y y +=≤≤2x D .21(01,02)4y x y +=≤≤≤≤2x 7.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )A .cos 2ρθ=B .sin 2ρθ=C .4sin()3πρθ=+D .4sin()3πρθ=-8.直线112()3332x t t y t ⎧=+⎪⎪⎨⎪=-+⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标为( ) A .(3,3)- B .(3,3)- C .(3,3)- D .(3,3)- 9.圆5cos 53sin ρθθ=-的圆心是( ) A .4(5,)3π--B .(5,)3π-C .(5,)3πD .5(5,)3π- 10.若曲线22=ρ上有n 个点到曲线2)4cos(=+πθρ的距离等于2,则n =( ) A .1 B .2 C .3 D .4二、填空题(每小题5分,共30分)11.设点P 的直角坐标为(1,1,2),则点P 的柱坐标是__________,球坐标是____________.12.若直线b x y +=与曲线⎩⎨⎧==θθsin cos y x θ(为参数,且)22πθπ≤≤-有两个不同的交点,则实数b 的取值范围是_________.13.圆的参数方程为3sin 4cos ()4sin 3cos x y θθθθθ=+⎧⎨=-⎩为参数,则此圆的半径为______________。
专题综合测评(时间120分钟,满分150分)一、选择题(每小题5分,共60分)1.点P 的直角坐标为(1,-3),则它的极坐标可能是 A.(2,3π) B.(2,34π) C.(2,-3π) D.(2,34π) 解析:因为点P (1,-3)在第四象限,与原点的距离为2,且OP 与x 轴所成的角为35π,所以点P 的一个极坐标为(2,35π),排除A 、B 选项.又因为-34π+2π=23π,所以极坐标(2,34π-)所表示的点在第二象限,排除D.答案:C2.已知动圆x 2+y 2-2axcosθ-2bysinθ=0(a 、b 是正常数,a≠b,θ是常数),则圆心的轨迹是 A.直线 B.圆 C.抛物线的一部分 D.椭圆 解析:x 2+y 2-2axcosθ-2bysinθ=(x-acosθ)2+(y-bsinθ)2-a 2cos 2θ-b 2sin 2θ.所以圆心坐标为(acosθ>bsinθ).由于1)sin ()cos (2222=+bb a a θθ, 所以圆心的轨迹是椭圆.答案:D 3.直线⎩⎨⎧+-=+=ty t x 1,32上对应t=0与t=1两点间的距离是A.1B.10C.10D.22解析:10)(10)()33(212212212=-=-+-t t t t t t .答案:B4.圆ρ=2(cosθ+sinθ)的圆心坐标是A.(1,4π) B.(21,4π) C.(2,4π) D.(2,4π) 解析:因为ρ=2(cosθ+sinθ)=2sin(θ+4π),所以由圆的极坐标方程得圆心坐标是(1, 4π).答案:A5.不论θ为何实数,方程2cosθ·x 2+y 2=1所表示的曲线都不能是A.直线B.圆C.抛物线D.双曲线 解析:当2cosθ=0时,方程为y=±1,表示的曲线是两条直线;当2cosθ=1时,方程为x 2+y 2=1,表示的曲线是圆;当2cosθ<0时,方程表示的曲线是双曲线. 答案:C6.已知点A(-2,-2π)、B(2,43π)、O(0,0),则△ABO 为A.正三角形B.直角三角形C.等腰锐角三角形D.等腰直角三角形解析:可以先求出三边的长度再判断三角形的形状. 答案:D7.已知直线方程⎩⎨⎧+-=+=t y t x 34,43(t 为参数),则下列说法中,错误的是A.直线的斜率是43 B.直线过点(3,-4)C.当t =1时,直线方程所对应的点到点(3,-4)的距离是1D.该直线不经过第二象限 解析:直线的斜率k=434334==-+t t x y ;当t =0时,x =3,y =-4;当t =1时,直线方程所对应的点为(7,-1),它与点(3,-4)的距离为22)41()37(+-+-=5;当x =3+4t <0,即t<43-时,y=-4+3t <-4+3×(43-)=425-<0,所以该直线不经过第二象限.答案:C 8.椭圆⎩⎨⎧+-=+=θθsin 51,cos 33y x (θ为参数,且θ∈[0,2π))的两个焦点坐标是A.(-3,5)、(-3,-3)B.(3,3)、(3,-5)C.(1,1)、(-7,1)D.(7,1)、(-1,-1)解析:椭圆中心为(3,-1),焦点在直线x=3上,a =5,b =3,c =22b a -=4. 答案:B 9.已知直线l :⎩⎨⎧+-=+=ty t x 2,1(t 为参数)与椭圆x 2+2y 2=8交于A 、B 两点,则|AB|等于A.22B.334C.2D.632 解析:把x=1+t,y=-2+t代入椭圆方程中,整理得到3t 2-6t+1=0,t 1+t 2=2,t 1t 2=31.而|AB|=334]4)[(2)(221221212=-+=-t t t t t t . 答案:B10.若曲线C:⎩⎨⎧-==1sin ,sin 2θθy x (θ为参数,θ∈R )与直线l :x=m 交于相异的两点,那么A.m≥0B.m >0C.0≤m≤1D.0<m≤1解析:曲线C 的普通方程为(y+1)2=x (0≤x≤1),表示抛物线的一段(如图所示),当0<m≤1时,直线l 与曲线C 有两个相异交点.答案:D 11.直线l :⎩⎨⎧==ααsin ,cos t y t x (t 为参数)与圆C :⎩⎨⎧=+=θθsin 2,cos 4y x (θ为参数,θ∈ [0,2π))相切,则直线的倾斜角为A.6π或65π B.4π或43π C.3π或32π D.6π-或-65π解析:将参数方程化为普通方程,直线l :xtanα-y =0(α≠2π),当α=2π时不合题意.圆C :(x-4)2+y 2=4,它们相切的充要条件是2tan 1|0tan 4|2=+-αα,解得tanα=±33.又∵α∈[0,π),∴α=6π或65π.答案:A12.椭圆的中心为点E(-1,0),它的一个焦点为F(-3,0),相应于焦点的准线方程为x=-27,则这个椭圆的方程为A.13221)1(222=+-y x B.13221)1(222=++y x C.15)1(22=+-y x D.15)1(22=++y x 解析:椭圆的中心在E(-1,0),则可设椭圆的方程为1)1(2222=++by a x ,从而排除了A 、C .该椭圆相当于椭圆2222b y a x +=1向左平移了 1个单位得到的,故c =-1-(-3)=2.1272+-=-c a ,∴a 2=5.故选D. 答案:D二、填空题(每小题4分,共16分)13.极坐标方程4ρsin 22θ=5化为直角坐标方程是______________.解析:先把原式变形,再代入互化公式.答案:y 2=5x+425. 14.圆心为C(3,6π),半径为3的圆的极坐标方程为_____________. 解析:可以直接代入圆的极坐标方程的公式求得. 答案:ρ=6cos(θ-6π). 15.直线的参数方程为⎩⎨⎧-=+=,1,1t y t x 则它与圆x 2+y 2=4的交点坐标为______________.解析:把直线的参数方程代入圆的方程,得(1+t)2+(1-t)2=4,解得t 1=-1,t 2=1.分别代入直线方程,得⎩⎨⎧==;2,011y x ⎩⎨⎧==.0,222y x 所以交点为A(0,2)和B(2,0). 答案:(0,2)和(2,0) 16.P(x,y)是曲线⎩⎨⎧=+=αθsin ,cos 2y x (α为参数,α∈[0,2π))上任意一点,则22)4()5(-+-y x 的最大值为_______________.解析:曲线⎩⎨⎧=+=ααsin ,cos 2y x 的普通方程为(x-2)2+y 2=1,表示以C(2,0)为圆心,1为半径的圆,P(x,y)是圆上任一点,22)4()5(-+-y x 的几何意义是圆上任一点P(x,y)与点Q(5,4)的距离d,由图可知,当PQ 过圆心时,|PQ|取得最大值和最小值,最大值为|QC|+1,而|QC|=22)04()25(-+-=5,|QC|+1=6.答案:6三、解答题(17—21题每题12分,22题14分,共74分) 17.已知P(5,32π),O 为极点,求使△POP′是正三角形的P′点的坐标. 解:假设P′点坐标是(ρ,θ),由OP =OP′,得ρ=5.由∠POP′=3π,得θ=3π或π. 则P′(5,3π)或P′(5,π). 18.△ABC 的底边BC=10,∠A=21∠B,以B 点为极点,BC 为极轴,求顶点A 的轨迹方程.思路分析:数形结合,由正弦定理直0接得出相等表达式,化简后得出结论. 解:设M(ρ,θ)是曲线上任意一点,在△ABC 中,由正弦定理得2sin10)23sin(θθπρ=-,得点A 的轨迹是ρ=30-40sin 22θ.19.如图,在平面直角坐标系中,已知点A (3,0),P 是圆x 2+y 2=1上一个动点,且∠AOP 的平分线交PA 于Q 点,求Q 点的轨迹的极坐标方程.思路分析:首先建立极坐标系,然后由面积S △OQA +S △OQP =S △OAP 建立点之间的联系得出方程.解:以O 为极点,x 轴正半轴为极轴建立极坐标系, 设Q(ρ,θ),P(1,2θ),∵S △OQA +S △OQP =S △OAP , ∴21×3ρsinθ+21ρsinθ=21×3×1×sin2θ,得ρ=23cosθ. 20.说明由函数y=2x 的图象经过怎样的图象变换可以得到函数y=4x-3+1的图象. 思路分析:按照图形平移变换和伸缩变换的规律求解. 解:y=4x-3+1可变为y-1=22(x-3). 先把函数y=2x 的图象按伸缩系数k=21向着y 轴压缩,得到y=22x 的图象,再按向量a =(3,1)平移,得到函数y=4x-3+1的图象.也可以先把函数y=2x 的图象按向量a =(6,1)平移,得到函数y=2x-6+1的图象,再按伸缩系数k=21向着y 轴压缩,得到y-1=22x-6的图象,即函数y=4x-3+1的图象. 21.已知定点P (6,0)、Q (0,-4),动点C 在椭圆4922y x +=1上运动(如图所示).求△PQC 面积的最大值和最小值.思路分析:因为动点C 在椭圆4922y x +=1上运动,故可设出点C 的坐标(3cosθ,2sinθ),从而把△PQC 的面积表示为θ的函数,再利用三角函数的知识求解. 解:由题意,可求得直线PQ 的方程为2x-3y-12=0,|PQ|=132.已知椭圆的参数方程为⎩⎨⎧==θθsin 2,cos 3y x (θ为参数,且0≤θ<2π),则椭圆上点C(3cosθ,2sinθ)到直线PQ 的距离d =13|12)4sin(26|13|12sin 6cos 6|--=--θπθθ. 显然,当θ=43π时,d 最大,且d 最大值=131226+.此时S △PQC 的最大值是21×d 最大值×|PQ|=21×131226+×132=12+62;当θ=47π时,d 最小,d 最小值=132612-,此时S △PQC 的最小值为12-62.22.如图所示,当前热带风暴中心位于点O 处,某海滨城市在它的西面220千米的点A 处.风暴正以40千米每小时的速度向西偏北60°方向运动.已知距风暴中心200千米以内的地方都会受风暴侵袭,计算经过多长时间该城市会受风暴侵袭,侵袭会持续多长时间.思路分析:根据题意建立适当坐标系,将实际问题转化为数学问题解决. 解:以O 为坐标原点,AO 所在的直线为x 轴建立如图所示的坐标系.以有向线段OP 的数量u 为变量,建立直线OP 的方程⎩⎨⎧︒=︒=.120sin ,120cos u y u x设风暴中心处于点O 时,时间为0,而到达点P 的时间为t (小时),则u =40t ,代入OP 的参数方程,得⎩⎨⎧=-=.320,20t y t x记点A(-220,0)到点P 的距离为|AP|,则|AP|2=(220+20t)2+(-203t)2=202(4t 2-22t+121). 当|AP|≤200时,城市就受到风暴侵袭,即202(4t 2-22t+121)≤2002,4t2-22t+121≤0,解得43711-≤t≤11+43711+.近似得1.23≤t≤4.27.而1.23小时≈1小时14分,4.27小时≈4小时16分.由此可知,1小时14分后城市就受到侵袭,侵袭时间要持续3小时2分.。
模块综合测评(时间:120分钟,满分:150分)知识点分布表一、选择题(每小题5分,共60分)1.将正弦曲线y =sinx 作如下变换⎪⎩⎪⎨⎧='=',3,21y y x x 得到的曲线方程为( )A.x y '='21sin 3B.x y '='2sin 31C.x y '='2sin 21D.y ′=3sin2x ′ 2.将点P 的直角坐标)33,33(+-化为极坐标是( ) A.)12,62(π-B.)12,6(πC.)125,62(πD.)125,6(π 3.方程ρ=2sin θ表示的图形是( )A.圆B.直线C.椭圆D.射线 4.设点M 的柱坐标为)7,6,2(π,则M 的直角坐标是( )A.)7,3,1(B.)7,1,3(C.)3,7,1(D.)1,7,3(5.曲线的参数方程为⎪⎩⎪⎨⎧-=-=21,11t y t x (t 为参数,t ≠0),它的普通方程是( )A.(x -1)2(y -1)=1 B.2)1()2(x x x y --=C.1)1(12--=x y D.112+-=x x y 6.已知过曲线⎩⎨⎧==θθsin 4,cos 3y x (θ为参数,0≤θ≤π)上一点P 与原点O 的直线PO,倾斜角为4π,则点P 的极坐标为 ( ) A.)4,3(πB.)4,223(πC.)4,512(π-D.)4,5212(π 7.过点P(4,3),且斜率为32的直线的参数方程为( ) A.⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 1323,1334(t 为参数) B.⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 1324,1333(t 为参数) C.⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 1333,1324(t 为参数) D.⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 1334,1323(t 为参数)8.直线y =ax +b 通过第一、二、四象限,则圆⎩⎨⎧+=+=θθsin ,cos r b y r a x (θ为参数)的圆心位于( )A.第一象限B.第二象限C.第三象限D.第四象限 9.设a,b ∈R ,a 2+2b 2=6,则a +b 的最小值是( ) A.22- B.335-C.-3D.27-10.曲线⎩⎨⎧+=-=12,12t y t x (t 为参数)的焦点坐标是( )A.(0,1)B.(1,0)C.(1,2)D.(0,2) 11.将参数方程⎩⎨⎧=+=θθsin 2,cos 21y x (θ为参数)化为普通方程为( )A.(x -2)2+y 2=4 B.(x -1)2+y 2=4 C.(y -2)2+x 2=4 D.(y -1)2+x 2=412.双曲线⎪⎩⎪⎨⎧+=+-=θθcos 121,tan 2y x (θ为参数)的渐近线方程为( )A.)2(211+±=-x y B.x y 21±= C.y -1=±2(x +2) D.y +1=±2(x -2) 二、填空题(每小题4分,共16分)13.在极坐标系中,若过点A(3,0)且与极轴垂直的直线交曲线ρ=4cos θ于A 、B 两点,则|AB|=_________.14.O 为坐标原点,P 为椭圆⎩⎨⎧==ϕϕsin 2,cos 3y x (φ为参数)上一点,对应的参数6πϕ=,那么直线OP 的倾斜角的正切值是__________.15.抛物线y 2=2px(p >0)的一条过焦点的弦被分成m ,n 长的两段,则=+nm 11_______.16.在极坐标系中,点)6,2(π-P 到直线1)6sin(:=-πθρl 的距离是________. 三、解答题(共74分)17.(12分)函数y =2x的图象经过图象变换得到函数y =4x -3+1的图象,求该坐标变换.18.(12分)已知椭圆⎩⎨⎧=+=ϕϕsin 3,cos 2:1y m x C (φ为参数)及抛物线)23(6:22-=x y C .当C 1∩C 2≠时,求m 的取值范围.19.(12分)已知直线的参数方程为⎩⎨⎧-=+-=ty t x 42,31(t 为参数),它与曲线(y -2)2-x 2=1交于A 、B 两点. (1)求|AB|的长;(2)求点P (-1,2)到线段AB 中点C 的距离. 20.(12分)已知⊙C:ρ=cos θ+sin θ,直线)4cos(22:πθρ+=l .求⊙C 上点到直线l 距离的最小值.21.(12分)在曲线⎩⎨⎧=+=θθs i n,c o s 1:1y x C (θ为参数)上求一点,使它到直线⎪⎪⎩⎪⎪⎨⎧-=+-=t y t x C 211,2122:2(t 为参数)的距离最小,并求出该点坐标和最小距离. 22.(14分)已知某圆的极坐标方程为06)4cos(242=+--πθρρ,求:(1)圆的普通方程和参数方程;(2)圆上所有点(x,y)中x ·y 的最大值和最小值.参考答案1 答案:D2 解析:∵33-=x ,33+=y ,∴62)33()33(2222=++-=+=y x ρ,125tan )64tan(3313313333tan πππθ=+=-+=-+==x y ,∴125πθ=. 答案:C3 解析:ρ=2sin θ可化为x 2+y 2-2y =0,表示以(0,1)为圆心,以1为半径的圆. 答案:A 4 解析:36cos 2==πx ,16sin2==πy ,z =7.答案:B5 解析:t x 11-=,∴x t -=11,222)1()2()1(111x x x x t y --=--=-=. 答案:B6 解析:将曲线化成普通方程为116922=+y x (y ≥0),与直线PO:y =x 联立可得P 点坐标为)512,512(.利用直角坐标与极坐标转化公式即可得到P 点的极坐标. 答案:D7 解析:∵倾斜角α满足32tan =α,∴132sin =α,133cos =α,∴所求参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=.1323,1334t y t x (t 为参数) 答案:A8 解析:∵y =ax +b 通过第一、二、四象限,∴a <0,b >0. ∴圆心(a,b)位于第二象限. 答案:B9 解析:不妨设⎪⎩⎪⎨⎧==ααsin 3,cos 6b a (α为参数),则)sin(3sin 3cos 6ϕααα+=+=+b a ,其中2tan =ϕ,∴a +b 的最小值为-3.答案:C10 解析:将参数方程化为普通方程为(y -1)2=4(x +1),该曲线为抛物线y 2=4x 向左、向上各平移一个单位得到的,∴焦点为(0,1). 答案:A 11 解析:∵⎩⎨⎧=+=,sin 2,cos 21θθy x ,∴21cos -=x θ,2sin y=θ,∴1)2()21(22=+-y x ,即(x -1)2+y 2=4. 答案:B12 解析:根据三角函数的性质把参数方程化为普通方程,得1)2(4)1(22=+--x y ,可知这是中心在(-2,1)的双曲线,利用平移知识,结合双曲线的渐近线的概念即可. 答案:C13 解析:∵ρ=4cos θ, ∴ρ2=4pcos θ, 即x 2+y 2=4x,∴(x -2)2+y 2=4为ρ=4cos θ的直角坐标方程. 当x =3时,3±=y ,∴直线x =3与ρ=4cos θ的交点坐标为)3,3(、)3,3(-, ∴32||=AB . 答案:32 14 解析:当6πϕ=时,P 点坐标为)1,233(,所以9322331tan ==ϕ,即为所求. 答案:93215 解析:利用参数方程,结合参数的几何意义,设过焦点)0,2(p的直线方程为⎪⎩⎪⎨⎧=+=θθsin ,cos 2t y t p x (t 为参数),代入抛物线的方程得(tsin θ)2=p 2+2ptcos θ,即t 2sin 2θ-2ptcos θ-p 2=0,设此方程的两个实根分别为t 1、t 2,则根据根与系数的关系,可得θθ221sin cos 2p t t =+,θ2221sin p t t -=,而根据参数的几何意义可得||112121t t t t mn n m n m -=+=+,代入化简即得答案. 答案:p216 解析:点)6,2(π-P 的直角坐标为)1,3(-,将直线1)6sin(:=-πθρl 化为直角坐标方程为:12236sincos 6cossin =-=-xy πθρπθρ. 即023=+-y x .∴132|233|+=++=d .答案:13+ 17 解:因为y =4x -3+1=22x -6+1,所以只需把y =2x的图象经过下列变换就可以得到y=4x -3+1的图象.先把纵坐标不变,横坐标向右平移6个单位,得到函数y =2x -6的图象;再把横坐标缩短为原来的21,纵坐标不变,得到函数y =22x -6的图象; 再把所得函数图象的横坐标不变,纵坐标向上平移1个单位即得函数y =4x -3+1的图象.∴⎩⎨⎧-'=-'=.1,62y y x x 则⎪⎩⎪⎨⎧+='+='.1,26y y x x18 解:将椭圆C 1的参数方程代入)23(6:22-=x y C ,整理得3sin 2φ=6(m +2cos φ-23), ∴1-cos 2φ=2m +4cos φ-3,即(cos φ+2)2=8-2m. ∵1≤(cos φ+2)2≤9, ∴1≤8-2m ≤9. 解之,得2721≤≤-m . ∴当C 1∩C 2≠时,]27,21[-∈m . 19 解:(1)把直线的参数方程对应的坐标代入曲线的方程并化简得7t 2+6t -2=0,设A 、B 对应的参数分别为t 1,t 2,则7621-=+t t ,7221-=∙t t .所以,线段AB 的长度237104)(5||)4(3||212212122=-+=-∙-+=t t t t t t AB .(2)根据中点坐标的性质可得AB 的中点C 对应的参数为73221-=+t t ,所以,由t 的几何意义可得点P(-1,2)到线段AB 中点C 的距离为715|73|)4(322=-∙-+.20 解:⊙O 的直角坐标方程是x 2+y 2-x -y =0, 即21)21()21(22=-+-y x . 又直线l 的极坐标方程为ρ(cos θ-sin θ)=4, 所以直线l 的直角坐标方程为x -y -4=0. 设)sin 2221,cos 2221(θθ++M 为⊙C 上任意一点,M 点到直线l 的距离 2|4)sin 2221(cos 2221|-+-+=θθd2)4cos(4πθ+-=.当47πθ=时,22323min ==d . 21 解:直线C 2化成普通方程为0122=-++y x . 设所求的点为P(1+cos θ,sin θ),则P 到直线C 2的距离为 |2)4sin(|2|122sin cos 1|++=-+++=πθθθd .当πππθk 2234+=+,k ∈Z 时,即ππθk 245+=,k ∈Z 时,d 取最小值1. 此时,点P 的坐标是)22,221(--. 22 解:(1)原方程可化为06)4sin sin 4cos (cos 242=++-πθπθρρ,即ρ2-4ρcos θ-4ρsin θ+6=0.①因为ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ,所以①可化为x 2+y 2-4x -4y +6=0,即(x -2)2+(y -2)2=2,即为所求圆的普通方程.设2)2(2cos -=x θ,2)2(2sin -=y θ,所以参数方程为⎪⎩⎪⎨⎧+=+=θθsin 22,cos 22y x (θ为参数).(2)由(1)可知223sin cos 2)sin (cos 224)sin 22()cos 22(+=∙+++=+∙+=θθθθθθxy 2)sin (cos )sin (cos θθθθ+++.②设t =cos θ+sin θ,则)4sin(2πθ+=t ,]2,2[-∈t .所以1)2(22322++=++=t t t xy .当2-=t 时xy 有最小值为1;当2=t 时,xy 有最大值为9.。
高中数学人教版选修4-4测试题带答案C、在直线y=x-1上D、在直线y=x+1上高中数学人教版选修4-4经典测试题0,xt,,sin501,8(直线的参数方程为 (t为参数),则直线的倾斜角为( ) 班级: 姓名: ,0yt,,cos50,,一、选择题(5*12=60) 0000A( B( C( D( 5040140130xt,,3,1(直线,(为参数)上与点的距离等于的点的坐标是( ) P(3,4)2t,9(曲线的极坐标方程化为直角坐标为( ) ,,,4sinyt,,4,2222A( B(或 (4,3)(,4,5)(0,1)A. B. x,(y,2),4x,(y,2),42222C( D(或 (2,5)(4,3)(2,5)C. D. (x,2),y,4(x,2),y,42,2(圆的圆心坐标是 x,3t,2,,2(cos,,sin,)10(曲线的参数方程为(t是参数),则曲线是( ) ,2yt,,1,,,,,1,,,,,,,,A( B( C( D( 1,,2,2,A、线段 B、直线C、圆 D、射线 ,,,,,,,,24444,,,,,,,,π,,BAB11(在极坐标系中,定点,动点在直线上运动,当线段最短时,,,,,cossin0,,A1,,,,,3(表示的图形是( ) (,,0),2,,4BA(一条射线 B(一条直线 C(一条线段 D(圆的极坐标是动点x,2,t,2π23π3π33π2CAB,4(已知直线为参数)与曲线:交于两点,则( )(tA,B,,4,cos,,3,0,A( B( C( D( (,)(,)(,)(,)y,1,t24242424, xa,,cos,,12,C12(在平面直角坐标系中,圆的参数方程为(为参数).以坐标原点为极点,xOy12A( B( C( D( ,y,sin,22,xt,,12,,25(若直线的参数方程为,则直线的斜率为( )( ()t为参数llC,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为,,.若直线与圆相xsin(),,yt,,23,422233切,则实数a的取值个数为( ) ,,A( B( C( D( A .0 B.1 C.2 D.3 3322,x,3cos,,,,为参数,,6(已知过曲线,,0,,上一点P,原点为O,直线PO的倾斜角为,则P ,y,4sin4,,二、填空题(5*4=20),点坐标是( ) cos(,),213((坐标系与参数方程选做题)极坐标系下,直线,,与圆的公共点个数是,,24,,121232,,,,,22A、(3,4) B、 C、 (-3,-4) D、________; ,,,,,255,,,,,A(2,)14(在极坐标系中,点关于直线l:cos1,,,的对称点的一个极坐标为_____. 2,x,,1,cos,(,7(曲线为参数)的对称中心( ) ,xt,,43,,y,2,sin,22,15(已知圆M:x+y-2x-4y+1=0,则圆心M到直线(t为参数)的距离为 ( ,yt,,31,,A、在直线y=2x上 B、在直线y=-2x上第1页共4页◎ 第2页共4页x,,22cos,,xmt,,cos,16((选修4-4:坐标系与参数方程)曲线,极坐标系(与直角坐标系xOy取C:(),R,,,y,2sin,的极坐标方程为,曲线的参数方程为(为参数,轴为极轴,曲线CC,,,4cost,,21yt,sin,,,相同的单位长度,以原点O为极点,x轴正半轴为极轴)中,直线被曲线C截得的线段,,()R,,,,60,,,,),射线与曲线交于(不包括极点O)三点 ,,,,,,,CA,B,C,,,,,,1长为 ( 44(1)求证:; OBOCOA,,2三、解答题,(2)当时,B,C两点在曲线上,求与的值 ,Cm,,,2212x,t,,2l17((本小题满分10分)已知在平面直角坐标系中,直线的参数方程是(是xOyt,,22,xt,,3y,t,42,,,22,l22((本小题满分12分)在平面直角坐标系中,直线的参数方程为(为参数)(在xy,t,2,,yt,,5OC参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程,2cos(,)( x,,,,24lC(?)判断直线与曲线的位置关系; ,C以原点为极点,轴正半轴为极轴的极坐标中,圆的方程为( x,,,25sinCMx,y(?)设为曲线上任意一点,求的取值范围( lC(1)写出直线的普通方程和圆的直角坐标方程; 18((本小题满分12分)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线Cl,3,5(2)若点坐标为,圆与直线交于,两点,求,,,,,的值( ,,,,,,,,x1cos,2,C的极坐标方程为ρsin(θ,),a,曲线C的参数方程为 (φ为参数,12,4y,,1,sin,2,0?φ?π)((1)求C的直角坐标方程; 1(2)当C与C有两个不同公共点时,求实数a的取值范围( 1222xt,,2,xyC:1,,19((本小题满分12分)已知曲线,直线(t为参数)( l:,49yt,,22,l(1)写出曲线C的参数方程,直线的普通方程;ll(2)过曲线C上任意一点P作与夹角为30?的直线,交于点A,求|PA|的最大值与最小值(xt,,1,20((本小题满分12分)在直角坐标系中,直线的参数方程为为参数),以该直xOy(tC,1yt,,2,O角坐标系的原点x为极点,轴的正半轴为极轴的极坐标系下,圆的方程为C2 ( ,,2cos,23sin,,,(?)求直线的普通方程和圆的圆心的极坐标; CC21ABAB(?)设直线和圆的交点为、,求弦的长( CC21xoyx21((本小题满分12分)极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半第3页共4页◎ 第4页共4页参考答案 1(D【解析】xt,,3,试题分析: 设直线,(为参数)上与点的距离等于的点的坐标是P(3,4)2t,yt,,4,,则有 (3,4),,tt222(33)(44)2,,,,,,tt即,所以所求点的坐标为或( tt,,,,11(4,3)(2,5) 故选D(考点:两点间的距离公式及直线的参数方程(2(A【解析】222试题分析: ,,,,,,,,,?,,?,,,2(cossin)2(cossin)22xyxy,,22,,,22,圆心为,化为极坐标为 ,1,?,,,,xyxy220,,,,,,224,,,,考点:1(直角坐标与极坐标的转化;2(圆的方程 (A 3【解析】,,试题分析:,表示一和三象限的角平分线,表示第三象限的角平分y,x,,,04 线( y,x,x,0考点:极坐标与直角坐标的互化4(D【解析】C试题分析:将直线化为普通方程为,将曲线化为直角坐标方程为xy,,,102222xy,,,21Cr,12,0,即,所以曲线为以为圆心,半径的圆( xyx,,,,430,,,,201,,22,0圆心到直线的距离( xy,,,10d,,,,22211,,,,2,,AB22dr,,AB,2根据,解得(故D正确( ,,2,,考点:1参数方程,极坐标方程与直角坐标方程间的互化;2直线与圆的相交弦( 5(B【解析】试题分析:由直线的参数方程知直线过定点(1,2),取t=1得直线过(3,-1),由斜率公式答案第1页,总8页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
数学选修4-4 坐标系与参数方程[根底训练A 组]一、选择题1.假设直线的参数方程为12()23x tt y t =+⎧⎨=-⎩为参数,那么直线的斜率为〔 〕A .23 B .23- C .32 D .32-2.以下在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是〔 〕A.1(,2 B .31(,)42-C. D. 3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为〔 〕 A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为〔 〕A .201y y +==2x 或 B .1x = C .201y +==2x 或x D .1y = 5.点M的直角坐标是(1-,那么点M 的极坐标为〔 〕A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 6.极坐标方程cos 2sin 2ρθθ=表示的曲线为〔 〕A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题 1.直线34()45x tt y t=+⎧⎨=-⎩为参数的斜率为______________________。
2.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________。
3.直线113:()24x tl t y t=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,那么AB =_______________。
4.直线122()112x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数被圆224x y +=截得的弦长为______________。
5.直线cos sin 0x y αα+=的极坐标方程为____________________。
最新人教版高中数学选修4-4测试题全套及答案第一章 测试题一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四小选项中,只有一项是符合题目要求的).1.原点与极点重合,x 轴正半轴与极轴重合,则点(-2,-23)的极坐标是( ) A .⎝⎛⎭⎫4,π3 B .⎝⎛⎭⎫4,4π3 C .⎝⎛⎭⎫-4,-2π3 D .⎝⎛⎭⎫4,2π3 解析: 由直角坐标与极坐标互化公式: ρ2=x 2+y 2,tan θ=yx(x ≠0).把点(-2,-23)代入即可得ρ=4,tan θ=3, 因为点(-2,-23)在第三象限,所以θ=4π3.答案: B2.在极坐标系中有如下三个结论:①点P 在曲线C 上,则点P 的极坐标满足曲线C 的极坐标方程;②tan θ=1与θ=π4表示同一条曲线;③ρ=3与ρ=-3表示同一条曲线.在这三个结论中正确的是( )A .①③B .①C .②③D .③解析: 在直角坐标系内,曲线上每一点的坐标一定适合它的方程,但在极坐标系内,曲线上一点的所有坐标不一定都适合方程,故①是错误的;tan θ=1不仅表示θ=π4这条射线,还表示θ=5π4这条射线,故②亦不对;ρ=3与ρ=-3差别仅在于方向不同,但都表示一个半径为3的圆,故③正确.答案: D3.可以将椭圆x 210+y 28=1变为圆x 2+y 2=4的伸缩变换( )A .⎩⎨⎧5x ′=2x 2y ′=yB .⎩⎨⎧2x ′=5x y ′=2yC .⎩⎨⎧2x ′=x5y ′=2xD .⎩⎨⎧5x ′=2x2y ′=y解析: 方法一:将椭圆方程x 210+y 28=1化为2x 25+y 22=4,∴⎝⎛⎭⎪⎫2x 52+⎝⎛⎭⎫y 22=4, 令⎩⎪⎨⎪⎧x ′=25x ,y ′=y2,得x ′2+y ′2=4,即x 2+y 2=4,∴伸缩变换⎩⎪⎨⎪⎧5x ′=2x ,2y ′=y 为所求.方法二:将x 2+y 2=4改写为x ′2+y ′2=4,设满足题意的伸缩变换为⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),代入x ′2+y ′2=4得λ2x 2+μ2y 2=4, 即λ2x 24+μ2y 24=1,与椭圆x 210+y 28=1比较系数得⎩⎨⎧ λ24=110,μ24=18,解得⎩⎪⎨⎪⎧ λ=25,μ=12,∴伸缩变换为⎩⎪⎨⎪⎧x ′=25x ,y ′=12y ,即⎩⎪⎨⎪⎧5x ′=2x ,2y ′=y. 答案: D4.在极坐标方程中,曲线C 的方程是ρ=4sin θ,过点⎝⎛⎭⎫4,π6作曲线C 的切线,则切线长为( )A .4B .7C .22D .23解析: ρ=4sin θ化为普通方程为x 2+(y -2)2=4,点⎝⎛⎭⎫4,π6化为直角坐标为(23,2),切线长、圆心到定点的距离及半径构成直角三角形,由勾股定理:切线长为(23)2+(2-2)2-22=2 2. 答案: C5.在极坐标中,与圆ρ=4sin θ相切的一条直线方程为( ) A .ρsin θ=2 B .ρcos θ=2 C .ρcos θ=4D .ρcos θ=-4解析: 圆ρ=4sin θ的圆心为⎝⎛⎭⎫2,π2,半径为r =2, 对于选项A ,方程ρsin θ=2对应的直线y =2,与圆相交; 对于选项B ,方程ρcos θ=2对应的直线x =2,与圆相切; 选项C ,D 对应的直线与圆相离. 答案: B6.圆ρ=2(cos θ+sin θ)的圆心坐标是( ) A .⎝⎛⎭⎫1,π4 B .⎝⎛⎭⎫12,π4 C .⎝⎛⎭⎫2,π4 D .⎝⎛⎭⎫2,π4 解析: 将圆的极坐标方程化成直角坐标方程⎝⎛⎭⎫x -222+⎝⎛⎭⎫y -222=1, 圆心直角坐标为⎝⎛⎭⎫22,22,故其极坐标为⎝⎛⎭⎫1,π4. 答案: A7.极坐标系内曲线ρ=2cos θ上的动点P 与定点Q ⎝⎛⎭⎫1,π2的最近距离等于( ) A .2-1 B .5-1 C .1D .2解析: 将曲线ρ=2cos θ化成直角坐标方程为(x -1)2+y 2=1,点Q 的直角坐标为(0,1),则P 到Q 的最短距离为点Q 与圆心的距离减去半径,即2-1.答案: A8.已知点P 的坐标为(1,π),则过点P 且垂直极轴的直线方程是( ) A .ρ=1B .ρ=cos θC .ρ=-1cos θD .ρ=1cos θ解析: 由点P 的坐标可知,过点P 且垂直极轴的直线方程在直角坐标系中为x =-1,即ρcos θ=-1,故选C .答案: C9.圆ρ=r 与圆ρ=-2r sin ⎝⎛⎭⎫θ+π4(r >0)的公共弦所在直线的方程为( ) A .2ρ(sin θ+cos θ)=r B .2ρ(sin θ+cos θ)=-r C .2ρ(sin θ+cos θ)=r D .2ρ(sin θ+cos θ)=-r解析: 圆ρ=r 的直角坐标方程为x 2+y 2=r 2① 圆ρ=-2r sin ⎝⎛⎭⎫θ+π4 =-2r ⎝⎛⎭⎫sin θcos π4+cos θsin π4=-2r (sin θ+cos θ). 两边同乘以ρ得ρ2=-2r (ρsin θ+ρcos θ), ∵x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2, ∴x 2+y 2+2rx +2ry =0②①-②整理得2(x +y )=-r ,即为两圆公共弦所在直线的普通方程.再将直线2(x +y )=-r 化为极坐标方程为2ρ(cos θ+sin θ)=-r .答案: D10.已知曲线C 1,C 2的极坐标方程分别为ρcos θ=3,ρ=4cos θ(ρ≥0,0≤θ<π2),则曲线C 1与C 2交点的极坐标为( )A .⎝⎛⎭⎫23,56π B .⎝⎛⎭⎫23,π6 C .⎝⎛⎭⎫23,7π6 D .⎝⎛⎭⎫23,116π 解析: ∵⎩⎪⎨⎪⎧ρcos θ=3(①),ρ=4cos θ(②),∴4cos 2 θ=3.∴cos θ=±32.∵0≤θ<π2,∴cos θ=32,∴θ=π6.将θ=π6代入②,得ρ=23,∴C 1与C 2交点的极坐标为⎝⎛⎭⎫23,π6. 答案: B二、填空题(每小题5分,共20分.把正确答案填在题中的横线上)11.在极坐标系中,直线l 的方程为ρsin θ=3,则点⎝⎛⎭⎫2,π6到直线l 的距离为________. 解析: 直线l 的极坐标方程为ρsin θ=3,化为直线方程得y =3; 点⎝⎛⎭⎫2,π6化为直角坐标即为(3,1),于是点⎝⎛⎭⎫2,π6到直线l 的距离为2. 答案: 212.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成图形的面积是________.解析: 三条直线在直角坐标系下的方程依次为y =0,y =3x ,x +y =1.如图可知,S △POQ =12×|OQ |×|y p |=12×1×33+1=3-34. 答案:3-3413.已知极坐标系中,极点为O ,将点A ⎝⎛⎭⎫4,π6绕极点逆时针旋转π4得到点B ,且|OA |=|OB |,则点B 的直角坐标________.解析: 依题意,点B 的极坐标为⎝⎛⎭⎫4,5π12, ∵cos5π12=cos ⎝⎛⎭⎫π4+π6 =cos π4cos π6-sin π4sin π6=22×32-22×12=6-24,sin5π12=sin ⎝⎛⎭⎫π4+π6 =sin π4cos π6+cos π4sin π6=22×32+22×12=6+24, ∴x =ρcos θ=4×6-24=6-2,y =ρsin θ=4×6+24=6+ 2.∴点B 的直角坐标为(6-2,6+2). 答案: (6-2,6+2)14.从极点作圆ρ=2a cos θ的弦,则各条弦中点的轨迹方程为________.解析: 数形结合,易知所求轨迹是以⎝⎛⎭⎫a 2,0为圆心,a2为半径的圆.求得方程是ρ=a cos θ⎝⎛⎭⎫-π2≤θ≤π2. 答案: ρ=a cos θ⎝⎛⎭⎫-π2≤θ≤π2 三、解答题(本大题共4小题,共50分,解答应写出文字说明、证明过程或演算步骤) 15.(12分)设极点O 到直线l 的距离为d ,由点O 向直线l 作垂线,由极轴到垂线OA 的角度为α(如图所示).求直线l 的极坐标方程.解析: 在直线l 上任取一点M (ρ,θ). 在直角三角形OMA 中, 由三角知识得ρcos(α-θ)=d ,即ρ=dcos (α-θ).这就是直线l 的极坐标方程.16.(12分)已知⊙C :ρ=cos θ+sin θ,直线l :ρ=22cos ⎝⎛⎭⎫θ+π4.求⊙C 上点到直线l 距离的最小值.解析: ⊙C 的直角坐标方程是x 2+y 2-x -y =0,即⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=12. 又直线l 的极坐标方程为ρ(cos θ-sin θ)=4, 所以直线l 的直角坐标方程为x -y -4=0.设M ⎝⎛⎭⎫12+22cos θ,12+22sin θ为⊙C 上任意一点,M 点到直线l 的距离d =⎪⎪⎪⎪12+22cos θ-⎝⎛⎭⎫12+22sin θ-42=4-cos ⎝⎛⎭⎫θ+π42,当θ=7π4时,d min =32=322.17.(12分)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为C 与x 轴,y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解析: (1)由ρcos ⎝⎛⎭⎫θ-π3=1,得ρ⎝⎛⎭⎫12cos θ+32sin θ=1. 从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,得M (2,0); 当θ=π2时,ρ=233,得N ⎝⎛⎭⎫233,π2.(2)M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎫0,233.所以P 点的直角坐标为⎝⎛⎭⎫1,33, 则P 点的极坐标为⎝⎛⎭⎫233,π6.所以直线OP 的极坐标方程为θ=π6,ρ∈R .18.(14分)△ABC 底边BC =10,∠A =12∠B ,以B 为极点,BC 为极轴,求顶点A 的轨迹的极坐标方程.解析: 如图:令A (ρ,θ), △ABC 内,设∠B =θ,∠A =θ2,又|BC |=10,|AB |=ρ. 于是由正弦定理, 得ρsin ⎝⎛⎭⎫π-3θ2=10sin θ2, 化简,得A 点轨迹的极坐标方程为 ρ=10+20cos θ.第二章 测试题一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-ty =2+3t(t 为参数)所表示的图形分别是( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线解析: ∵ρ=cos θ, ∴x 2+y 2=x ,∴表示一个圆.由⎩⎪⎨⎪⎧x =-1-ty =2+3t得到直线3x +y =-1. 答案: A2.直线⎩⎪⎨⎪⎧x =-2+t ,y =1-t(t 为参数)被圆(x -3)2+(y +1)2=25所截得的弦长为( )A .72B .4014C.82D .93+43解析: ⎩⎪⎨⎪⎧x =-2+t ,y =1-t⇒⎩⎨⎧x =-2+22·2t ,y =1-22·2t ,令t ′=2t ,把⎩⎨⎧x =-2+22t ′,y =1-22t ′代入(x -3)2+(y +1)2=25. 整理,得t ′2-72t ′+4=0, |t ′1-t ′2|=(t ′1+t ′2)2-4t ′1t ′2=82.答案: C3.点集M =⎩⎨⎧⎭⎬⎫(x ,y )|⎩⎪⎨⎪⎧x =3cos θy =3sin θ(θ是参数,0<θ<π),N ={(x ,y )|y =x +b },若M ∩N ≠∅,则b 满足( )A .-32≤b ≤32B .-3<b <32C .0≤b ≤32D .-3<b ≤32解析: 用数形结合法解. 答案: D4.参数方程⎩⎨⎧x =1t,y =1tt 2-1(t 为参数)所表示的曲线是( )解析: 由y =1tt 2-1,得t 2y 2=t 2-1,把t =1x 代入,得x 2+y 2=1.由于t 2-1≥0,得t ≥1或t ≤-1.当t ≥1时,得0<x ≤1且y ≥0; 当t ≤-1时,得-1≤x <0且y <0.答案: D5.设r >0,那么直线x cos θ+y sin θ=r (θ为参数)与圆⎩⎪⎨⎪⎧x =r cos φ,y =r sin φ(φ是参数)的位置关系是( )A .相交B .相切C .相离D .由r 的大小而定解析: 圆心到直线的距离 d =|0+0-r |cos 2θ+sin 2θ=|r |=r ,故相切.答案: B6.参数方程⎩⎪⎨⎪⎧x =t +1t y =-2(t 为参数)与⎩⎪⎨⎪⎧x =2cos θy =2sin θ所表示图形的公共点有( )A .0个B .1个C .2个D .以上都不对解析: ⎩⎪⎨⎪⎧x =2cos θy =2sin θ表示图形为方程是x 2+y 2=4的圆.⎩⎪⎨⎪⎧x =t +1ty =-2表示的图形与圆无交点.故选A. 答案: A7.已知圆的渐开线⎩⎪⎨⎪⎧x =r (cos φ+φsin φ)y =r (sin φ-φcos φ)(φ为参数)上有一点的坐标为(3,0),则渐开线对应的基圆的面积为( )A .πB .3πC .4πD .9π解析: 把已知点(3,0)代入参数方程得⎩⎪⎨⎪⎧3=r (cos φ+φsin φ), ①0=r (sin φ-φcos φ). ② ①×cos φ+②×sin φ得r =3,所以基圆的面积为9π. 答案: D8.已知直线l :⎩⎨⎧x =3t ,y =2-t(t 为参数),抛物线C 的方程y 2=2x ,l 与C 交于P 1,P 2,则点A (0,2)到P 1,P 2两点距离之和是( )A .4+3B .2(2+3)C .4(2+3)D .8+3解析:把直线参数方程化为⎩⎨⎧x =-32t ′,y =2+12t ′(t ′为参数),代入y 2=2x ,求得t ′1+t ′2=-4(2+3),t ′1t ′2=16>0,知在l 上两点P 1,P 2都在A (0,2)的下方, 则|AP 1|+|AP 2|=|t ′1|+|t ′2|=|t ′1+t ′2|=4(2+3). 答案: C9.过抛物线⎩⎨⎧x =2t 2,y =3t(t 为参数)的焦点的弦长为2,则弦长所在直线的倾斜角为( )A.π3 B .π3或2π3C.π6D .π6或5π6解析: 将抛物线的参数方程化成普通方程为y 2=32x ,它的焦点为⎝⎛⎭⎫38,0.设弦所在直线的方程为y =k ⎝⎛⎭⎫x -38,由⎩⎨⎧y 2=32x ,y =k ⎝⎛⎭⎫x -38,消去y ,得64k 2x 2-48(k 2+2)x +9k 2=0, 设弦的两端点坐标为(x 1,y 1),(x 2,y 2), 则|x 1-x 2|=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫34·k 2+2k 22-916=2 解得k =± 3.故倾斜角为π3或2π3答案: B10.已知直线⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)上的两点A 、B 所对应的参数分别为t 1、t 2,且AP→=λPB →(λ≠-1),则点P 所对应的参数为( )A.t 1+t 22B .t 1+t 21+λC.t 1+λt 21+λ D .t 2+λt 11+λ答案: C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)11.在直角坐标系xOy 中,已知曲线C 的参数方程是⎩⎪⎨⎪⎧y =sin θ+1,x =cos θ(θ是参数),若以O 为极点,x 轴的正半轴为极轴,则曲线C 的极坐标方程可写为________.解析: 由题意知,曲线C : x 2+(y -1)2=1,即x 2+y 2-2y =0, 所以(ρcos θ)2+(ρsin θ)2-2ρsin θ=0, 化简得ρ=2sin θ. 答案: ρ=2sin θ12.如图所示,齿轮的廓线AB 为圆的渐开线的一段弧.已知此渐开线的基圆的直径为225 mm ,则此渐开线的参数方程为________.答案: ⎩⎨⎧x =2252(cos t +t sin t )y =2252(sin t -t cos t )(t 为参数)13.点M (x ,y )在椭圆x 212+y 24=1上,则点M 到直线x +y -4=0的距离的最大值为________,此时点M 的坐标是________.解析: 椭圆的参数方程为⎩⎪⎨⎪⎧x =23cos θ,y =2sin θ(θ为参数),则点M (23cos θ,2sin θ)到直线 x +y -4=0的距离 d =|23cos θ+2sin θ-4|2=⎪⎪⎪⎪4sin ⎝⎛⎭⎫θ+π3-42.当θ+π3=32π时,d max =42,此时M (-3,-1).答案: 42 (-3,-1) 14.若曲线y 2=4x与直线⎩⎪⎨⎪⎧x =2+2t cos αy =-4+t cos β(t 为参数)相切,则cos αcos β=________.解析: ∵⎩⎪⎨⎪⎧x =2+2t cos αy =-4+t cos β,∴x -2y +4=2cos αcos β=2m ,其中m =cos αcos β,∴x =2+2my +8m ,代入y 2=4x , 得y 2=4(2+2my +8m ), y 2-8my -8-32m =0. ∵直线与曲线相切,∴Δ=(-8m )2-4×(-8-32m )=64m 2+4×8(1+4m )=0, 2m 2+4m +1=0,∴(m +1)2=12,m =-1±22,∴cos αcos β=-1±22. 答案: -1±22三、解答题(本大题共4题,共50分,解答应写出文字说明、证明过程或演算步骤) 15.(12分)已知曲线C 的极坐标方程是ρ=4cos θ.以极点为平面直角坐标系的原点,极轴为x 轴的非负半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎨⎧x =22t +m y =22t(t 是参数).(1)将曲线C 的极坐标方程和直线l 的参数方程转化为普通方程;(2)若直线l 与曲线C 相交于A 、B 两点,且|AB |=14,试求实数m 的值. 解析: (1)曲线C 的直角坐标方程为x 2+y 2-4x =0, 直线l 的直角坐标方程为y =x -m (2)m =1或m =316.(12分)已知曲线C 的极坐标方程为ρ2=364cos 2θ+9sin 2θ; (1)若以极点为原点,极轴所在的直线为x 轴,求曲线C 的直角坐标方程; (2)若P (x ,y )是曲线C 上的一个动点,求x +2y 的最大值. 解析: (1)曲线的极坐标方程ρ2=364cos 2θ+9sin 2θ,即4ρ2cos 2θ+9ρ2sin 2θ=36, ∴4x 2+9y 2=36,∴x 29+y 24=1. (2)设P (3cos θ,2sin θ),则x +2y =3cos θ+4sin θ=5sin(θ+φ),∵θ∈R ,∴当sin(θ+φ)=1时,x +2y 的最大值为5.17.(12分)极坐标的极点是直角坐标系的原点,极轴为x 轴的正半轴,直线l 的参数方程为⎩⎨⎧x =x 0+12t ,y =32t(t 为参数).⊙O 的极坐标方程为ρ=2,若直线l 与⊙O 相切,求实数x 0的值.解析: 由直线l 的参数方程消参后可得直线l 的普通方程为y =3(x -x 0). ⊙O 的直角坐标方程为x 2+y 2=4. ∵直线l 与⊙O 相切,∴圆心O (0,0)到直线l :3x -y -3x 0=0的距离为2.即|3x 0|2=2,解得x 0=±433. 18.(14分)已知椭圆C 的极坐标方程为ρ2=123cos 2θ+4sin 2θ,点F 1,F 2为其左,右焦点,直线l 的参数方程为⎩⎨⎧x =2+22t ,y =22t(t 为参数,t ∈R ).(1)求直线l 和曲线C 的普通方程; (2)求点F 1,F 2到直线l 的距离之和. 解析: (1)直线l 的普通方程为y =x -2; 曲线C 的普通方程为x 24+y 23=1.(2)∵F 1(-1,0),F 2(1,0), ∴点F 1到直线l 的距离 d 1=|-1-0-2|2=322.点F 2到直线l 的距离 d 2=|1-0-2|2=22,∴d 1+d 2=2 2.。