Groupe a classes de conjugaisons infinies quelques exemples
- 格式:pdf
- 大小:134.70 KB
- 文档页数:6
LE PRÉSENT DE L'INDICATIF (Une présentation à la française de la formation et de l'emploi du présent de l'indicatif)1. FORMATIONIl existe deux systèmes de terminaisons selon le groupe du verbe.∙Verbes du premier groupe: Radical + -e, -es, -e, -ons, -ez, -entJe Tu Il parl eparl esparl eNousVousIlsparl onsparl ezparl ent∙Verbes du deuxième groupe: Radical + -s, -s, -t, -ons, -ez, -ent Ce sont les verbes en -iss-* au pluriel du présent de l'indicatif*Quelques-uns de ces verbes sont entrés en anglais en -ish: finir = finish, punir =punish, accomplir = accomplish.Je Tu Il choisi schoisi schoisi tNousVousIlschoisiss onschoisiss ezchoisiss ent∙Verbes du troisième groupe:Radical (souvent variable) + -s, -s, -t (-d1), -ons,-ez, -ent+ -e, -es, -e, -ons, -ez, ent+ -x, -x, -t, -ons, -ez, -ent21 Infinitifs en-endre (rendre), -andre(répandre),-ondre (répondre), -erdre (perdre),-ordre (mordre).2 Pouvoir, vouloir, valoiro Un radical : ouvrir - ouvr eo Deux radicaux : sortir - sor s / sort onso Trois radicaux : venir - vien s / ven ons / vienn ent2. EMPLOI1.Le présent situe un fait au moment où on parle. Il présente l'action encours d'accomplissement.*- Mon mari regarde la télé.*Pour insister sur la durée de cette action en cours d'accomplissement, employez être entrain de + infinitif :- Les enfants sont en train de faire leurs devoirs.2.Le présent n'a pas de limites précises. Accompagnés d'un adverbe dutemps il peut indiquer:o un fait qui a commencé dans le passé et qui continue dans le présent:-Il pleut depuis une semaine.o un fait qui aura lieu prochainement:- Ce soir nous allons au cinéma.3.Le présent exprime l'habitude, la répétition:- Tous les samedis soirs nous sortons au restaurant.4.Le présent est employé dans une analyse (résumé our commentaire d'untexte ou d'un film...*).- On dit dans le livre des «Histoires Vécues» que les serpents boas avalent leur proie tout entière.*Dans un récit au passé, l'emploi des verbes au présent rend la narration plus vivante. C'est ce qui s'appelle «le présent de narration» :- Il faisait un temps splendide. Tout à coup on entend un énorme éclat de tonnerre et un éclair frappe l'arbre juste derrière nous!5.Le présent sert à exprimer une vérité générale, un proverbe.-«L'essentiel est invisible pour les yeux. On ne voit bien qu'avec le coeur». 6.Le présent s'emploie dans une structure d'hypothèse réalisable:- S'il fait beau demain, je sortirai avec des amis.TABLEAUX DE SYNTHÈSE DES VERBES au PRÉSENT DE L'INDICATIF(Les tableaux qui servent de base au classement en trois groupes des verbes de la languefrançaise)* sauf certains verbes très irréguliers(1) Sauf être - nous sommes(2) Sauf être - vous êtes, faire - vous faites, dire - vous dites(3) Sauf avoir - ils ont, être - ils sont, aller - ils vontATTENTION ! Les verbes les plus irréguliers **:Être (suis, es, est, sommes, êtes, sont)Avoir (ai, as, a, avons, avez, ont)Aller (vais, vas, va, allons, allez. vont)Faire (fais, fais, fait, faisons, faites, font)Dire (dis, dis, dit, disons, dites, disent)。
小学下册英语第六单元期末试卷(含答案)考试时间:80分钟(总分:140)A卷一、综合题(共计100题共100分)1. 选择题:What is the name of our planet?A. MarsB. EarthC. VenusD. Jupiter2. 填空题:We have a ______ (丰富的) selection of classes.3. 选择题:What is the largest organ in the human body?A. HeartB. LiverC. SkinD. Brain4. 选择题:What do we call the process of making electricity from sunlight?A. Wind powerB. HydropowerC. Solar powerD. Geothermal energy答案: C. Solar power5. 填空题:古代埃及的________ (writing) 系统是象形文字。
6. 选择题:What is the name of the famous statue in Rio de Janeiro?A. Statue of LibertyB. Christ the RedeemerC. DavidD. Moai答案:B7. 听力题:The elephants are _____ (big/small) animals.8. 听力题:It’s __________ in the morning.9. 选择题:What is the name of the famous physicist known for his theory of relativity?A. Isaac NewtonB. Albert EinsteinC. Galileo GalileiD. Nikola Tesla答案: B. Albert Einstein10. 填空题:My mom loves to _______ (动词) on holidays. 她总是 _______ (形容词).11. 填空题:My favorite fruit is _______ (橘子).12. 听力题:Birds build ______ to keep their eggs safe.13. 选择题:What is the tallest mountain in the world?A. K2B. KilimanjaroC. Mount EverestD. Mount Fuji答案:C14. 听力题:__________ are formed when metals react with acids.15. Barrier Reef is located off the coast of ________ (大堡礁位于________). 填空题:The Grea16. 听力题:My friend is very ________.17. 填空题:The ______ (小鸭子) follows its mother to the ______ (池塘).The Earth's surface is constantly being reshaped by natural ______.19. 选择题:What do you call a young walrus?A. CalfB. PupC. KitD. Cub20. 填空题:The _____ (海豚) is very intelligent.21. 选择题:What is the opposite of 'right'?A. LeftB. UpC. DownD. Forward22. 听力题:My brother is a ______. He enjoys leading group activities.23. 选择题:What is the color of a typical school chalkboard?A. BlackB. GreenC. WhiteD. Blue24. 填空题:My uncle is a __________ (工程师).25. 听力题:A __________ is formed during a chemical reaction.26. 听力题:A _______ is a type of reaction that absorbs energy.27. 填空题:The _____ (根) of the plant anchor it in the soil.28. 填空题:In _____ (巴基斯坦), you can find the Karakoram Range.She is a dancer, ______ (她是一位舞者), and performs on stage.30. 填空题:I love to ride my ______ around the neighborhood.31. 填空题:I help my sister with her __________. (作业)32. 听力题:The __________ is the part of a plant that absorbs sunlight.33. 听力题:A ______ is an elevated area of land similar to a mountain.34. 填空题:The __________ was a significant event in the fight for civil rights in America. (黑人民权运动)35. 填空题:I enjoy building ______ (模型) of historic landmarks.36. 听力题:The process of combining elements to form a compound is called ______.37. 选择题:Which continent is known for its deserts?A. AsiaB. AfricaC. EuropeD. Antarctica答案:B38. 听力题:A __________ is a mixture that can be separated by filtration.39. 填空题:The _______ (小海狮) barks loudly at visitors.40. 选择题:What is the smallest planet in our solar system?A. MercuryB. MarsC. Venus答案: A41. 听力题:The dog loves to ______ (fetch) sticks.42. 选择题:What is the name of the famous character who is a talking cat?A. GarfieldB. TomC. FelixD. Sylvester43. 填空题:The __________ (历史的成就) can inspire generations.44. 听力题:My sister loves to write ____ (stories) in her journal.45. 听力题:In a chemical reaction, substances change into new __________.46. 选择题:What does a clock measure?A. DistanceB. TimeC. WeightD. Temperature47. (75) is famous for its beautiful beaches. 填空题:The ____48. 听力题:The _______ will die without enough water.49. 填空题:The ancient Greeks held _____ to celebrate their gods.50. 听力题:Sulfuric acid is commonly used in ______.51. 填空题:My puppy loves to tug on a ______ (绳子).52. 选择题:What do we call the smaller branches of a tree?B. LimbsC. RootsD. Twigs答案: D. Twigs53. 填空题:A ________ (水獺) loves to swim and catch fish.54. 填空题:My cousin, ______ (我的表弟), is very sporty.55. 填空题:I have a _______ bicycle.56. 填空题:The artist, ______ (艺术家), creates sculptures from clay.57. 听力题:The __________ is a large body of saltwater that is smaller than an ocean.58. 填空题:The turtle is slow but very _______ (智慧).59. 填空题:The __________ (历史的承载) reflects our identity.60. 听力题:We have a ________ (schedule) to stick to.61. 听力题:My friend is a ______. He enjoys making videos.62. 听力题:The _______ is the center of an atom.63. 填空题:The first person to discover America was ______ (哥伦布).64. 听力题:My cousin is a ______. She loves to create jewelry.65. 选择题:What do you call the process of cooking food using heat?A. BakingB. GrillingD. All of the above66. 填空题:The tarantula is a large _________ (蜘蛛).67. 选择题:What is the main language spoken in Spain?A. PortugueseB. SpanishC. CatalanD. Italian答案:B68. 听力题:My uncle builds ____ (houses) for a living.69. 听力题:A reaction that requires a catalyst to proceed is called a ______ reaction.70. 选择题:How many days are in a week?A. FiveB. SixC. SevenD. Eight答案: C71. 听力题:My dad is a ________.72. 听力题:When a solid is heated, it may ______.73. 选择题:What do you call the force that pulls objects toward the Earth?A. FrictionB. GravityC. MagnetismD. Inertia答案:B74. 填空题:The __________ (历史的深度) enriches insights.75. 选择题:What is the opposite of "happy"?A. SadB. AngryC. ExcitedD. Tired76. 听力题:Astronomy is the study of ______ and the universe.77. 听力题:My mom loves to listen to ____ (podcasts).78. 填空题:My mom encourages me to ____.79. 听力题:My family goes _____ every winter. (skiing)80. 听力题:My brother is a ______. He enjoys participating in debates.81. 填空题:The __________ (环境保护) of plants is crucial for sustainability.82. 填空题:Chemical reactions often involve the breaking and forming of _______. (键)83. 选择题:What is the main ingredient in chocolate?A. SugarB. Cocoa BeansC. FlourD. Milk84. 听力题:I can _____ to the top of the slide. (climb)85. 听力题:I want to _____ (learn) about planets.86. 听力题:The concept of ecosystem services recognizes the benefits provided by ______.87. 选择题:What do we call a person who writes books?a. Authorb. Painterc. Musiciand. Actor答案:a88. 听力题:I want to learn how to ________.89. 听力题:Her favorite animal is a ________.90. 填空题:The dog wagged its ________ when it saw me.91. War was marked by the fear of ________ (核战争). 填空题:The Colo92. 听力题:We have a picnic _____ the park. (at)93. 选择题:What is the capital of Norway?a. Oslob. Stockholmc. Copenhagend. Helsinki答案:a94. 听力题:The chemical formula for carbon dioxide is _____ (CO).95. 填空题:My dad loves to share his __________ (经验) with us.96. 填空题:I like to go to the ______ (书店) to find new books to read. There’s always something interesting to discover.97. 听力题:We have a ________ (picnic) in the park.98. 填空题:The __________ is a large area of land used for farming. (农田)99. 听力题:My teacher is a ______. She encourages us to do our best.100. 听力题:I love to ___ in the pool. (swim)。
Le?on 7E xercices de grammaire (L e subjonctif-2) I. Conjugaison?:?au subjonctif passé.1.que tu aies fini ce devoir.2.qu’il soit parti ce soir3.que tu ne les aies pas prévenus4.que tu l’aies fait exprès5.que tu n’aies pas été plusprudent6.que j’aie vuII. Mettez les verbes entre parenthèses au subjonctif présent ou au subjonctif passé.1.ne soyez pas libre2.n’ayez pas été libre3.fasse4.(n’) ait fait5.n’ait pas écrit6.n’écrive pas plus souvent7.n’aient pas vu8.re?oiveIII. Mettez les verbes entre parenthèses au subjonctif présent.1.vous fachiez2.arrive3.prolonges4.parle5.expire6.téléphone7.rattrapions8.(m’) envoie9.continuent10.souhaitiezpreniez12.puisse13.sortent14.dise15.vienne16.(ne) meurent17.connaisse18.(ne) pleuveIV. Transformez les phrases comme dans les exemples?:1.Mes plantes ne poussent pas beaucoup bien que je les arroserégulièrement.2.Charles voudrait me rencontrer afin qu’on examine le projet ensemble.3.Il faudra beaucoup travailler de manière que vous obteniez votredipl?me sans problème.4.J’aimerais passer à la poste avant qu’elle (ne) ferme.5.Vous allez guérir à condition que vous suiviez exactement letraitement.6.Je vais louer une voiture en attendant que le garagiste répare lamienne.7.Nous allons changer de voiture de sorte qu’elle consomme moinsd’essence.8.Je ne fais rien jusqu’à ce que vous arriviez.9.J’ai demandé à Pierre-Henri de venir de fa?on qu’il m’expliquecomment résoudre le problème.10.Sarah n’ose pas parler de peur qu’on la trouve ridicule.V. Mettez le verbe entre parenthèses au subjonctif passé.1.(j’) aie pu2.aient manifesté3.m’ayez expliqué4.ait signé5.ait accompli6.aies terminé7.t’en ait déjàparlé8.ayons re?u9.aient disparu10.ait présentéVI. Mettez les verbes au subjonctif passé.1.te sois calmé2.se soit échoué3.aient été4.m’y soisterriblementennuyé(e)5.(ne) soientdevenues6.se soit excusé7.se soit intéressé8.se soit endormie9.soit intervenue enforce.E xercices de grammaire-RévisionI. Remplacez ??Je crois?? par ??Est-il possible???:1.Est-il possible que ait déjà quitté Bordeaux en voiture??2.Est-il poss ible qu’il soit déjà rentré chez lui??3.Est-il possible qu’il n’ait pas prévenu sa femme.??4.Est-il possible que le gros camion se soit renversé??5.Est-il possible qu’il n’ait pas entendu les hurlements del’avertisseur??6.Est-il possible qu’il ait perdu sa carte d’identité??7.Est-il possible qu’il n’ait pas compris ce qui se passait??8.Est-il possible que l’accident soit d? à son imprudence??II. Répondez aux questions?:1.Non, je n’ai rien appris d’important.2.Non, je n’ai rien acheté de bon.3.Non, je n’ai rien entendu d’amusant.4.Non, il n’a rien décidé.5.Non, ils n’ont rien remarqué de surprenant.6.Non, je n’ai rien fait de défendu.7.Non, il ne s’est rien passé de nouveau.8.Non, je n’ai rien re?u d’important.9.Non, ils n’ont rien vu de dr?le.10.Non, il n’a rien dit de sérieux.III. Répondez aux questions en employant le pronom possessif?:1.Il n’a pas encore bu le sien.2.Ils n’ont pas encore vidé le leur.3.Hervé n’a pas encore choisi les siens.4.Elle n’a pas encore repassé la sienne.5.Je n’ai pas encore repeint le mien.6.Mme Br etonnel n’y a pas encore amené la sienne.7.Je n’ai pas encore le mien.8.Je n’ai pas encore trouvé les miens.9.Elle n’a pas encore nettoyé la sienne.10.Ils n’ont pas encore rangé les leurs.11.Nous n’avons pas encore passé le n?tre.12.Il n’a pas encore garé la sienne.IV. Répondez aux questions en employant les pronoms convenables?:1.Non, nous n’avons pas fait celles que nous avions prévues.2.Oui, il a choisi celle qu’il avait vue.3.Non, je ne suis pas allé dans celui où nous avions d?né, mais dans celuid’à c?té.4.Non, il n’a pas acheté celui qu’il avait essayé, il en a pris un autre.5.Non, pas ceux que j’avais demandés, j’en ai obtenu d’autres.6.Non, pas celles que nous cherchions, mais celles qui les avaient vuespartir.7.Non, pas celle qu’ils avaient visitée, ils en ont acheté une autredans le quartier voisin.8.Non, pas ceux que j’avais choisis, mais ceux choisis par ma mère.9.Non, pas celui qu’on lui avait montré, il est entré dans celui d’enface.10.Non, pas ceux qu’on m’avait conseillés, j’en ai choisi d’autres. V. Mette z le verbe entre parenthèses au temps et au mode qui conviennent.1.a réussi2.signale3.connaisse4.annonce5.ait6.doive7.soit8.parle9.puisse10.saitE xercices de vocabulaire I. Complétez par un des mots suivants?: c?te2.le code3.c?té4.c?tes C?te6.le c?té7.c?te à c?te c?te c?te10.c?té/c?té11.c?té12.c?tés/la c?te/uncode13.c?té/c?tés14.le code15.le codeII. Complétez le tableau suivant?:discuter→discussion, empêchement→empêcher, réfléchir→réflexion, production→produire, vendre→vente, bond→bondir, rentrer→rentrée, évanouissement→s’évanouir, interroger→interrogation, arrivée→arriver, défendre→défense, assurance→assurer, interdire→interdiction, regret→regretter, protester→protestation, réveil→réveiller, expliquer→explication, exigence→exigerIII. Complétez les phrases par une préposition?:1.en2.à3.en4.à5.vers/après6.sur7.avec8.pour9.dans10.sur/de11.d’12.derrière13.dans14.depuis15.deIV. Transformez les phrases suivantes en employant ??Est-ce … ?Non, plut?t …??et en supprimant le groupe verbal de la seconde phrase?:1.Est-ce qui veut doubler?? Non, plut?t l’autre conducteur.2.Est-ce ta belle-soeur qui t’écrit?? Non, plut?t ton frère.3.Est-ce un voisin qui sonne?? Non, plut?t le facteur.4.Est-ce la France le pays le plus étendu de l’Europe?? Non, plut?tla Russie.5.Est-ce le chauffeur de camion qui est blessé?? Non, plut?t .V. Complétez les phrases suivantes en employant les groupes de mots donnés?:1.Il est malade, ?a doit être un rhume.2.Il lit un roman, ...3.Il entend qu’on l’a appelé, ...4.On sonne, ...5.Il accompagne à l’h?pital une femme qui a mal à la tête, ...VI. Transformez les phrases suivantes selon l’exemple?:1.sent le gaz s’échapper de la citerne.2.Mme Bretonnel entend une voiture se garer devant la maison.3.Les automobilistes regardent se lever d’un seul coup, se diriger enc ourant vers la citerne, s’arracher le sparadrap du front ets’appuyer sur le camion.4.Les enfants voient le père se mettre en colère en parlant.5.Le blessé sent ses jambes se plier sous lui.6.Le chauffeur de camion voit une voiture verte se mettre au milieu dela route.7.sent ses yeux se fermer peu à peu.8.Le gendarme voit courir sur la route, sauter sur le camion, arracherle sparadrap de son front et le coller sur la citerne.9.Le chauffeur entend une voiture hurler derrière lui, essayer de ledoubler, aller de plus en plus vite, puis freiner.A ctivité connaissancesI. Retruovez le lieu de départ de chaque moyen de transport?:la gare-le train, la station-le métro, l’aéroport-l’avion, le port-le bateau, l’héliport-l’hélicoptèreII. Complétez les phrases suivantes à l’aide des mots?:plan, direction, correspondance, escaliers roulants, rame, quai, voitureIII. Que signifie?A-2, B-2, C-2, D-1, E-1,F-2IV. Qui dit quoi ?1. c.(est)2. e.(soient)3. d.(aient)4. a.(fassent)5. f.(doit)6. b.(guérisse)E xercices omni-contr?lablesI. Ecoutez et remplissez le blanc.vingt fois moins cher, le stationnement, l’Arabie Saoudite, tuer la poule aux oeufs d’or, agriculteurs, boivent, six, L’automobile, gros, pour la vie, en se réveillant, substituer, demi-heureII. Retenez bien les expressions suivantes et traduisez-les en chinois.1. 考虑到低收入人群2. 杀鸡取卵3. 坐公交车或是地铁感觉安心4. 永不再坐小轿车(火车,飞机)5. 我觉得……不是个好办法。
小学上册英语第6单元期末试卷英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.She is a great ________.2.I have a good _____ (同学).3.The ostrich is the world's largest ______ (鸟).4.I have a pet ______ (小猫) named Bella. She is very ______ (活泼).5.ed their ______ (皮肤). Snakes s6.The ________ (feedback) helps us improve.7.The ______ (植物的栖息地) is crucial for their survival.8.What do we call the imaginary line that divides the Earth into the Northern and Southern Hemispheres?A. EquatorB. Prime MeridianC. Tropic of CancerD. Tropic of CapricornA9.I have a toy _______ that can shake its head.10.Mount Everest is the highest ________ (山) in the world.11.We have a ______ (丰富的) educational system.12.He is a _____ (商人) who sells products online.13.I collect _______ (名词) as a hobby. Each item has its own _______ (故事).14.The __________ is a historical site in Turkey. (特洛伊)15.My uncle is a big __________ of sports. (爱好者)16.What is the name of the popular game played with cards?A. ChessB. PokerC. ScrabbleD. Monopoly17.Substances that speed up chemical reactions without being consumed are called ________.18.Which fruit is yellow and curved?A. AppleB. BananaC. OrangeD. GrapeB19.We have a ________ (meeting) after school.20. A solid has a _______ shape and volume.21.My family is going to _______ (travel/stay) at home this weekend.22.The main gas released during respiration is _______.23.What is the smallest continent?A. AfricaB. AsiaC. AustraliaD. Europe24.What do you call the process of photosynthesis?A. Production of foodB. Growth of plantsC. Absorption of sunlightD. All of the aboveD25.What is the color of the sky?A. GreenB. BlueC. RedD. YellowB26. A chemical change is often indicated by a _____ in color.27.An earthquake can cause the ground to ______ violently.28.The _______ (狗) barks at strangers.29.I like to play ______ games.30.The armadillo can curl into a ______ (球).31. A pelican has a large ________________ (喙).32.Which fruit is yellow and curved?A. AppleB. BananaC. CherryD. Grape33.What is the name of the famous American singer known for her role in "A Star Is Born"?A. Barbra StreisandB. Lady GagaC. AdeleD. Whitney HoustonB34.The ________ was a famous document that shaped law and governance.35.I enjoy ________ (参加) art classes.36.What is the first month of the year?A. DecemberB. JanuaryC. FebruaryD. MarchB37.urban sprawl) refers to uncontrolled expansion of cities. The ____38.What do you call a baby walrus?A. CalfB. PupC. KitD. Cub39.I love _______ (去博物馆).40.What is the capital of Greece?A. AthensB. RomeC. CairoD. IstanbulA41. A ________ (浮萍) grows on water surfaces.42.What is the name of the famous tree in the Bible?A. Fig TreeB. Olive TreeC. Tree of KnowledgeD. Cedar Tree43.What is the currency used in the United States?A. EuroB. DollarC. YenD. PoundB44.Which of these is a mode of transportation?A. PencilB. BicycleC. BookD. Chair45.What is the main language spoken in Spain?A. FrenchB. ItalianC. SpanishD. Portuguese46.I often help my __________ with cooking. (妈妈)47.The rain makes everything _____ (wet/dry).48.What is the value of 3 + 3 × 3?A. 9B. 12C. 15D. 18B49.She is ______ a picture for her mom. (drawing)50.What do we call the study of living things?A. ChemistryB. BiologyC. PhysicsD. Geography51. A ____ is a gentle giant that loves to eat hay.52. A curious ___ (小鸽子) pecks at crumbs.53. A _____ is a natural elevation of the Earth's surface.54.My sister loves __________ (参与社区服务).55. (Holocaust) was a tragic event in World War II. The ____56.What is the main ingredient in chocolate?A. SugarB. CocoaC. MilkD. Vanilla57.Soil is composed of minerals, organic matter, air, and __________.58.The chemical symbol for mercury is ________.59.What is the name of the famous American holiday celebrated on the last Monday of May?A. Memorial DayB. Labor DayC. ThanksgivingD. Independence DayA60.The _______ (小鳗鱼) slithers through the water.61.What is the opposite of near?A. FarB. CloseC. AdjacentD. Nearby62.Which animal has a pouch to carry its young?A. ElephantB. KangarooC. LionD. MonkeyB63.What is the opposite of ‘cold’?A. WarmB. HotC. CoolD. Chilly64.He is ________ a letter.65.The chemical symbol for thallium is _______.66. A ____ can swim and has webbed feet.67.What is the value of 6 1 × 5?A. 1B. 2C. 3D. 4A68.Which of these is a farm animal?A. DogB. CowC. EagleD. Cat69.The __________ (历史的延续) defines narrative.70.What is the capital of Sweden?A. StockholmB. OsloC. HelsinkiD. ReykjavikA71.The ________ (analysis) informs decisions.72. A cat loves to chase _______ (小虫)。
1. Typical of the grassland dwellers of the continent is the American antelope, or pronghorn.1.美洲羚羊,或称叉角羚,是该大陆典型的草原动物。
2. Of the millions who saw Haley’s comet in 1986, how many people will live long enough to see it return in the twenty-first century.2. 1986年看见哈雷慧星的千百万人当中,有多少人能够长寿到足以目睹它在二十一世纪的回归呢?3. Anthropologists have discovered that fear, happiness, sadness, and surprise are universally reflected in facial expressions.3.人类学家们已经发现,恐惧,快乐,悲伤和惊奇都会行之于色,这在全人类是共通的。
4. Because of its irritating effect on humans, the use of phenol as a general antiseptic has been largely discontinued.4.由于苯酚对人体带有刺激性作用,它基本上已不再被当作常用的防腐剂了。
5. In group to remain in existence, a profit-making organization must, in the long run, produce something consumers consider useful or desirable.5.任何盈利组织若要生存,最终都必须生产出消费者可用或需要的产品。
6. The greater the population there is in a locality, the greater the need there is for water, transportation, and disposal of refuse.6.一个地方的人口越多,其对水,交通和垃圾处理的需求就会越大。
【商务法语】如何介绍您的公司? 编辑:yuanFr 发布时间:2010-4-29[加入ViVi收藏夹] [收藏到365Key] [大中小]怎么介绍您的公司呢?本期对话将教您如何对一个企业进行基本的介绍Entretien avec Jean-Marc Tissot (JMT ), directeur général de la société La Provençale.采访普罗旺斯公司的总经理Jean-Marc TissotA: Quel est l‟histoire de votre société ?A:您公司的历史有多长了?JMT: La société La Provença le a été créée en 1970. A l‟origine, c‟était une entreprise familiale.En 1988, elle a rejoint le groupe Auréa, qui est le leader européen des produits d‟hygiène.JMT:普罗旺斯公司建于1970年。
起初是个家庭公司。
1988年,它加入了Auréa集团,欧洲卫生产品的龙头企业。
A: Quelle est votre activité ?A:您的公司有什么业务呢?JMT: Nous produisons et vendons les savons, des crèmes pour le corps, des gels pour le bain et la douche et des shampoings. Nous avons une gamme de 450 produits que nous exportons dans le monde entier.JMT:我们生产及销售肥皂、润肤乳、沐浴乳及洗发水。
团课英文In recent years, group classes have become increasingly popular in fitness centers and gyms around the world. These classes offer a fun and interactive way for people to get fit, socialize and stay motivated. In this article, we willdiscuss what group classes are, the benefits of attending one, and some of the most popular types of group classes.What are group classes?Group classes are exercises that are performed in agroup setting, usually led by a certified instructor. Theycan take on a variety of forms depending on the gym orfitness center offering them. Often, they are centered around a specific type of exercise or fitness goal, such as cardio, strength, or flexibility training.Benefits of attending group classes1. MotivationGroup classes provide an excellent source of motivation. When exercising in a group, participants are more likely to push themselves and work harder than they would if they were alone. This is because there is a sense of competition and camaraderie among the group members.2. AccountabilityWhen attending group classes regularly, individuals are accountable to the group for showing up and participating.This helps to create a sense of commitment and accountability, which is especially important for those who struggle to maintain a consistent exercise routine.3. SocializationGroup classes offer an opportunity for participants to socialize and network with like-minded individuals. This can lead to the formation of friendships and a sense of community.4. VarietyGroup classes offer variety in the workout routine. Instead of doing the same exercises repeatedly or using the same equipment every time, group classes offer different exercises and equipment to ensure variety and prevent boredom.Most popular types of group classes1. SpinningSpinning classes are high-intensity cycling workoutsthat take place in a group setting. They are designed to increase cardiovascular endurance, burn calories, and build lower body strength.2. YogaYoga classes are popular for their focus on increasing flexibility, balance, and strength. They are a restorative workout, which makes them perfect for those who want to improve their core strength and posture.3. DanceDance classes offer a fun and playful way to get fit. They are designed to improve coordination, balance, and help participants burn calories while having fun.4. Strength TrainingStrength training classes focus on building muscle mass and increasing overall body strength. These classes use weights and other equipment to target specific muscle groups.In conclusion, group classes are a fun and interactive way to get fit, socialize, and stay motivated. They offer a variety of benefits, including motivation, accountability, socialization, and variety in the workout routine. There aremany types of group classes available, so finding one that suits your fitness goals and interests should not be difficult. So why not try a group class and see how it can benefit you?。
河北省衡水市2024-2025学年高三上学期第二次调研考试(9月月考)英语试题一、阅读理解Below are some strategies that can be employed in class to engage students in learning activities.Think — Pair — ShareThis technique is popular in the lower elementary grades to encourage speaking and listening skills. First, ask students to think about their response to a question, and then ask them to pair up with another person, usually someone nearby. The pair discuss their response, and then they share that response with a larger group.FishbowlA fishbowl is organized with two four student groups who sit facing each other in the center of the room. All the other students sit in a circle around them. Those students seated in the center discuss the question. Students on the outside circle take notes. In a variation, students on the outside may provide quick notes known as “fish food” by passing them to students on the inside for use in their discussion.Concentric CirclesOrganize students into two circles, one outside circle and one inside circle so that each student on the inside is paired with a student on the outside. The teacher poses a question to the whole group. Each pair discuss how to respond. After this brief discussion, the students on the outside circle move one space to the right. This will mean each student will be part of a new pair. The teacher can have them share the results of that discussion or pose a new question.PyramidStudents begin this strategy in pairs and respond to a discussion question with a single partner. At a signal from the teacher, the first pair join another pair which creates a group of four. These groups of four share their ideas. Next, the groups of four move to form groups of eight in order to share their best ideas. This grouping can continue until the whole class is joined up in one large discussion.1.Which strategy can a teacher adopt if he doesn’t want all the students to speak?A.Think — Pair — Share.B.Fishbowl.C.Concentric Circles.D.Pyramid.2.What’s a unique aspect of Concentric Circles?A.Students change partners.B.Students respond to a question.C.Students pass notes to each other.D.Students take turns to present their ideas. 3.How does Pyramid work?A.Best ideas are collected for a presentation.B.One group combines with another with each step.C.The whole class work together to carry out a project.D.Groups of four move around the classroom to share ideas.Malonga was born in Brazzaville, Congo, where his grandmother owned a restaurant. His love for food and cooking started there. He spent his teenage years in Germany and he started his career working in top European restaurants.In 2015, he competed in the French Top Chef TV show as the first Black chef to do so. When it came time to open his own restaurant, he took a two - year tour of the African continent, seeking inspiration.He opened Meza Malonga in 2020. Dinners at Meza Malonga have no menu — the meal changes based on seasonally available ingredients(食材)and what’s exciting Malonga at the moment. Giant windows open onto the hills of Kigali. The chefs present each course. There’s nobody yelling(大喊), “Yes chef!” and Malonga pointedly refers to “our restaurant… our menu… our project.” His longest employee is Frank Buhigiro, who says “The way we work is like we are family. You know, we don’t have pressure because we get time to think and create.”The restaurant is only open for eight months out of the year. For the other four months, Malonga and his team travel the continent. They experience different African cuisines first - hand, and source unique ingredients. But it’s more driven, more intense, than just sourcing. Malonga has visited 48 African countries, eating his way across the continent. Upon returning to Kigali, he brings back new flavors as souvenirs(纪念品). He describes new tastes like a shiny new toy. “Right now, I’m eating cassava leaves — I love it!”Malonga wants to carve out a space for African food in the global fine dining scene. Something he thinks is increasingly possible based on how people travel. Now, he says, people book trips not based on where they sleep, but where they eat.4.What gave Malonga his early inspiration for his career?A.A European cooking show.B.A famous chef in Germany.C.His book about African cuisine.D.His grandmother’s restaurant.5.In what way is Meza Malonga unique?A.It combines dining with traveling.B.It has a fixed menu that never changes.C.Diners can choose their own ingredients.D.The chefs present each course to the diners.6.What’s the working atmosphere like in Meza Malonga?A.Easy and simple.B.Warm and relaxing.C.Formal but exciting.D.Positive but tense.7.What is the main purpose of Malonga and his team’s travels across Africa?A.To enhance their team spirit.B.To search for designs for toy souvenirs.C.To experience cuisines and source ingredients.D.To seek suitable locations for opening new restaurants.Ernesto Gomez’s journey into ornithology (鸟类学) began with a childhood encounter with scarlet macaws as they flew past him in the green rainforest of Chiapas, Mexico. This experience fired a lifelong passion for birds and conservation, leading him to specialize in ornithology and join Pronatura Península deY ucatán (PPY), an environmental conservation group in Mexico.Gomez’s work is supported by Fish and Wildlife Service grant programs that improves wetland habitats for migratory birds and promotes environmental education and research. One of Gomez’s key projects involves restoring and managing wetland habitats in the Yucatan Peninsula, which has led to the return of several species. These efforts not only support bird populations butalso reduce the vulnerability of coastal communities by improving their capacity to adapt to environmental risks.Community engagement is central to PPY’s success, with the annual Toh Festival being a key example. This festival, named after a bird of cultural significance, hosts a variety of bird-related activities from March to November, including birding marathons, photo expeditions (探险), contests, tours, and workshops. These events inspire community members to appreciate and protect the region’s rich biodiversity.As a nature photographer, Gomez approaches his work with respect for the wildlife, aiming to remain careful to avoid disturbing the birds. His photography serves a higher purpose, creating media communications that support PPY’s environmental education and community outreach initiatives. His images not only record the beauty of birds but also provide a window into their world, inspiring people to learn more about the challenges they face and the habitats they depend on.Ernesto Gomez proved to us the power of photography to inspire and educate. His work ensures that the beauty of Yucatan’s birds and habitats continues to inspire, reminding us of the vital link between people and nature.8.Where did Ernesto Gomez’s interest in ornithology come from?A.An encounter with scarlet macaws.B.A documentary on wetland conservation.C.A photography exhibition about Mexican forests.D.An educational program onenvironmental science.9.What does the underlined word “vulnerability” mean in paragraph 2?A.The stability of regional biodiversity.B.The quality of being weak and easily hurt.C.The capability of managing wetland habitats.D.The probability of being adaptive to environmental risks.10.What is a primary purpose of the Toh Festival?A.To raise funds for conservation projects.B.To engage people in bird-related activities.C.To promote bird - watching as a tourism activity.D.To recognize the work of nature photographers.11.How do Gomez’s photos contribute to PPY’s mission?A.By providing visual documentation for scientific research.B.By attracting birding marathoners to the Yucatan Peninsula.C.By creating media communications for environmental education.D.By encouraging people to face the challenges of environmental conservation.Albino redwoods, with their slightly shining white appearance, are a rare sight in California’s coastal forests. Despite lacking chlorophyll, which is used to photosynthesize(光合作用), these trees have managed to survive, puzzling researchers for over a century. However, a recent study by biologist Zane Moore from the University of California in Davis may have uncovered the secret to their existence.Redwoods rank among the tallest organism on earth and claim an existence of some 3,500 years. They are known for their complex root systems that allow them to communicate and share nutrients during tough times. Researchers have seen this firsthand by introducing dye to trees on one side of an area of redwoods and tracing it all the way to the further reaches. In summer, they become more independent, and those unable to sustain themselves are cut off from the shared system in the autumn needle drop.So, if albino red woods can’t photosynthesize, why are they able to stick around? Moore’s research suggests that albino redwoods survive by tapping into the communal root system and absorbing sugars from healthier neighbors. Contrary to the belief that they are parasites(寄生植物), Moore’s findings indicate a symbiotic(共生) relationship.Albino redwoods tend to grow in less healthy conditions and have been found to contain high levels of poisonous heavy metals in their leaves. Moore theorizes that these trees are not only surviving but also serving a purpose by acting as a “reservoir(水库) for poison”, thus protecting their healthier counterparts. This discovery could potentially make it possible to use albino redwoods in polluted areas to safeguard other trees.The study highlights the interconnectedness of trees and their ability to look out for one another, forming bonds and even recognizing their offspring. Moore’s research emphasizes the importance of considering the entire community of trees, rather than focusing on individuals, to understand what’s happening in the forest.12.What can be learned about redwoods?A.They depend on each other for nutrition in tough times.B.They have unusually strong roots that can reach very far.C.How they photosynthesize has puzzled researchers for long.D.How they communicate among individuals remains a secret.13.How do albino redwood s survive?A.They become parasites of other tree species.B.They rely on the fallen needles for their growth.C.They have developed an alternative method of photosynthesis.D.They absorb sugars from the root system of healthier redwoods.14.What role do albino redwood s play in the forest ecosystem?A.They transport water for the forest.B.They act as a source of food for other plants.C.They protect other redwood trees by absorbing poison.D.They are responsible for the reproduction of the redwood species.15.What’s the best title of the text?A.Albino Redwoods May be the Result of PollutionB.Albino Redwoods May Survive to Help Nearby TreesC.Symbiotic Relationship is Built among Albino RedwoodsD.Researchers Discovered Complex Root System of Albino RedwoodsMischief Night, also known by various names like Devil’s Night and Cabbage Night, is a tradition that has changed over time in the United States and Canada. Historically, Halloween pranks(恶作剧)were performed on October 31st. 16 However, by the 1920s and 1930s, these pranks changed into more serious acts of destruction, possibly due to the social tensions of the Great Depression.In an effort to deal with this destructive behavior, parents and community leaders encouraged the tradition of trick-or-treat. 17 This shift effectively moved the mischief from October 31st to October30th.The custom of Mischief Night is particularly popular in areas with a history of Irish and Scottish immigration, such as the northeastern United States and English-speaking communities inCanada. 18According to a Cambridge Online Survey of World Englishes, 74% of Americans surveyed do not have a specific name for this night. 19 East Michigan referred to it as Devil’s Night, parts of New Jersey and New York as Mischief Night, and Washington State as Devil’s Eye. A similar study conducted by Harvard University a decade ago revealed other names like Gate Night, which involved opening farmers’ gates to let livestock roam free.20 The term Cabbage Night, for instance, originates from an old Scottish tradition where young women would use cabbages in fortune- telling rituals on All Hallows’ Eve, leading to a tradition of throwing cabbages at neighbors’ homes. Despite the decline in the use of specific names, Mischief Night continues to be a part of local traditions.A.Yet, regional names do exist.B.They offered candy to children in costumes as an alternative.C.The origins of these names have long been a topic of discussion.D.They involved light - hearted tricks such as throwing eggs at houses.E.Children had great fun but parents were concerned about the serious destruction.F.The data suggest that the specific names for this night are gradually fading away. G.However, it is less common in the South, West, and French-speaking regions of Canada.二、完形填空My friend Julie and I had completed an incredibly complicated set of instructions which led us to our comfortable room in Tokyo. The next morning, still with a white wine hangover from celebratory night, we 21 a most unexpected sensation: The whole room was shaking from side to side. My friend Julie was up and screaming “what’s happening?” I was very 22 but my mind was 23 .“I think it’s an earthquake,” I said.I staggered (踉跄) out of 24 and noticed a helpful guide page which was 25 on the small table that I hadn’t noticed before.The room stopped shaking and then started again like a 26 sailor. The cups were shaking and I was feeling rather 27 . Sure enough, the guide page had a section on what todo in an earthquake. It 28 that all buildings in Tokyo were earthquake-proof, but if you were worried, the door frames could 29 you as they were all reinforced (强化的) steel.We didn’t feel particularly protected. Julie rushed downstairs to seek 30 , but she was me t with a shrug (耸肩) from the old lady there who simply 31 that Japan sometimes shakes.Although the center of the earthquake was off the coast of the Ogasawara Islands, it 32 the whole of Japan and the aftershocks were felt as far away as India and Nepal. I was 33 that it got so little international 34 . It didn’t cause a tsunami and no nuclear power plants were affected — but it was still a crazy 35 .21.A.caught up with B.put up with C.looked forward to D.woke up to 22.A.curious B.careful C.dizzy D.calm 23.A.working B.disturbed C.slow D.blank 24.A.reach B.bed C.place D.sight 25.A.actually B.previously C.accidentally D.accordingly 26.A.worried B.seasoned C.drunken D.scared 27.A.sick B.easy C.tired D.sleepy 28.A.proved B.noted C.ensured D.predicted 29.A.interest B.bother C.support D.protect 30.A.comfort B.approval C.fortune D.assistance 31.A.replied B.complained C.hoped D.denied 32.A.panicked B.moved C.shook D.troubled 33.A.skeptical B.anxious C.surprised D.fortunate 34.A.business B.cooperation C.privilege D.attention 35.A.action B.experience C.idea D.game三、单词拼写36.The change of seasons is a natural (现象).(根据汉语提示单词拼写)四、语法填空37.She decided to take an (addition) course to enhance her skills in data analysis.(所给词的适当形式填空)38.The rapid (respond) of the firefighters helped to minimize the damage caused by the fire. (所给词的适当形式填空)39.A (type) day for a student might involve attending classes, studying, and participating in extracurricular activities. (所给词的适当形式填空)五、单词拼写40.The fundamental (原则) of good nutrition is to consume a balanced diet that includes a variety of fruits, vegetables, and proteins. (根据汉语提示单词拼写)六、语法填空阅读下面短文,在空白处填入1个适当的单词或括号内单词的正确形式。
小学上册英语第2单元期末试卷[含答案]考试时间:90分钟(总分:120)B卷一、综合题(共计100题共100分)1. 填空题:The parrot has bright ________________ (羽毛).2. 选择题:What do we call the natural process of changing from a solid to a liquid?A. MeltingB. BoilingC. FreezingD. Evaporating答案:A. Melting3. 选择题:How many colors are there in a rainbow?A. FiveB. SixC. SevenD. Eight答案:C4. 听力题:We have a _____ (照片) on the wall.5. 听力题:A _______ is an area of land that has been formed by volcanic activity.6. 选择题:What do we call the coldest season of the year?A. SpringB. SummerC. AutumnD. WinterWhat is 9 x 3?A. 27B. 28C. 29D. 308. 选择题:What is the capital of the United States?A. New YorkB. Washington D.C.C. Los AngelesD. Chicago9. 选择题:What is the main ingredient in pancakes?A. CornmealB. FlourC. RiceD. Sugar答案:B10. 听力题:My sister loves to create ____ (art projects).11. 选择题:What is the color of an orange?A. GreenB. BlueC. OrangeD. Purple答案: C12. 听力题:A nonpolar molecule does not have charged ______.13. 填空题:A ________ (植物观察展览) shares knowledge.14. 选择题:What is the primary ingredient in a cake?A. FlourB. SugarC. EggsD. ButterMy teacher is very ________ (友好) and helps us learn.16. 听力题:A __________ is a large body of water surrounded by land.17. 听力题:A _______ helps us understand how energy is transferred from one form to another.18. 填空题:The toucan's beak is large and colorful, aiding in attracting ________________ (配偶).19. 听力题:They are _____ (climbing) the hill.20. 听力题:The flowers smell ________.21. 填空题:The sunflowers face the _______ all day long.22. 填空题:We can _____ (cultivate) a variety of plants.23. 听力题:My ______ loves to participate in competitions.24. 填空题:My brother is known for his __________ (创造力).25. ts can ______ (修复) damaged ecosystems. 填空题:Some pla26. 选择题:What is the name of the famous character known for his long beard and red hat?A. Santa ClausB. GandalfC. DumbledoreD. Merlin27. 选择题:Which vegetable is orange and long?A. TomatoB. CarrotC. PotatoD. Onion答案:B28. 选择题:What do you call the protective outer layer of an egg?A. ShellB. YolkC. AlbumenD. Membrane答案:A29. 填空题:My cat has a favorite _______ (玩具).30. 填空题:The ancient Greeks used _____ to predict the future.31. 听力题:The __________ is the outermost layer of the Earth.32. 听力题:A solar system includes a star and all the objects that orbit it, including ______.33. 填空题:The _____ (植物经济) contributes to livelihood.34. 选择题:What do we call the science of studying the universe?A. GeologyB. AstronomyC. MeteorologyD. Physics答案:B35. 选择题:Which planet has no atmosphere?A. MarsB. MercuryC. VenusD. Jupiter36. 选择题:What is 10 - 4?A. 2B. 5C. 6D. 737. 选择题:How many sides does a hexagon have?A. 4B. 5C. 6D. 7答案:C38. 填空题:A ______ (猫) likes to sit in sunny spots.39. 选择题:What is the freezing point of water?A. 0 degrees CelsiusB. 100 degrees CelsiusC. 50 degrees CelsiusD. 25 degrees Celsius40. 填空题:My dog barks when he sees a _______ (陌生人).41. 选择题:What do we call the process of plants making food using sunlight?A. RespirationB. PhotosynthesisC. DigestionD. Fertilization答案:B42. 选择题:How many legs does a butterfly have?A. FourB. SixC. EightD. Ten43. 填空题:The parrot is very _________ (色彩斑斓).44. 听力题:The __________ is known for its artistic community.Which animal is known for its long neck?A. LionB. GiraffeC. TigerD. Bear46. 填空题:The __________ (历史的挑战) include preservation and interpretation.47. 听力题:I put my shoes _____ the door. (by)48. 选择题:What do we call a person who performs in plays?A. ActorB. DirectorC. ProducerD. Stagehand答案:A49. 选择题:What is the color of grass?A. YellowB. BrownC. GreenD. Blue答案:C50. 选择题:What do we call the tall grass in Africa where lions live?A. JungleB. DesertC. SavannahD. Forest51. 听力题:An endothermic reaction ______ heat from the surroundings.52. 听力题:She is _______ (waiting) for the bus.53. 填空题:The squirrel's bushy ________________ (尾巴) helps with balance.A _____ (植物) can tell us about the environment it grows in.55. 选择题:What is the purpose of a map?A. To eatB. To navigateC. To sleepD. To read56. 填空题:The _____ (老虎) stalks its prey quietly.57. 听力题:A __________ is a reaction that involves oxidation and reduction.58. 选择题:What is the smallest continent?A. AsiaB. AntarcticaC. AustraliaD. Europe答案: C. Australia59. 选择题:What do we call a group of animals of the same species living together?A. HerdB. PackC. FlockD. Colony答案:A60. 填空题:In _____ (瑞士), you can find the Alps.61. 选择题:What is the main ingredient in bread?A. SugarB. FlourC. RiceD. Salt答案:B62. 填空题:My brother is a passionate __________ (科技爱好者).The ant's teamwork allows it to carry objects many times its ________________ (重量).64. 选择题:What is 9 3?A. 5B. 6C. 4D. 7答案: A65. 填空题:Certain plants are known for their unique ______, making them sought after in gardening. (某些植物因其独特的特征而受到园艺爱好者的追捧。
Présent Imparfait Futur Passé simpleparlo parlavo parlerò parlai parli parlavi parlerai parlasti parla parlava parlerà parlò parliamo parlavamo parleremo parlammo parlate parlavate parlerete parlaste parl anoparl avanoparler annoparl arono+ avere / essere+participé passé Présent | Imparfait + avere / essere+participé passé Présent futur | Passé simple Passé composéPlus-que-parfaitFutur antérieurPassé antérieur|| même racineSubjonctif ImperativeCondition (avr/sar) -i/-assi -ei-i/-assi -a-esti -i/-asse -i -ebbe -iamo/-assimo -iamo-emmo -iate/-aste-ate-este-ino /-assero -ino -ebberoConjugaison avere et essereaverePrésent /Imparfait | Subj / Passé simpleesserePrésent /Imparfait | Subj / Passé simpleho / avevo Abbia/ebbi Sono / ero Sia/fui hai / avevi Abbia/avesti Sei / eri Sia/fosti ha / avevaAbbia/ebbeE / era Sia/fu Abbiamo/ avevamo Abbiamo/avemmo Siamo / eravamo Siamo/fummo Avete / avevate Abbiate/aveste Siete / eravate Siate/foste h anno / avev anoAbbi ano /ebberoSono / er anoSiano/fur onoINFINITIFGÉRONDIFPrésent Passé Présent Passé parlare avere parlatoparlandoavendo parlatosubj: il y une insertion de l'élément "i" initialisant les terminaisons; tandis qu'il y en a pas pour imparfait. AbbiateSauf le premier, le conjugaison du Passé simple Avere est similaire au terminaison Conditionnel.lai guo initial letter is e<----------><----------><---------->|_________________________________|The double s indicate the SubjonctifEre(credere) (2 = e)Présent Imparfait Futur Passé simple-2vo -2i-2stie -é-2mmo 2te -2ste ono-ono+ avere / essere+participé passéPrésent | Imparfait + avere / essere+participé passéPrésent futur | Passé simplePassé composéPlus-que-parfait Futur antérieur Passé antérieurSubjonctif Imperative Condition (avr/sar)-a/-2ssi-a/-2ssi -i-a/-2sse -a-iamo/-2ssimo -iamo-iate/-2ste -2te-ano/-2ssero -anoINFINITIF GÉRONDIFPrésent PasséPrésent Passécredere avere creduto credendo avendo creduto credei/credetti credesticredé/credettecredemmo credeste crederonoIre(dormer/capire)(3 = i)Présent Imparfait Futur Passé simple / isco -3vo -3i/ isci -3sti e/ isce -à/ì-3mmo ite -3ste Ono/ iscono -irono+ avere / essere+participé passéPrésent | Imparfait + avere / essere+participé passéPrésent futur | Passé simplePassé composéPlus-que-parfait Futur antérieur Passé antérieurSubjonctif Imperative Condition (avr/sar)-a(-isca)/-3ssi-a(-isca)/-3ssi -i/-isci-a(-isca)/-3sse -a/-isca-iamo/-3ssimo -iamo-iate/-3ste -3te-ano(iscano)/-3ssero -ano/-iscanoINFINITIF GÉRONDIFPrésent PasséPrésent Passédormire avere dormito dormendo avendo dormitoRemarques:1.le Subjonctif et Imperatif suivent quasiment l’exemple de l’Indicatif Present, l’insertion de lachaine de lettres –isc montre un echo.2.Imparfait indicatif / futur simple / imparfait subjonctif ont presque la meme structure enremplaçant juste la première lettre de terminaison correspondant suivant l’ordre a / e / i que je les indexe ici par 1 / 2 / 3 .3. 2 et 3 groupe des verbes se coincident à l’égard du subjonctif pour la première forme4.Futur et conditionnel partagent les mêmes racines.5.Les terminaisons de deuxième personne du pluriel ont presque la meme structure enremplaçant juste la première lettre de terminaison correspondant suivant l’ordre a / e / i6.Première et deuxième personne du pluriel ont les même terminaisons concernant le subjonctifTableaux de conjugaison des verbes italiens élaborés par Zhaolong HE(Inspiré de Wikipédia).。
在大学里最有益的校园活动英语作文全文共6篇示例,供读者参考篇1The Most Fun Activities at UniversityYay, university! It's like the biggest school ever with so many awesome things to do. When you get to university, you'll have a chance to join all kinds of cool clubs and activities. I can't wait to tell you about the most fun ones!First up, sports teams! At university, you can play on the basketball team, soccer team, swimming team, and just about any sport you can imagine. Even if you're not a super athlete, it's still a blast. The teams practice together and compete against other universities. You get to travel to different schools and make friends from all over. Go team!Next, there are tons of cool clubs to join based on your interests. Like comics? Join the comic book club and hang out reading comics with other fans. Into video games? The gaming club is where it's at - you can play games together and enter competitions. There are clubs for everything - art, music, coding, robots, you name it!My personal favorite is getting involved with the school plays and musicals. Can you imagine being a famous actor or singer on the big stage? The drama club puts on incredible shows where students get to act, sing, dance, and work behind-the-scenes too. I'd love to be the star of a huge musical someday!Speaking of performing, universities always have the best parties and events where you can show off your talents. There are talent shows, open mic nights, battle of the bands, you name it. You could be a student DJ, rapper, dancer, comedian...the possibilities are endless for entertaining people!Of course, getting involved with the school newspaper or radio station is super cool too. As a reporter, you get to interview people, write articles, and tell stories about what's happening on campus. Or you can be a DJ and host your very own radio show - how awesome is that?Universities are also really good about helping the community and doing charity work. You can join clubs that build homes for the homeless, visit senior centers, collect canned goods, or raise money for great causes. It feels amazing to do something good that helps others.One more thing I can't wait for is the outdoor adventure clubs! At university, you could go hiking, rock climbing, kayaking, and camping with other nature lovers. Can you imagine sleeping under the stars in the wilderness? Exploring forests and mountains on the weekend sounds like a dream.Honestly, I could go on forever about all the incredibly fun societies, organizations, and activities to get involved in. No matter what you're interested in, university has a club or group for that. The hardest part will be deciding what to pick because you'll want to join them all!Between classes, you'll have plenty of free time to make lifelong friends, pursue your passions, and have the time of your life on campus. Universities are like the biggest, best playground where you get to learn and play at the same time. I'm counting down the days until I get to go! University here I come!篇2The Most Beneficial Campus Activities in UniversityHi friends! Today I want to tell you all about the really fun activities you can do when you go to university. University is like big kid school after high school. My older brother just started going to university last year, and he tells me all about theawesome clubs and teams and events they have on campus. It sounds like so much fun!One of the most popular activities my brother joined is playing intramural sports through the recreation center. Intramurals are sports leagues where different student teams compete against each other just for fun. My brother plays on his dorm's intramural basketball team. He says it's a great way to stay active, make new friends, and be part of a team. There are intramural leagues for all kinds of sports like soccer, volleyball, flag football, and even video game competitions! Wouldn't it be so cool to play on a real sports team in university?Another really interesting club my brother joined is the entrepreneurship club. In this club, students come up with ideas for new businesses or inventions and work on making their ideas a reality. They have mentors from successful companies who give advice and sometimes investors provide money to help turn the best ideas into actual startup companies! My brother and his friends are working on an app that helps students find cheaper prices on textbooks. He says clubs like this give you realhands-on experience ahead of joining the workforce one day.One club that sounds particularly fun to me is the outdoor adventure club. This club goes on camping trips, hikes, rockclimbing, whitewater rafting, and all sorts of awesome outdoor adventures! My brother went on a winter camping trip with them last semester and sent me pictures of everyone sleeping in tents and making s'mores over a campfire. He said they lead seminars too on survival skills, first aid, and environmental conservation which teach you very practical skills. Imagine learning how to build a fire, pitch a tent, and read maps/compasses for real!There are tons of other interesting clubs too like language clubs, cultural clubs, arts/music clubs, academic teams, community service groups and more. My brother's friend is part of a break dancing crew that performs all around campus. Another friend joined the anime club where they watch Japanese animated shows and movies together. One girl in his dorm is on the college equestrian team (a riding/horse club!). Honestly, it seems like there is a club for every single interest you can possibly have!Getting involved in fun activities like clubs and intramurals is one of the most beneficial things you can do at university according to my brother. Of course, academics are important too - he spends lots of time studying for classes and working on assignments. But being part of the campus community through extracurriculars allows you to pursue your passions outside ofacademics. You'll make new friends who share your interests, learn valuable hands-on skills, exercise and stay healthy, manage your time responsibly, and most importantly - have tons of fun!Sometimes grown ups think university is just all about picking a career path through your major, but my brother says the activities you're involved in really shape your overall experience. You have to study hard, but you should play hard too. Being part of entertaining extracurriculars is what makes your university years memorable for a lifetime. Who knows, you may even find your lifelong best friends or discover a newhobby/career path through one of these clubs!I certainly can't wait until I'm old enough to go to university myself in about 10 more years. With so many awesome options for clubs, sports, adventures and more, university sounds like the funnest experience ever! I'll get to explore all my interests, make lots of new friends, and have freedom like a grown up but still be a kid at heart. My big takeaway is to stay open-minded, get yourself involved in everything you can, and don't miss out on taking advantage of all the incredible extracurricular opportunities. That's what university is all about - learning headed knowledge from classes AND learning real life experiences through activities! I'm so excited to hopefully followin my brother's footsteps in just a decade. For now, consider me jealous of everyone in university! Have a ton of fun friends!篇3The Most Fun Things to Do at CollegeCollege is a big place with lots of fun activities to do! When you go to college, you get to pick from all sorts of clubs and teams to join. There are so many options, it can be hard to decide!One of the best things to do is join a sports team. If you like running, you can try out for the track or cross country team. If you're good at throwing or catching, maybe you'll make the baseball, softball, football or basketball teams. Or if you prefer individual sports, you could do tennis, golf, swimming or even fencing if your college has that. Sports teams are great because you get to make friends, learn about teamwork, and stay active and healthy.If sports aren't your thing, don't worry! There are tons of other clubs to choose from. Love singing? Join an acapella group or the choir. Like acting? Try out for a play. Enjoy painting, drawing or taking photos? The art club is for you! Into watchingor making movies? Check out the film club. There are clubs for writing, reading, poetry, dance, juggling, magic...you name it!Maybe you want to learn about other cultures - lots of colleges have clubs for students from different backgrounds to join. Or clubs focused on certain languages like Spanish, French, Chinese or Arabic. Getting involved in one of those is an awesome way to meet new people and discover traditions and foods you've never tried before.Another popular option is joining your college newspaper, TV station or radio station. These let you learn all about journalism, reporting on campus news and events. Or get creative writing stories, taking pictures or making videos to share with everyone. It's a great way to have your voice heard.If you're more into academics, look for honor societies to join in your favorite subjects like math, science, English or history. These give you a chance to go deeper into what you're learning with guest speakers and field trips. They also let you hang out with other kids who love those topics as much as you do.There are pre-professional organizations too that help prepare you for certain careers. Future doctors can join thepre-med club, future teachers can join the education club, futureengineers can join the engineering club, and so on. They'll connect you with internships, research opportunities and篇4The Most Fun Activities at University!Hi everyone! Today I want to tell you all about the really cool activities you can do when you go to university. University is like really big kid school after high school. You get to live in dorms which are like big houses just for students. And there are so many awesome clubs and teams and events to get involved with. Let me tell you about some of the best ones!One of the most fun activities is being part of a sports team. At university, they have all kinds of sports teams like basketball, soccer, swimming, track and more. When you join a team, you get to practice and compete against other universities. It's so exciting! The games and matches are like the biggest deals ever. Everyone comes out to cheer for their school's team. We get to do chants and wave pom-poms and banners. It's like a huge party!If you don't want to play sports, you can join the cheering squad instead. The cheerleaders get to make up cool dances with pom-poms and stunts. They flip each other in the air and makepyramids out of people. How crazy is that?! Their cheers and chants get the whole crowd hyped up. You have to be really athletic and brave to be a cheerleader.Another epic thing to do is join one of the performance groups on campus. Most universities have an amazing glee club where you can sing all kinds of songs together. They put on concerts and shows and everything. Some schools also have dance troupes, comedy troupes, improv groups and more. Can you imagine getting to be a famous singer or dancer or comedian when you're still in school? So cool!If you're more of an academic brainiac, you can join honor societies and conferences. These are like clubs for super smart people who are experts in subjects like science, math, English and history. You get to go to special meetings and hear genius professors give lectures. It's a great way to learn a ton and make your resume look awesome.Speaking of looking good on your resume, joining a fraternity or sorority is one of the most prestigious things you can do. Frats and sororities are like exclusive clubs that you have to rush and get voted into. Once you're in, you're part of a brotherhood or sisterhood for life! The groups do a ton of awesome stuff like hosting big parties, doing charity work,competing against other frats/sororities and more. It's an incredible way to make lifelong friends.For all you leaders and organizers out there, student government is the place to be. You get to plan events, decide how funds get spent, listen to students' concerns and make your campus an better place. Being part of student government looks amazing for future jobs too since it shows you can take charge.Those are just some of the highlights, but there are so many other possibilities too! You can join cooking clubs, outdoor adventure clubs, language clubs, business clubs, engineering clubs, volunteering clubs and more. Literally anything you can imagine, there's probably a club for it. The options are endless!Whoever you are and whatever you're into, university has something amazing waiting for you. The clubs and activities are the best way to pursue your passions, make friends, get experiences and prepare for your future career. You'll have so many wonderful memories from all the fun stuff you did on campus. Seriously, university is going to be the most epic time of your life!篇5The Most Beneficial Campus Activities in UniversityHi everyone! Today I want to talk about university life and the fun activities you can do on campus. When you go to university, it's not just about studying and going to classes. There are so many cool clubs and groups you can join to make friends, learn new skills, and have an awesome time!One of the best activities is joining a sports team. Playing sports is super fun and it keeps you healthy and active. At university, there are all kinds of team sports like basketball, soccer, volleyball, and even quirky ones like Quidditch (just like in Harry Potter!). Being on a team helps you make close friendships and you get to compete against other universities which is really exciting. My big brother plays rugby at his university and he says the team is like one big family. They hang out together all the time, even off the field.If sports aren't your thing, don't worry – there are plenty of other clubs to check out. A really popular one is the drama club where you can be in musicals and plays. Can you imagine getting to perform Shakespeare or sing and dance on stage? How cool is that?! Another fun option is joining a music group like an a cappella singing squad, garage band, or orchestra. I saw an a cappella group perform at my school once and their voicessounded incredible when they sang together without any instruments. Wow!If you're more of an indoor kid, you could join academic clubs related to your major or interests. Like if you're studying biology, the environmental club might let you go on cool field trips to forests and parks to see plants and animals in nature. Or if you're a computer nerd (no offence, I mean that in a nice way!), you could enter coding competitions with the programming club. They probably have video game tournaments too which would be the BEST.Speaking of video games, universities have all sorts of fun clubs for hobbies and fandoms too. Maybe you're obsessed with Star Wars and want to join the sci-fi club to watch movies with fellow fans and trade collectibles. Or you could start a Harry Potter club if there isn't one already, and have movie marathons, trivia games, and celebratory feasts for book release dates. Universities are the perfect place to unite with people who share your passions and enthusiasm.Let's not forget volunteering groups and causes too. Joining a club that gives back to the community is not only fun but makes you feel really good inside too. You could build houses for the homeless, serve food at a soup kitchen, pick up litter aroundcampus or in local parks. My friend's sister volunteers at an animal shelter in her university town, walking the dogs and playing with the cats. How cute is that?! Making a positive difference while having fun with friends – that's a win-win.Getting involved on campus isn't just about activities though – there are also TONS of awesome events happening all year round. Universities bring in celebrity speakers, famous authors, scientists making cool discoveries, political leaders, and so many other fascinating people. You get to hear them give talks and even ask them questions. Once my uncle's university had this astronaut visit who had actually walked on the moon! The students went bananas over her.There are also lots of cultural celebrations like Chinese New Year festivals, Diwali parties, Cinco de Mayo fiestas, and more. You can experience different foods, music, dancing, and traditions from all around the world. Talk about broadening your horizons! And the university will probably have concerts, comedy shows, and other fun entertainment acts come perform too. At Halloween time, I hear some campuses even have crazy haunted houses and ghost tours at night. Sounds spooky but fun if you're brave enough!And let's not forget about the good ol' party scene too. I'm too young to experience it myself, but from what I've heard, university has some EPIC parties and social events. Like costume ragers for Halloween, huge outdoor spring festivals, classic toga parties (don't ask me what a toga is), and probably lots of chances to stay up all night dancing and bonding over snacks with your besties. Sign me up for that in about 10 years!As you can see, university is way more than just classes and exams. It's an entire experience filled with so many opportunities to try new activities, discover new interests, and make lifelong memories. Sports, arts, academics, volunteering, cultural events - you name it, your campus will have it. The hardest part is choosing which clubs and events to join because there are so many awesome options!If I could give any advice, it would be to get out there and get involved as much as possible. Dive in headfirst and sign up for anything that seems remotely interesting. That's how you'll make the most friends, learn about yourself, gain valuable experiences, and have the best years of your life. University only happens once so make the most of it! Explore every corner of campus and never stop trying new activities and adventures. Who knows, you might just find your lifelong passion or start atradition that lasts for generations of students to come. The possibilities are endless! Okay, I'm getting way too excited here...I still have like 8 more years until I'm a university student myself. But you get the idea - campus life is going to be EPIC! Study hard, get involved, and most importantly - HAVE FUN!篇6The Most Beneficial Campus Activities in CollegeCollege is super fun and exciting! There are so many cool activities to do on campus besides just going to classes. When I get to college someday, I'm going to join lots of activities. That will help me learn new things, make friends, and get ready for my future job. Let me tell you about the best activities!First up, clubs are awesome in college. There are all kinds of clubs for different interests like sports, music, languages, video games, you name it. If you love a certain activity or subject, there's probably a club for it on campus. By joining a club, you get to hang out with other kids who like the same things as you. It's a great way to make new friends who have common interests.For example, let's say you really like playing chess. You could join the chess club and go to their meetings every week. There, you could play chess with other members, learn new strategiesfrom each other, and maybe even enter chess tournaments together. How cool is that? Getting involved in a club connects you with peeps who are just as passionate as you about that activity.Clubs are also an amazing way to develop your skills more outside of class. The meetings let you practice your talents and learn advanced tips you don't get in a regular class. Like if you join an art club, you could work on your painting techniques with other artists and get feedback on your projects. Practicing your skills through clubs can make you a master at that activity.Another fantastic campus activity is student organizations. These are kind of like clubs, but they focus more on causes, careers, cultures and stuff like that. For instance, there could be a Business Students Association that helps prepare students for business careers. Or maybe a Latino Students Union that celebrates Latino culture through events. Organizations let you dig deeper into areas you care about.By joining a student organization related to your interests, you learn so much valuable knowledge. You could attend workshops, hear guest speakers who work in those fields, get career advice, and more. It's an awesome way to explore subjects you're passionate about beyond the classroom. Participating inorganizations expands your mind and gets you ready for jobs you might want after graduation.A third awesome campus activity is intramural sports. These are sports teams and tournaments just for students at your university. You could join intramural teams for any sport like basketball, soccer, volleyball, even video game competitions. Intramural sports let you keep playing competitive games like you did in school, but just for fun against other students.Playing intramural sports is a blast because it helps you stay active, work as a team, and be competitive in a relaxed way. You get to take a break from studying and release some energy on the field or court. It promotes being fit, making friends with your teammates, learning about leadership and teamwork, and taking your mind off the stress of classes for a while. Intramurals are the best!Overall, there are so many amazing activities on college campuses beyond academics. Getting involved in clubs, organizations and intramural sports can teach you valuable life skills. You make lasting friendships, explore your passions more deeply, learn teamwork and leadership abilities, reduce stress through fun activities, and get prepared for future jobs. College allows you to discover your interests and develop as awell-rounded person. I'm super excited to experience all the enriching campus activities when I'm finally a university student! They'll help me grow into a successful adult.。
法语常用动词总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KIILe Verbe动词小结ÊtreJe suis nous sommesTu es vous êtesIl est ils sont命令式中:sois, soyons, soyezA.(系词,连接主语和表语)是:Je suis jeune.B.表示时间:Quelle heure est-il ?Nous sommes le 15 decembre.C.表示状态:Comment êtes-vous ce matinD.表示地点:Je suis à l’hôtel de la gare.E.Être à 属于Ce livre est à lui.F.Être de 源自,来自,出自,生于 :Je ne suis pas d’ici.AvoirJ’ai nous avonsTu as vous avezIl a ils ont命令式中:aie, ayons, ayezA.有,具有,享有,带有:Avoir du courageAvoir de la chanceB.取得,获得:Avoir un prix 获奖C.感到,怀有,经受:Avoir chaud/froidAvoir peurAvoir mal à qch.(身体部位疼痛) eg. J’ai mal à la tête.D.Il y a 句型中Il n’y a pas de quoi.PREMIER GROUPE Aimer 1Aimer +inf./qch/qn.A.爱:Je t’aim e.B.喜欢:Je l’aime bien. 我挺喜欢他/她的。
C.S’aimer爱自己,自恋:Il s’aime.相爱:Ils s’aiment.[派生] l’amour 恋爱Amoureux,amoureuse adj./n. 恋人Tomber amoureux de qn. ( fall in love with sb.)Appeler (1,–eler, -eter)Je m’appell e nous nous appel onsTu t’appell es vous vous appel ezIl s’appell e ils s’appell entA.呼唤,呼喊,招呼,邀请:appeler qn à table 叫某人就餐B.号召,召唤,呼吁:Le devoir m’appelle. 责任在召唤我。
a r X i v :m a t h /0602156v 1 [m a t h .G R ] 8 F eb 20061INTRODUCTION 1UDC 512.542Carter subgroups of finite almost simple groupsE.P.VdovinAnnotationIn the paper we complete the classification of Carter subgroups in finite almost simple groups.In particular,we prove that Carter subgroups of every finite almost simple group are conjugate.Togeather with previous results by author and F.Dalla Volta,A.Lucchini,and M.C.Tamburini,as a corollary,it follows that Carter subgroups of every finite group are conjugate.1Introduction We recall that a subgroup of a finite group is called a Carter subgroup if it is nilpotent and self-normalizing.By a well-known result,any finite solvable group contains exactly one conjugacy class of Carter subgroups (cf.[1]),and it is reasonable to conjecture that a finite group contains at most one conjugacy class of Carter subgroups.The evidence for this conjecture is based on extensive investigation,by several authors,of classes of finite groups which are close to be simple.In particular it has been shown that the conjecture holds for the symmetric and alternating groups (cf.[2])and,denoting by p t a power of a prime p ,for any group A such that SL n (p t )≤A ≤GL n (p t )(cf.[3]and [4]),for the symplectic groups Sp 2n (p t ),the full unitary groups GU n (p 2t )and,when p is odd,the full orthogonal groups GO ±n (p t )(cf.[5]).Later in [6]results of [5]were extended to any group G with O p ′(S )≤G ≤S ,where S is a full classical matrix group.Also some of the sporadic simple groups were investigated (cf.[7],for example).In the nonsolvable cases,when Carter subgroups exist,they always turn out to be the normalizers of Sylow 2-subgroups.In the paper we consider the following Problem .Are any two Carter subgroups of a finite group conjugate?In [8]it is proven that the minimal counterexample A to this problem should be almost ter in [9]a stronger result was obtained.A finite group G is said to satisfy condition (∗)if,for every its non-Abelian composition factor S and for every its nilpotent subgroup N ,Carter subgroups of Aut N (S ),S are conjugate (definition of Aut N (S )one can find below).In[9]the following theorem was proven.Theorem 1.1.If a finite group G satisfies (∗),then Carter subgroups of G are conjugate.Thus our goal here is to prove that for every known simple group S and every nilpotent subgroup N of Aut(S ),Carter subgroups of S,N are conjugate.Some classes of almost simple groups which can not be minimal counter example to the problem are found in [6]and [10].The resulting table of almost simple groups with conjugate Carter subgroups is given in [9].Our notations is standard.If G is a finite group,we denote by P G the factor group G/Z (G ).If πis a set of primes then we denote by π′its complement in the set of all primes.As usual we denote by O π(G )the maximal normal π-subgroup of G and we denote by O π′(G )the subgroup generated by all π-elements of G .If π={2}′is the set of all odd primes,then O π(G )=O 2′(G )is denoted by O (G ).If g ∈G ,then we denote by g πthe π-part of g ,i.e.,g π=g |g |π′.For a2PRELIMINARY RESULTS2finite group G we denote by Aut(G)the group of automorphisms of G.Ifλ∈Aut(G),then we denote by Gλthe set ofλ-stable points,i.e.,Gλ={g∈G|gλ=g}.If Z(G)is trivial,then G is isomorphic to the group of its inner automorphisms and we may suppose that G≤Aut(G). Afinite group G is said to be almost simple if there is a simple group S with S≤G≤Aut(S), i.e.,F∗(G)is a simple group.We denote by F(G)the Fitting subgroup of G and by F∗(G) the generalized Fitting subgroup of G.If G is a group,A,B,H are subgroups of G and B is normal in A(B¢A),then N H(A/B)= N H(A)∩N H(B).If x∈N H(A/B),then x induces an automorphism Ba→Bx−1ax of A/B. Thus,there is a homomorphism of N H(A/B)into Aut(A/B).The image of this homomorphism is denoted by Aut H(A/B)while its kernel is denoted by C H(A/B).In particular,if S is a composition factor of G,then for any H≤G the group Aut H(S)is defined.2Preliminary resultsLemma2.1.Let G be afinite group,let K be a Carter subgroup of G and assume that N is a normal subgroup of G.Assume that KN satisfies(∗).Then KN/N is a Carter subgroup of G/N.Proof.Consider x∈G and assume that xN≤N G/N(KN/N).It follows that x∈N G(KN). We have that K x is a Carter subgroup of KN.Since KN satisfies(∗),we have that its Carter subgroups are conjugate.Thus there exists y∈KN such that K y=K x.Since K is a Carter subgroup of G,it follows that xy−1∈N G(K)=K and x∈KN.Lemma2.2.[9,Lemma5]Assume that G is afinite group.Let K be a Carter subgroup of G, with centre Z(K).Assume also that e=z∈Z(K)and C G(z)satisfies(∗).(1)Every subgroup Y which contains K and satisfies(∗)is self-normalizing in G.(2)No conjugate of z in G,except z,lies in Z(K).(3)If H is a Carter subgroup of G,non-conjugate to K,then z is not conjugate to anyelement in the centre of H.In particular the centralizer C G(z)is self-normalizing in G,and z is not conjugate to any power z k=z.Lemma2.3.Let G be afinite group and S be a Sylow2-subgroup of G.Then G contains a Carter subgroup K with S≤K if and only if N G(S)=SC G(S).Proof.Assume that G contains a Carter subgroup K with S≤K.Since K is nilpotent, it follows that S is normal in K and K≤SC G(S)¢N G(S).By Feit-Thompson Theorem (see[11])we obtain that N G(S)is solvable.Thus,by Lemma2.2(1)we have that SC G(S)is self-normalizing in G,therefore N G(S)=SC G(S).Assume now that N G(S)=SC G(S),i.e.,N G(S)=S×O(C G(S)).Since O(C G(S))is of odd order,it is solvable.Hence it contains a Carter subgroup K1.Consider a nilpotent subgroup K=S×K1of G.Assume that x∈N G(K),then x∈N G(S).But K is a Carter subgroup of N G(S),hence x∈K and K is a Carter subgroup of G.Lemma2.4.Let G be afinite group,let S be a Sylow2-subgroup of G and x∈N G(S)beof odd order.Assume that there exist normal subgroups G1,...,G k of G such that G1∩...∩G k∩S≤Z(N G(S)).Ifϕi:G→G i is the natural homomorphism assume also that xϕicentralizes SG i/G i.Then x centralizes S.Proof.Consider the normal series S£S1£...£S k£S k+1={e},where S i=S∩(G1∩...∩G i).The conditions of the lemma implies that x centralizes every factor S i−1/S i.Since x is of odd order this imply that x centralizes S.Lemma2.5.[9,Lemma3]Let G be afinite group.Let H be a Carter subgroup of G.Assume that there exists a normal subgroup B=T1×...×T k of G such that T1≃...≃T k≃T, Z(T i)={1}for all i,and G=H(T1×...×T k).Then Aut H(T i)is a Carter subgroupof Aut H(T i),T i .Lemma2.6.Let G be afinite group,let H be a normal subgroup of G such that|G:H|=2t. Let S,T be Sylow2-subgroups of G,H respectively and N H(T)=T C H(T).Then N G(S)=SC G(S).In particular,both G,H contain Carter subgroups K,L respectively with S≤K and T≤L. Proof.Consider N G(S).Since H is normal in G we have thatN G(S)≤N G(T)= S,N H(T) = S,T×O(N H(T)) .Since N H(T)is normal in N G(T),we have that O(N H(S))=O(C H(T))is normal in N G(T),hence N G(T)=O(N H(T))⋋S.Since N G(S)≤N G(T),we obtain that the set of elements of odd order is a normal subgroup of N G(S),i.e.,every element of odd order of N G(S)is containedin O(N G(S)).On the other hand S is normal in N G(S)by definition and S∩O(N G(S))={1}, hence N G(S)=S×O(N G(S))=SC G(S).3Groups of Lie typeOur notations for groups of Lie type agrees with[12]and for linear algebraic groups agrees with[13].If G is afinite group of Lie type with trivial centre(we do not exclude non-simplegroups of Lie type,such as A1(2),all exceptions are given in[12,Theorems11.1.2and14.4.1]), then G denotes the group of inner-diagonal automorphisms of G.In view of[14,3.2]we have that Aut(G)is generated by inner-diagonal,field and graph automorphisms.Since weare assuming that Z(G)is trivial,we have that G is isomorphic to the group of its inner automorphisms and hence we may suppose that G≤ G≤Aut(G).LetG)is nontrivial.An automorphismσofGσisfinite.Groups O p′(Gσ)≤G≤G)are called groups of Lie type.But later in[15]R.Carter saidthat every groupG.More over,in[16]and[17]every group G with O p′(Gσis called afinite group of Lie type.Thus,by given definition offinite groups of Lie type and canonicalfinite groups of Lie type we intend to clarify the situation here.For example,P SL2(3)is a canonicalfinitegroup of Lie type and P GL2(3)is afinite group of Lie type.Note that an element of order3is not conjugate to its inverse in P SL2(3)and is conjugate to its inverse in P GL2(3).Since such information about conjugation is important in many cases(and is very important and useful in this paper),wefind it reasonable to use such notation.We say that groups2A n(q2),2D n(q2),2E6(q2)are defined over GF(q2),groups3D4(q3)are defined over GF(q3)and over groups are defined over GF(q).Thefield GF(q)in all cases is called the basefield.In view of[18,12.3]and[19,Exercise after Lemma58]we have that ifGσis a group of inner-diagonal automorphisms of O p′(G is simply connected,then Gσ)(cf.[18,12.4]).In general for givenfinite group of Lie type G(if we consider it as an abstract group)the corresponding algebraic group is not uniquely determined.For example,if G=P SL2(5)≃SL2(4),then G can be obtained either as(SL2(F2))σ,or as O5′((P SL2(F5))σ)(for appropriateσ).So,for anyfinite group of Lie type G,wefix(in some way)corresponding algebraic groupGσ)≤G≤G)consistent with the sum of roots,then every u∈U can be uniquely written asu= r∈Φ+x r(t r),(1)where roots are taken in given order and t r are from thefield of definition of G.Sometimes we use notationΦε(q),whereε∈{+,−},andΦ+(q)=Φ(q)is a split group of Lie type with base field GF(q),Φ−(q)=2Φ(q2)is a twisted group of Lie type defined over afield GF(q2)(with basefield GF(q)).Now let G.Then we can consider R=G∩(GHσ,whereR is a torus(resp.a reductive subgroup,a parabolic subgroup, a maximal torus,a reductive subgroup of maximal rank)of R is a connected reductive subgroup of maximal rank of R=G k∗G i is a simple connected linear algebraic group and R)0(see[13,Theorem27.5]).Moreover,ifΦ1,...,Φk are root systems of G k respectively,thenΦ1⊕...⊕Φk is a subsystem ofΦ(R isσ-stable.In view of[18,10.10]there exists aσ-stable maximal torus R.Let G l be theσ-orbit ofG1∗...∗G1|x=g·gσ·...·gσl−1for some g∈G1)σl.In view of[18,10.15]we have that G1)σl)is a canonicalfinite group of Lie type,probably,with the basefield larger then the basefield of O p′(G1∗...∗G1∗...∗T is aσ-stable maximal torus of G l.Therefore we mayassume that for any σ-orbit {G j i }G j 1∗...∗G j 1∗...∗G j 1∗...∗G j 1∗...∗R σ=S σ)and G σ)arising in this way we call subsystem subgroups of O p ′(G j 1,...,G j 1,with G i =O p ′((R σ(G i ).Since G 1∗...∗G i −1∗G i +1∗...∗G k ∗R σ(G i ),we have that AutT T R σ(G i )is a finite group of Lie type and AutR σ(G i )≤ P G i .Let R can be a maximal torus)of G .Let Cl (R )be the set of R g ,where g ∈G σ,R )/WG ,W R (and it is a subgroup of W ).Now define Cl (N W (W R ,σ).SinceN R )/R )/W R )/WR )/W R )/WR g )σcorresponds to the σ-conjugated class of w then we say that (R with wσ.For more details see [23].Lemma 3.1.Let G be a simple connected linear algebraic group over a field of characteristic p .Let t be an element of prime order r =p of G .Then C G (t )/(C G (t )0)is an r -group.Proof.Since r is distinct from the characteristic it follows that t is semisimple.Hence,C G (t )0is a connected reductive subgroup of maximal rank of G and every p -element of C G (t )is contained in C G (t )0.Assume that some prime s =r divides |C G (t )/(C G (t )0)|.Then s =p and C G (t )contains an element x of order s k such that x ∈C G (t )0.Since x,t commute we have that x ·t is a semisimple element of G .Therefore there exists a maximal torus T of G with x ·t ∈T .Then (xt )r =x r ∈T .Since (s,r )=1we have that there exists m such that rm ≡1(mod s k ),thus (x r )m =x ∈T .But T ≤C G (t )0,hence x ∈C G (t )0,a contradiction.Assume now that G .Then it has the unipotent radicalL such that U ≃L is called a Levifactor of S =Z (L =C S ).Let Rad (R .Then it is a σ-stable connected solvable subgroup,hence,by [18,10.10]it contains a σ-stable torusG (R (R ,i.e.,every σ-stable parabolic subgroup of L andG .Lemma 3.2.Let O p ′(G σbe a finite group of Lie type over a field of odd characteris-tic p and the root system Φof G σ)=G be a canonical finite group of Lie type over a field of oddcharacteristic p and −1is not a square in the base field of G .Assume that the root system Φofof G which normalizes U.Then C U(Ω(H))= X r|r is a long root ,whereΩ(H)={h∈H| h2=1}.Proof.If r is a short root,then there exists a root s with<s,r>=1.Thus x r(t)h s(−1)= x r((−1)<s,r>t)=x r(−t)(cf.[12,Proposition6.4.1]).Therefore,if x∈C U(Ω(H))and x r(t)is a nontrivial multiplier in decomposition(1)of x,then r is a long root.Now if r is a long root, then,for every root s,either|<s,r>|=2,or<s,r>=0,i.e.,x r(t)h s(−1)=x r(t).Under our conditions h s(−1)|s∈Φ =Ω(H),and the lemma follows.The following lemma is immediate from[24,Theorem1].Lemma3.4.Let O p′(G is either of type A n or of type C n,p is odd,q=pαis the order of the basefield of G,and G is split.Let S be a Sylow2-subgroup of G.Then N G(S)=SC G(S)if and only if q≡±1(mod8).Lemma 3.5.Let O p′(Gσbe afinite group of Lie type with the basefield of characteristic p and order q,letT of(T)σ≃(N T))σ/(Gσ,Tσ≃W,where W is the Weyl group ofGGσ),every element of order r is contained inT is unique,up to conjugation in O p′(Gσwe have that Gσ),without lost we may assume that G=T is a maximal torus such that Gσand(1)is clear.By[25,F,§6]we have that every element of order r of Tσand(2)follows.By information about the classes of maximal tori given in[25,G]and[26]we have thatT is a maximal torus such that|Gσ,Tσ≃W(G such that S=H be aσ-stable maximal torus of Hσis a Cartan subgroup of G.Then Hρis a Cartan subgroup of S.In view of[25,F,§6]we have that t is contained inTσis contained in Tσis obtained fromG)is the unique element that maps all positive roots onto negative roots.Now H by“twisting”with an element(w0σ)2=w20ρ=ρ, i.e.,Hρare conjugate in S.Let r1,...,r n be the set of fundamental roots of A n. Then t,as an element of Tσ=(Tσ.For G =2D 2n +1(q 2)we takeT σ|=(q +1)2n +1(the uniqueness follows from [16,Proposition 10])and for G =2E 6(q 2)we take T σ|=(q +1)6(the uniqueness follows from [17,Table 1,p.128]).Like in case G =2A n (q 2)it is easy to show thatG ,σare chosen so that O p ′(G σ.Let s be a regular semisimple element of odd prime order of G .Then N G (C G (s ))=C G (s ).Proof.In view of [25,F,§4and Proposition 5]we have that C G (s )0is isomorphic to asubgroup of ∆.Now,if the root system ΦofG (s )=CT and C G (s )=C G (s )0∩G is a normal subgroup of C G (s ),hence C G (s )≤N (G,T ).Assume that N G (C G (s ))=C G (s ).Then C G (s )=N N (G,T )(C G (s ))and C G (s )/T is a self-normalizing subgroup of N (G,T )/T .As we noted above C G (s )/T is isomorphic to a subgroup of ∆,i.e.,it is cyclic.By Lemma 3.1,we also have that C G (s )/T is an r -group,thus C G (s )/T = x for some x ∈N (G,T )/T and x is a Carter subgroup of N (G,T )/T .Now,in view of [15,Proposition 3.3.6],we have that N (G,T )/T ≃C Sym n +1(y )for some y ∈Sym n +1.Clearly C C Sym n +1(y )(x )contains y ,thus y must be an r -element,otherwise N C Sym n +1(y )( x )would contain an element of order coprime to r ,i.e.,N C Sym n +1(y )( x )= x .A contradiction with the fact that x is a Carter subgroup of C Sym n +1(y ).Now let y =τ1·...·τk be the decomposition of y into the product of independent cycles and l 1,...,l k be the lengths of τ1,...,τk respectively.Assume that first m 1cycles has the same length l 1,m 2cycles has the length l 2etc.Let m 0=n +1−(l 1+...+l k ).Then C Sym n +1(y )≃ (Z l 1×...×Z l k )⋋ Sym m 1×Sym m 2×... ×Sym m 0,where Z l i is a cyclic group of order l i .If m j >1for some j 0,then there exists a normal subgroup H of C Sym n +1(y )such that C Sym n +1(y )/H ≃Sym m j ={e }.In view of [9,Table]and [10,Table]we obtain that Carter subgroup in group S satisfying Alt ℓ≤S ≤Sym ℓare conjugate for all ℓ 1.Thus C Sym n +1(y )and H satisfy (∗)and x is the unique,up to conjugation,Carter subgroup of C Sym n +1(y ).By Lemma 2.1we obtain that x maps onto a Carter subgroup of C Sym n +1(y )/H ≃Sym m j .In view of [2]we have that only a Sylow 2-subgroup of Sym m j can be a Carter subgroup of Sym m j .A contradiction with the fact that x is an r -element and r is odd.Thus we may assume that C Sym n +1(y )=(Z l 1×...×Z l k )and l i =l j if i =j .From the known structure of maximal tori and their normalizers of A εn (q )(cf.[16,Propositions 7,8],for example)we obtain that T =((T 1×...×T k )/Z )∩A εn (q ),where T i is a,so-called,Singergroup of GL εl i (q )=G i and N (G,T )=((N (G 1,T 1)×...×N (G k ,T k ))/Z )∩A εn (q ).Thus wemay assume that N (G,T )=C G (s )and T is a Singer group,i.e.,it is a cyclic group of order q n +1−(ε1)n +1|C G(s)/T|divides3and C G(s)/T is a Carter subgroup in C W(E6)(y)for some y,we obtain acontradiction.4Semilinear groups of Lie typeNow we define some special overgroups offinite groups of Lie type.First we give precise description of a Frobenius mapσ.LetB ofU=R u(B.There exists a Borel subgroupB∩T,where B(hence of G and let{X r|r∈Φ+}be the set of U.Every X r is isomorphic to the additive group of F p,so every element of X r can be written as x r(t),where t is the image of x r(t)under above mentioned isomorphism.Denote by B−)the unipotent radical of T-invariant1-dimensional subgroups{U−.Then U,G and¯γbe a graph automorphism ofN= n r(t)|r∈Φ,t∈F p .Let h r(t)=n r(t)n r(−1)andH is a maximal torus ofN=N H)and H.So we can substitute H and suppose that under our choiceN/G to¯γe¯ϕk,e∈{0,1},k∈N. It follows from Lang-Steinberg theorem[18,Theorem10.1]that for any¯g∈G.Thus,in view of[18,11.6],we have that a Frobenius map,defined in previous section,coincides with a Frobenius automorphism defined here.NowfixBσ,T=Uσ.Since T,andGσ(see[15,1.7–1.9]for details).Assumefirst that e=0,i.e.,O p′(U−σ.As for U we can write U−= X r|r∈Φ− and every element of X r can be written in the form x r(t),t∈GF(q).Now we can define an automorphismϕby the restriction of¯ϕonGσ.By definition we have that x r(t)ϕ=x r(t p)and x r(t)γ=x¯r(tλ)(see the definition of¯γabove)for all r∈Φ.Defineζ=γεϕℓ,ϕℓ=e,ε∈{0,1}to be an automorphism of G.Choose aζ-invariant subgroup G with O p′(Gσ.Note that if the root systemΦof Gσ/(O p′(odd characteristic,any subgroup G of Gσ)≤G≤G=Gσ)is twisted.Then U=X r|r∈{αs+βsρ|α,β 0,α,β∈Z}∩Φ+for some s∈Φ+ σandρis the symmetry of Dynkin diagram corresponding to¯γ,U−=X r|r∈{αs+βsρ|α,β 0,α,β∈Z}∩Φ−for some s∈Φ− σ.Defineϕon U±to be the restriction of¯ϕon U±.Since O p′(Gσ).Considerζ=ϕℓ=e and let G be aζ-invariant group with O p′(Gσ.Then¯ζ=¯ϕℓis an automorphism of G⋋ ¯ζ .A groupΓG defined above is called a semilinearfinite group of Lie type(it is called a semilinear canonicalfinite group of Lie type if G=O p′(G is called a semilinear algebraic group.Note thatΓG\G.Proof.Sinceζis the restriction of¯ζon G our statement is trivial.Let H1be a subgroup ofΓG.Then H1is generated by H=H1∩G and an element x=ζk g, moreover H is a normal subgroup of H1.In view of Lemma4.1we can considerG)in order to use the machinery of linear algebraic groups.LetG,let y∈NΓR)be chosen so that there exists x∈ΓG with y=¯x.Then R1= x,P of P and O p(X)≤R u((U0).Then U i=R u(N i−1)and N i=NGP=∪i N i is a proper parabolic subgroup.ClearlyG andσare chosen so that O p′(Gσ. Letψbe afield automorphism of O p′(Then a Sylow 2-subgroup of G ψis a Sylow 2-subgroup of G .Moreover there exists a maximal torus T of G such that N (G,T )/T ≃N T )/T -invariant root subgroup G .Proof.Assume that |ψ|=k .Let GF (q )be the base field of G .Then q =p αand α=k ·m .It is easy to check that every field automorphism of odd order centralizes the Sylow 2-subgroup ofG σ)),hence we may assume that G =G (T and |T ψ|=(p m −ε1)n .Clearly |T ∩L is a Cartan subgroup of L ,andψcan be considered as a field automorphism of L .Therefore for every X of X ∩L is a root subgroup of L ,and it is ψ-invariant.HenceG be a connected simple linear algebraic group over a field ofcharacteristic p ,σbe a Frobenius map of G σbe a finite group of Lie type.Let ϕbe a field or a graph-field automorphism of G and let ϕ′be an element of (G ⋋ ϕ )\G such that |ϕ′|=|ϕ|.Then there exists an element g ∈G such that ϕ g = ϕ′ .In particular,if G/O p ′(G )is a 2-group and ϕis of odd order,then such g can be chosen in O p ′(G ).The following lemma is proven for classical groups in [28].Lemma 4.5.Let G be a finite group of Lie type with Z (G )={1},G σ)≤G ≤G )={1}.Assume that τis the graph automorphism of order 2.Then every semisimple element s ∈G is conjugate to its inverse under τ ⋌(O p ′(G is not of type A n ,D 2n +1,E 6,then the lemma follows from [10,Lemma 2.2],thus we need to consider groups of type A n ,D 2n +1,E 6.Denote by ¯τthe graph automorphism ofT be a maximal σ-stable torus of T σ∩G is a Cartan subgroupof G .Let r 1,...,r n be fundamental roots of Φ(T = h r i (t i )|,where 1 i n and t i =0 and h r i (t i )¯τ=h ¯r i (t i ).Denote by W the Weyl group ofG (G (G (T ≃W .Since σacts trivially on W =N (G,T )/T ,we can take n 0∈G ,i.e.,n σ0=n 0.Then for all r i and t we have thath r i (t )n 0¯τ=h r w 0ρi (t )=h −r i (t )=h r i (t −1).Thus x n 0¯τ=x −1for all x ∈S ofG are conjugate,we have that there exists g ∈S g =S is σ-stable,then for every x ∈4SEMILINEAR GROUPS OF LIE TYPE11 have that x gn0¯τg−1=x gσn0¯τ(g−1)σ=x−1,i.e.,gn0¯τg−1S.In particular,there exists t∈S such that t=y·(y−1)σ.Therefore,gn0¯τg−1y=(gn0¯τg−1y)σ, i.e.,gn oτg−1y∈Gσ)Gσ,andSσsuch that gn0τg−1yz∈O p′(G.IfΦ=Cℓ,then we prove this lemma later in Theorem5.1,sowe assume thatΦ=Cℓ.IfΦ=D4and either graph-field automorphism contains a graph automorphism of order3,or G≃3D4(q3)and|ζ|≡0(mod3),then we prove this lemma later in Theorem6.1.Since we shall use this lemma in the proof of Theorem7.1,after Theorems5.1and6.1,it is possible to make such additional assumptions on G.Assume that q is odd andΦis one of the following types:Aℓ(ℓ 2),Dℓ(ℓ 3),Bℓ(ℓ 3),E6,E7or E8.By Lemma2.1we have that KU/U is a Carter subgroup of B⋋ ζ ≃H⋋ ζ . Since Hζ≤Z(H⋋ ζ ),we obtain,up to conjugation in B,that Hζ≤K.Ifζis afield automorphism,thenΩ(H)≤Hζ.In view of nilpotency of K we obtain that K u≤C U(Ω(H)).By Lemma3.2it follows that C U(Ω(H))={e},a contradiction with K u={e}.Ifζis a graph-field automorphism,thenζ2=e andζ2′centralizesΩ(H).Thus every element of odd order of H⋋ ζ centralizesΩ(H)and,up to conjugation in B,we have thatΩ(H)≤K.Againby Lemma3.2we obtain a contradiction.Assume that G≃2G2(32n+1)andΓG=G⋋ ζ .Again by Lemma2.1we have that KU/Uis a Carter subgroup of H⋋ ζ .Since(2n+1,32n+1−1)=1we have that Hζ≃KU/U∩HU/Uis of order2.Thus K∩G=K u× t ,where t is an involution.It follows that K u=C G(t)∩Gζ3′.Now case(4)follows from[30]and[31,Theorem1].Assume now that q=2t is even.Assumefirst thatΦis one of the following types:Aℓ(ℓ 2),Dℓ(ℓ 3),Bℓ(ℓ 3),E6,E7or E8,G is split,andζis afield automorphism. It is easy to see that for any r∈Φthere exists s∈Φsuch that<s,r>=1.If|ζ|=t, then h s(λ)∈Hζ≤K for someλ=1,hence x r(t)h s(λ)=x r(t)(λ<s,r>t)=x r(λt)(cf.[12,Proposition6.4.1]).It follows that K u≤C U(Hζ)={e},a contradiction.Therefore,|ζ|=t, Hζ={e}and we obtain statement(2)of the lemma.Now assume thatΦis of type:Aℓ(ℓ 2),Dℓ(ℓ 3),or E6;and either G is split andζis a graph-field automorphism,or G is twisted.Letρbe the symmetry of the Dynkin diagram of Φcorresponding toτand denote rρby¯r.IfΦ=A2,then for every r∈Φthere exists s∈Φsuch that s+¯s∈Φand<s,r>=1.Then we proceed like in case offield automorphism, taking h s(λ)h¯s(λ2t/l).If G=A2(2t)then K≥Hζcontains an element x of order3such that x∈2A2(22)≤A2(22)≤A2(2t).By using[32]or[33]one can see that x is conjugate to x−1 in A2(22),hence in G.Since the only composition factor of C G(x)is isomorphic to A1(2t)(see [16,Proposition7]),then[9,Table]and[10,Theorem3.5]imply that C G⋋ ζ (x)satisfies(∗),a contradiction with Lemma2.2.Now assume that G≃2A2(22t).By Lemma2.1we have that KU/U is a Carter subgroup of H⋋ ζ .Now if|ζ|is even,then Hζis isomorphic to a Cartan subgroup of A2(22t/|ζ|).If Hζ={e},we obtain statement(2)of the lemma,if Hζ={e},then K u≤C U(Hζ)={e},and this gives a contradiction with the condition N G(K u)=B.If|ζ|=t is odd,then Hζ≤K contains an element x of order greater,than3and direct calculations show that C U(x)={e}. If|ζ|=t is odd,then we obtain statement(1)of the lemma.5Carter subgroups in symplectic groupsFrom now by Cmin we denote the minimal n such that A is an almost simple group,F∗(A)is a simple group of Lie type of order n and A contains nonconjugate Carter subgroups.We shall prove that Cmin=∞,i.e.that such a group A does not exist.In this section we consider Carter subgroups in an almost simple group A with simple socle G=F∗(A)≃P Sp2n(q).We consider such groups here,since for groups of type P Sp2n(q)Lemma3.2is not true and we use arguments slightly different from those that we use in proof of Theorem7.1.Theorem5.1.Let G be afinite group of Lie type with trivial centre(not necessary simple)over afield of characteristic p and Gσ)≤G≤non-Abelian composition factor S of C G(t),Carter subgroups of Aut CG(t)(S)are conjugate.Itfollows that C G(t)satisfies(∗).Hence,by Lemma2.2,|K G|=2α·3βfor someα,β 0.If G=P Sp2n(q),then by[34,Theorem2]we have that every unipotent element is conjugate to its inverse.Since3is a good prime for G,then[35,Theorem1.2and1.4]imply that,for any element u∈G of order3,all composition factors of C G(u)are simple groups of Lie type of order less,than Cmin.Thus C G(u)satisfies(∗),hence,by Lemma2.2,we obtain that K G is a2-group.By Lemmas4.3and4.4every element x∈A\G of odd order with x ∩G={e} centralizes some Sylow2-subgroup of G.Hence K contains a Sylow2-subgroup of A,i.e.,K satisfies(3)of the theorem.Thus we may assume that G=P Sp2n(q)andβ 1,i.e.,a Sylow 3-subgroup O3(K G)of K G is nontrivial.By Lemma4.2we obtain that K G is contained in some K-invariant parabolic subgroup P of G with the Levi factor L and,up to conjugation in P,a Sylow2-subgroup O2(K G)of K G is contained in L.We have that KO3(P)/O3(P)is isomorphic to K=K/O3(K G)and,by Lemma2.1, K is a Carter subgroup of K,L .Now K∩L=O2(K G) is a2-group and every element x∈ K,L \L with x ∩L={e}of odd order centralizes a Sylow 2-subgroup of L(cf.Lemmas4.3and4.4).Therefore O2(K G)contains a Sylow2-subgroup of L,in particular,contains a Sylow2-subgroup of H.Hence,K G containsΩ(H).Since K is nilpotent,Lemma3.3implies that O3(K G)≤C U(Ω(H))= X r|r is a long root .Since for any two long positive roots r,s we have that r+s∈Φ,Chevalley commutator formulae[12, Theorem5.2.2]implies that X r|r is a long root is Abelian.Up to equivalence of root systems,we may suppose thatΦis contained in a Euclidean space with orthonormal basis e1,...,e n,and its roots has the form±e i±e j,i,j∈{1,...,n} (short roots)or±2e i,i∈{1,...,n}(long roots).If{r1,r2,...,r n−1,r n}={e1−e2,e2−e3,...,e n−1−e n,2e n}is a set of fundamental roots ofΦ,then long positive roots has the following form r n+2r n−1+...+2r k=2e k for some k.Thus there exists a nontrivial O2(K G)-invariant subgroup X r|r∈I =O p(P)∩ X r|r is a long root ,where I is a subset of the set of long positive roots.Group O2(K G)acts by conjugation on X r|r∈I ,thus we obtain a representation O2(K G)→Sym(I).Assume that there exists an orbitΩof length greater,than1such that O3(K G)∩ X r|r∈Ω ={e}.Without lost we may assume that it is{X2en , (X2)k}.Since K is nilpotent,then O3(K G)∩ X2en , (X2)kcontains an element v=x2en(t)·x2en−1(t)·...·x2ek (t)for some t∈GF(q)and it is central in K.Indeed,K∩ X2en,X2en−1, (X2)kisnormal in K G,ζnormalizes K∩ X2en ,X2en−1, (X2)k(sinceζnormalizes each of X r),hence,K∩ X2en ,X2en−1, (X2)kis normal in K.Therefore,Z(K)∩(K∩ X2en,X2en−1, (X2)k)is nontrivial.Since O2(K G)acts transitively onΩ,we obtain required form of v.Now,either v,or v−1under H is conjugate to f=x2en (1)·x2en−1(1)·...·x2ek(1),therefore we may assume thatv=x2en (1)·x2en−1(1)·...·x2ek(1).We want to show that v and v−1are conjugate in G.Sincen−k+1is even(as the order of an orbit of a2-group),we may write v=v k·v k+2·...·v n−1,where v i=x2ei (1)x2ei+1(1).Now we show that there exist x k,x k+2,...,x n−1such thatv x j i= v−1i if i=j,v i if i=j.,i.e.,v x k·x k+2·...·x n−1=v−1.We construct x n−1.We may choose structure constant so thatC1,1,rn−1,r n =1,C1,1,rn−1,r n−1+r n=1,C2,1,rn−1,r n=−1.Then Chevalley commutator formulae[12,Theorem5.2.2]implies thatx r n(1)·x r n+2r n−1(1) x r n−1+r n(1)=x r n(1)·x r n+r n−1(−1)·x r n+2r n−1(−1).。
Le temps et La conjugaison法语的语式(le mode du français):直陈式:客观地说明一件事实;命令式;条件式:在一定条件下才有可能发生的动作;虚拟式:从主观的角度来谈一件事情;不定式:无人称变化,不能作谓语;分词式:现在分词和过去分词,无人称变化,不能作谓语1. 直陈式现在时(le présent de l’indicatif):表现在存在的状态,经常发生的动作;表一个人的性格、特征;表客观事实或普遍真理;表说话时正在发生的事情第一组动词(les verbes du 1er groupe)由原形词根+e,es,e,ons,ez,ent 第二组动词(les verbes du 2e groupe)由原形词根+is,is,it,issons,issez,issent2. 命令式(l’impératif):表示命令或请求将直陈现在时主语去掉即。
只有第二人称单复数(第一组动词第二人称单数词尾无s),第一人称复数;être:sois,soyons,soyez ;avoir:aie,ayons,ayez3.最近将来时(le futur proche):表示即将发生的动作aller 直陈现在时+不定式4.最近过去时(le passé proche):表示刚刚发生或完成的动作venir 直陈现在时+ de + 不定式5. 代词式动词(le verbe pronominal – v.pr.):表示自反意义(sens réfléchi)、相互意义(sens réciproque)被动意义(sens passif)、绝对意义(sens absolu)复合时态中,表被动或绝对意义,过去分词要与主语性数一致; 表自反或相互意义,如果自反代词是直接宾语,过去分词与自反代词性数配合(相当于直宾置前);是间宾不配合6. 无人称动词(le verbe impersonnel):主语用il;il y a..., il est...表示时间,il fait...表示天气,带实质主语的无人称句:se produire, se présenter, s’écouler, se passer //venir, arriver, tomber, descendre // être dit, être fait, être défendu// Il estvenu trois soldats / Il ne se passe rien / il suffit de f. qch. / Il est évidentque / il arrive que chacun fasse erreur7. 过去分词(le participe passé)第一组动词:词根+é;第二组动词:词根+i过去分词独立使用,在句中作表语、定语或同位语时,要与有关的名词或代词性数一致;及物动词过去分词独立使用表被动意义; 以être 作助动词构成复合时态的不及物动词,其过去分词独立使用表示主动意义8. le passé composé:表示过去发生的动作,或从现在角度看,已经完成的动作(突然性,一次性,动作本身)直宾及间宾代词放在助动词前avoir(现在式)+过去分词:所有及物动词及大部分不及物动词;如直宾在动词前,过去分词要与直宾性数一致être(现在式)+过去分词:所有代词式动词及小部分不及物动词,如aller,venir,retourner,arriver, entrer,sortir,partir,descendre,devenir être 作助动词,过去分词有性数变化;表示自反或相互意义的代动词,如果自反代词是直接宾语,过去分词与自反代词性数配合,是间宾不配合;表示被动或纯粹意义的代动词,过去分词性数与主语一致有些动词作及物动词时用avoir,作不及物动词时用être,如monter,passer 9. 未完成过去时(l’imparfait):表示过去所发生的事情,其起迄时间是不明确的,在所谈到的时间内一直延续进行;表示过去习惯性或重复性的动作由现在时第一人称复数去掉词尾-ons,分别加上-ais,-ais,-ait,-ions,-iez,-aient10. 被动态(la voix passive):être+过去分词(与主语性数一致)+par(强调动作)/de(强调状态或用在表示感情、思想活动的动词后)+施动者补语10. 简单将来时(le futur simple):用于表达将来发生的动作或出现的状态第一组动词及第二组动词:原形动词+ai,as,a,ons,ez,ont;以re 结尾的第三组动词:去掉原形词尾e 后,加上述词尾大多数第三组动词词根变化,加上述词尾11. 先将来时(le futur antérieur):完成时态,表示在另一个将来的动作发生前已经完成的动作avoir/être 的简单将来时+过去分词;有时在独立句中使用,表示即将迅速完成的动作12. 过去将来时(le futur dans le passé):主要用于补语从句,主句为过去时,从句动词表示在主句动作之后将要发生的动作时使用; 由简单将来时的词根,加上未完成过去时词尾-ais,-ais,-ait,-ions,-iez,-aient如表示从过去角度看即将发生的动作,可使用aller 未完成过去时+不定式动词13. 愈过去时(le plus-que-parfait):表示在过去某时前已经发生或完成的动作;avoir/être 的未完成过去时+过去分词14. 简单过去时(le passé simple):表示过去某一确定时间内已经完成的动作,一般只用于书面语言,用来叙述历史事件、故事、传记等,通常只使用第三人称单复数以er 结尾的动词词根+ai,as,a,âmes,âtes,èrent;第二组动词及部分第三组(以–ir, -ire –uire, -dre,-tre, -cre 结尾, 部分词根有变化)词根+is,is,it,îmes,îtes,irent其他第三组动词, 以–oir, -oire, -aître, -oître, -aire, -ure 结尾:us,us,ut,ûmes,ûtes,urent;可参考过去分词的形式(mourir 不可参考:il mourut,courir: il courut)不规则动词:faire : il fit ; naître : il naquit ; voir : il vit ; s’asseoir : il s’assit ;être:il fut,ils furent;avoir:il eut/ily/,ils eurent/ilzy:r/;venir(tenir):vins, vins,vint, vînmes, vîntes, vinrent-简单过去时与复合过去时:用法基本同,但复合过去时口、笔语均可用;简单过去时表示纯粹过去,与现在无联系,复合过去时与现在有联系-简单过去时与未完成过去时:配合使用,简单过去时叙述主要动作的进行,未完成过去时描写故事背景,介绍情况等;简单过去时表示短暂的、一次完成的动作,未完成过去时表示习惯性、重复的动作。
小学上册英语第二单元期末试卷(含答案)英语试题一、综合题(本题有50小题,每小题1分,共100分.每小题不选、错误,均不给分)1 I can ______ (climb) a tree very well.2 I enjoy watching ______ on TV.3 What is the name of the famous scientist known for his work on radioactivity?A. Marie CurieB. Albert EinsteinC. Isaac NewtonD. Charles Darwin答案: A4 The process of a liquid changing into a solid is called _______.5 We will _______ (explore) the forest tomorrow.6 The capital of Eswatini is ________ (姆巴巴内).7 What is the primary ingredient in pesto sauce?A. BasilB. ParsleyC. GarlicD. Tomato8 What is the sound of a horse?A. NeighB. WoofC. MeowD. Quack9 在中国,古代的________ (families) 注重传承与教育。
10 The puppy is very ___ (playful).11 A liquid's viscosity determines how easily it ______.12 What is the primary color of the sky?A. GreenB. BlueC. YellowD. Gray答案:B13 A ___ (小蜗牛) moves slowly across the garden.14 The __________ is refreshing after a hot day. (凉爽的晚风)15 Ladybugs are small insects that are ______ (红色) with black spots.16 The acidity of a solution can be measured using a ______.17 What is the name of the event where you give thanks for what you have?A. ChristmasB. HalloweenC. ThanksgivingD. New Year答案: C18 , my __________ (玩具名) can __________ (动词). Sometime19 The __________ (历史的传承) is vital for future generations.20 I believe everyone should have hobbies. Hobbies bring joy and relaxation into our lives. My favorite hobby is __________, and I find it very fulfilling.21 The first successful hand transplant was performed in ________.22 The teacher is _____ (kind/strict) to us.23 What is the value of 10 + 2 5?A. 5B. 6C. 7D. 8答案:B24 The __________ was a significant event in American history for women's rights. (妇女选举权运动)25 What do you wear on your feet?A. HatB. ShoesC. GlovesD. Scarf答案:B26 What is a baby sheep called?A. CalfB. KidC. LambD. Foal答案:C27 What is the name of the famous clock tower in London?a. Big Benb. Eiffel Towerc. Leaning Towerd. Tower of Pisa答案:a28 How many continents are there in the world?A. 5B. 6C. 7D. 8答案: C. 729 What do we call the process of changing from a solid to a liquid?A. MeltingB. FreezingC. BoilingD. Evaporating答案:A30 What do you call a place where you can watch movies?A. TheaterB. CinemaC. PlayhouseD. Both A and B答案:D31 My favorite ________ is red.32 The capital of Hungary is __________.33 I see a _____ (car/bike) on the road.34 I can _____ my bicycle very fast. (ride)35 The ancient Sumerians are credited with inventing ________ (文字).36 A manatee grazes on _______ (水草).37 I found a ______ (小虫) under a rock. It was very ______ (奇特).38 The tortoise is much _________ than the hare. (慢)39 What is the name of the famous American actor known for his role in "The Dark Knight"?A. Christian BaleB. Heath LedgerC. Michael CaineD. Gary Oldman答案:A40 What do you call a story about someone’s life?A. NovelB. FictionC. BiographyD. Legend答案:C41 When I go to bed, I hug my ____. (毛绒玩具)42 Many plants are _____ (药用) and help with healing.43 What do we call the process of plants making their own food?A. PhotosynthesisB. RespirationC. DigestionD. Evaporation答案:A44 I like _______ (吃水果) in summer.45 I can ___ (tell) the time.46 The Earth's rotation causes day and ______.47 Chemicals can be represented by their ______ symbols.48 We have a ______ (有趣的) project about space.49 A gas has _____ (no definite shape) or volume.50 Neutralization reactions produce water and a _____.51 The __________ (历史事件) can teach us valuable lessons.52 What do you call the layer of gases surrounding the Earth?a. Hydrosphereb. Biospherec. Atmosphered. Lithosphere答案:C53 What is the name of the famous detective created by Arthur Conan Doyle?A. Hercule PoirotB. Sherlock HolmesC. Miss MarpleD. Sam Spade答案:B54 My uncle shares his __________ (经验) in life.55 My uncle is a great ____ (teacher).56 The chemical symbol for ununoctium is ______.57 The __________ (十字军) aimed to reclaim Jerusalem from Muslim control.58 What do you call a baby chicken?A. DucklingB. GoslingC. ChickD. Calf答案:C59 At night, I look at the ________ in the sky.60 non-renewable resource) is limited and cannot be replaced. The ____61 My dad loves __________ (户外活动) like hiking.62 What is the smallest unit of life?A. AtomB. CellC. OrganD. Tissue63 A seal barks when it is on the ______ (海滩).64 Did you see a _______ (小猴子) swinging from a branch?65 The turtle is known for its _________. (耐心)66 The monkey is very ___. (funny)67 What is the term for animals that sleep during the winter?A. HibernateB. MigrateC. EstivateD. Adapt答案:A68 What do you call the act of taking care of pets?A. VeterinaryB. Animal CareC. Pet SittingD. Animal Husbandry69 What is the main ingredient in bread?A. SugarB. FlourC. RiceD. Salt70 An atom consists of protons, neutrons, and ______.71 Certain plants can ______ (帮助) in flood prevention.72 What do you call the act of reading aloud?A. WhisperB. ShoutC. SpeakD. Recite73 The Earth's layers vary in __________ and composition.74 What is the name of the famous American actor known for "The Godfather"?A. Al PacinoB. Robert De NiroC. Marlon BrandoD. Jack Nicholson答案:C75 The _______ (The Great Migration) reshaped urban landscapes in America.76 The chemical formula for aluminum sulfate is ______.77 They are ___ a project. (finishing)78 The stars are ___ (twinkling) in the sky.79 The __________ is a place known for its historical significance.80 The _____ (游泳池) is refreshing.81 The panda eats mainly ________________ (竹子).82 The _______ (海洋) is home to many species.83 What is the primary color of a stoplight for "go"?A. YellowB. GreenC. RedD. Blue84 The lynx is known for its tufted _________ (耳朵).85 The famous river that runs through London is the ________ (泰晤士河).86 The _____ of an atom is determined by the number of neutrons and protons.87 My favorite animal is a _____ (lion/tiger).88 The __________ (人类进化) from primates took millions of years.89 The country known for its rich biodiversity is ________ (以丰富生物多样性闻名的国家是________).90 My uncle is a ______. He enjoys woodworking.91 (African) kingdoms were rich in resources and trade. The ____92 The dog is _____ with a ball. (playing)93 The _____ (马车) is old-fashioned.94 The parrot repeats everything it _________. (听到)95 What is the main language spoken in Spain?A. EnglishB. FrenchC. SpanishD. Italian答案: C96 The __________ (历史的洞察力) can lead to breakthroughs.97 How many hours are in a day?A. 12B. 24C. 36D. 4898 In summer, we go to the ______ (海滩).99 Which of these is a primary color?A. GreenB. OrangeC. BlueD. Purple答案:C100 A __________ is a characteristic of a substance that can be observed without changing it.。
上外版英语高一上学期期中复习试题及解答参考一、听力第一节(本大题有5小题,每小题1.5分,共7.5分)1、Listen to the conversation and answer the question.A. What is the weather like in the conversation?B. Who is the man speaking to?C. What is the man planning to do tomorrow?Answer: A. What is the weather like in the conversation?Explanation: Listen carefully for the man’s comment about the weather. The correct answer will be based on the weather-related information provided.2、Listen to the short dialogue and complete the sentence with the missing word.W: Hi, John. Have you finished your science project yet?M: Not quite. I’m still working on the part about the experiments. It’s quite challenging.W: ______________.Answer: You really should take your time.Explanation: The dialogue implies that the woman is suggesting the man should not rush through his project. The missing word should convey this meaning.3、Question: What is the man’s favorite sport?A. BasketballB. FootballC. TennisD. SwimmingAnswer: BExplanation: In the conversation, the man says, “I think football is the best sport. It’s exciting and full of action.” Therefore, the man’s favorite sport is football.4、Question: Why does the woman want to change her major?A. She doesn’t like her current major.B. She wants to follow her friend’s major.C. She needs more job opportunities.D. She wants to study something new.Answer: DExplanation: The woman explains, “I’ve been thinking about changing my major because I want to study something new and exciting.” This i ndicates that she wants to change her major to explore new subjects.5、You will hear a conversation between two students discussing their weekend plans. Listen carefully and choose the best answer to the following question.Question: How many days will the woman spend on her trip?A. 2 daysB. 3 daysC. 4 daysD. 5 daysAnswer: BExplanation: In the conversation, the woman mentions that she will be traveling for three days. Therefore, the correct answer is B, 3 days.二、听力第二节(本大题有15小题,每小题1.5分,共22.5分)1、听力原文:W: Hi, John. How was your midterm exam in English?M: It was okay, I think. I felt confident about the listening part, but I’m not sure about the reading section.Q: What does John think about the listening part of the exam?A: He thinks he did well.B: H e’s not sure about it.C: He’s worried about it.Answer: AExplanation: John says, “I felt confident about the listening part,” which indicates that he believes he performed well in that section.2、听力原文:W: Have you started studying for the history midterm?M: Not yet. I usually wait until the last minute because I find it easier to remember things that way.Q: What does the man usually do before the history midterm?A: He starts studying early.B: He waits until the last minute.C: He doesn’t study at all.Answer: BExplanation: The man says, “I usually wait until the last minute because I find it easier to remember things that way,” which suggests that he prefers to study for the history midterm at the very last moment before the exam.3.You will hear a conversation between two students discussing their study plan. Listen to the conversation and answer the question.What subject does the girl say she is struggling with?A)MathB)EnglishC)HistoryD)ScienceAnswer: B) EnglishExplanation: In the conversation, the girl mentions, “I think I need some help with English. The grammar seems really hard to me.”4.Listen to a short interview with a famous author. The author is discussing her writing process. Answer the following question based on what you hear.How does the author describe her writing process?A)She writes every day without any breaks.B)She outlines her entire book before writing.C)She writes without planning and edits later.D)She prefers to write in a quiet room.Answer: C) She writes without planning and edits later.Explanation: The author states, “I usually just start writing and let the story unfold. I don’t plan too much in advance. I find that I can edit and refine as I go.”5.You will hear a conversation between two students discussing their study plans. Listen and answer the question.Question: What is the first subject they plan to study together?A. HistoryB. MathematicsC. EnglishD. PhysicsAnswer: CExplanation: The conversation starts with the students discussing their plans to study together, and one of them mentions they should study English first, so the correct answer is C.6.You will hear a short speech by a teacher about the importance of teamwork. Listen and answer the question.Question: According to the teacher, what is one of the main benefits of teamwork?A. Improved individual skillsB. Faster completion of tasksC. Increased creativityD. Reduced stressAnswer: CExplanation: The teacher emphasizes that teamwork can lead to increased creativity as different perspectives and ideas come together, so the correct answer is C.7.You hear a conversation between two students discussing their weekend plans.A. Student A: “Hey, do you have any plans for the weekend?”B. Student B: “Yes, I’m going to the beach with my friends. How about you?”C. Student A: “That sounds great! I’m planning to visit the art museum.”D. Student B: “Oh, I love art museums too. Maybe we can go together next time.”Answer: B, Student B is discussing their weekend plans to go to the beach with friends.解析:在这一段对话中,学生B回答了学生A关于周末计划的问题,表明自己打算和朋友们去海滩。
Group dining is a common social activity in high school, where students gather to share meals and enjoy each others company. It not only provides an opportunity for students to relax and unwind but also fosters a sense of community and camaraderie among them.One of the benefits of group dining is the chance to try different types of food. High school cafeterias often offer a variety of dishes, from local favorites to international cuisines. This allows students to expand their palates and discover new flavors and ingredients.Another advantage is the social interaction that group dining encourages. Students can bond over shared meals, discussing their day, their interests, and their aspirations. This helps to build strong relationships and friendships that can last a lifetime.However, group dining also comes with its challenges. One issue is the potential for food waste, as some students may not finish their meals or may not like the food they are served. Schools can address this by offering smaller portion sizes or by encouraging students to only take what they can eat.Another challenge is accommodating dietary restrictions and preferences. Some students may be vegetarian, vegan, or have allergies that need to be considered. High schools should strive to provide a diverse menu that caters to these needs.In conclusion, group dining in high school is an essential part of the student experience. It offers numerous benefits, such as exposure to different cuisines and opportunities for social interaction. However, it also requires careful planning and consideration to ensure that it is inclusive and environmentally friendly. By addressing these challenges, high schools can create a positive and enjoyable group dining experience for all students.。
a rX iv:mat h /51255v1[mat h.GR]21D ec25GROUPES `A CLASSES DE CONJUGAISON INFINIES :QUELQUES EXEMPLES Jean-Philippe PR ´EAUX 12Abstract.We consider the group property of being with infinite conjugacy classes (or icc ,i.e.=1and of which all conjugacy classes except 1are infinite)in some particular cases,and more particulary in case of specific elementary algebraic constructions or of some 3-manifold fundamental groups.R ´e sum ´e .Nous ´e tudions la propri´e t´e pour un groupe d’ˆe tre `a classes de conjugaison infinis (ou cci ,i.e.=1et dont toutes les classes de conjugaison autres que 1sont infinies)dans certains cas particuliers,et plus particuli`e rement dans le cas de constructions alg´e briques ´e l´e mentaires,ou de groupes fondamentaux de certaines 3-vari´e t´e s.1.Introduction La propri´e t´e de groupe d’ˆe tre `a classes de conjugaison infinies est particuli`e rement simple `a ´e noncer (voir la d´e finition section 2).Elle est motiv´e e par la caract´e risation de Murray et Von-Neumann des alg`e bres de Von-Neumann qui sont des facteurs de type II-1(cf.[ROIV]):Caract´e risation de Murray et Von-Neumann.Soient Γun groupe et W ∗λ(Γ)son alg`e bre de Von-Neumann.Alors W ∗λ(Γ)est un facteur de type II-1si et seulement si Γest cci.Nous ´e tudions plus particuli`e rement la stabilit´e de cette propri´e t´e par certaines con-structions alg´e briques ´e l´e mentaires,et le cas des groupes fondamentaux de certaines 3-vari´e t´e s.L’´e tude que nous menons est somme toute ´e l´e mentaire ;le lecteur int´e ress´e pourra trouver des r´e sultats analogues de plus grande port´e e dans [Co],[HP]et [Pr].Ce travail a ´e t´e effectu´e durant l’´e t´e 2004alors que l’auteur se trouvait `a l’universit´e de Gen`e ve et a ´e t´e partiellement financ´e par le Fonds National Suisse de la Recherche Scientifique.L’auteur tient `a remercier les math´e maticiens Gen´e vois pour leur accueil,et plus particuli`e rement Goulnara Arjantseva et Pierre de la Harpe.L’auteur remercie encore Pierre de la Harpe de lui avoir introduit le probl`e me,ainsi que des nombreusesdiscussions et des commentaires apport´e s.2.D´e finitions et exemplesD´e finition 1.Un groupe est dit `a classes de conjugaisons infinies (ou cci)si il est non trivial,et si tout ´e l´e ment non trivial a une classe de conjugaison infinie.Il est commode de caract´e riser cette propri´e t´e en terme de centralisateur plutˆo t qu’en terme de classe de conjugaison.Proposition-D´e finition 1.Un groupe non trivial est cci si et seulement si tout ´e l´e ment non trivial a un centralisateur d’indice infini.Preuve.On note G le groupe,et Z(g)le centralisateur d’un´e l´e ment g∈G.Soient g∈G−{1},et a,b∈G.Supposons que aga−1=bgb−1:aga−1=bgb−1⇐⇒(b−1a)g=g(b−1a)⇐⇒b−1a∈Z(g)Ainsi aga−1=bgb−1si et seulement si a et b sont dans des right-cosets diff´e rents de G/Z(g)et donc,la classe de conjugaison de g,[[g]],est en correspondance bi-univoque avec G/Z(g).Ainsi#[[g]]=#(G/Z(g)),ce qui permet de conclure.On peut d´e j`a´e tablir quelques exemples´e vidents:Proposition2.1.(1)Les groupes libres de rang≥2sont cci.(2)Les groupes Gromov-hyperboliques non´e l´e mentaires et sans torsion sont cci.(3)Les groupes ayant un nombrefini(non nul)d’´e l´e ments de torsion(en particulierles groupesfinis),ne sont pas cci.(4)Les groupes virtuellement ab´e liens ne sont pas cci.(5)Les groupes ayant un centre non trivial ne sont pas cci.Preuve.Dans un groupe libre le centralisateur d’un´e l´e ment non trivial est cyclique infini. Puisqu’un groupe libre de rang≥2n’est pas virtuellement Z,cela prouve(1).Dans un groupe hyperbolique le centralisateur d’un´e l´e ment d’ordre infini est virtuellement cyclique ([CDP]).Ainsi`a l’exception des cas o`u le groupe estfini ou virtuellement cyclique,le centralisateur d’un´e l´e ment est toujours d’ordre infini,ce qui prouve(2).Pour prouver(3) consid´e rons un´e l´e ment g de torsion(non trivial).Tous ses conjugu´e s ont mˆe me ordre que lui,et sont donc aussi de torsion.Ainsi g n’a qu’un nombrefini de conjugu´e s.Pour prouver (4)appelons A un sous-groupe ab´e lien d’indicefini dans un groupe G,et consid´e rons un ´e l´e ment non trivial g∈A.Alors Z(g)⊃A,et donc Z(g)est d’indicefini dans G.Pour prouver(5)il suffit de remarquer que tout´e l´e ment du centre a pour centralisateur le groupe ambient.3.Stabilit´e par construction alg´e briqueAfin de consid´e rer le cas d’un produit libre,il nous est n´e cessaire d’´e tablir le lemme suivant:Lemme3.1.Soient A,B des groupes non triviaux.Soit A et B sont tous deux d’ordre 2,soit A∗B contient le groupe libre de rang2.Preuve.Si A et B contiennent chacun un´e l´e ment d’ordre infini a∈A,b∈B,alors <a>∗<b>est un sous-groupe de A∗B isomorphe`a F(2).Si A ou B contient un´e l´e ment d’ordre>2,A∗B contient un sous-groupe<x,y|x r,y s>, avec r>2et s≥0,s=1.On pose a=x(xy)x−1et b=yx(xy)x−1y−1.Alors avec le th´e or`e me d’´e criture sous forme r´e duite,un mot r´e duit non trivial sur a et b est non trivial dans A∗B,et donc a et b engendrent un groupe libre de rang2.Pourfinir,si A et B ne sont pas tous deux d’ordre2,mais ne contiennent que des ´e l´e ments d’ordre2,alors A∗B contient<x,y,z|x2,y2,(xy)2,z2>.Alors comme pr´e c´e demment,a=x(yz)x et b=zx(yz)xz engendrent un groupe libre de rang2. Proposition3.1(Produit libre).Soient A,B deux groupes non triviaux.Si A ou B est d’ordre>2,alors A∗B est cci.Preuve.Soit u un´e l´e ment dans un des deux facteurs;sans perte de g´e n´e ralit´e on sup-pose u∈A.Avec le th´e or`e me de commutativit´e dans un produit libre(cf.[MKS]),le centralisateur de u dans A∗B n’est rien d’autre que le centralisateur de u dans A.PuisqueA est d’indice infini dans A∗B,il en va de mˆe me de Z(u).Maintenant si v est un´e l´e ment qui n’est pas dans un des facteurs,son centralisateur est cyclique infini.Pour conclure il suffit d’utiliser le lemme pr´e c´e dent:puisque A∗B contient le groupe libre de rang2,il ne peut pasˆe tre virtuellement Z,et donc A∗B est cci. Remarque:Dans le cas restant,celui du groupe Z2∗Z2,ce dernier contient un groupe cyclique infini d’indice2(si l’on note A∗B=<a,b|a2,b2>,consid´e rer<ab>),et n’est donc pas cci.Proposition3.2(Sous-groupe d’indicefini).Si G est cci,et si K est un sous-groupe d’indicefini de G,alors K est aussi cci.Preuve.Soit u=1dans K.On note respectivement Z G(u)et et Z K(u)son centralisa-teur dans G et K;trivialement Z K(u)=Z G(u)∩K.Puisque G a la propri´e t´e H,Z G(u) est d’indice infini dans G.Si Z K(u)´e tait d’indicefini dans K,il serait aussi d’indicefini dans G,ce qui est impossible puisque Z G(u)⊃Z K(u). Remarque:La r´e ciproque est fausse;il suffit pour voir cela de consid´e rer le groupe F2×Z2.Elle devient vraie lorsque l’on suppose que le groupe est sans torsion.Proposition3.3(Extensionfinie).Si G est sans torsion,et si K est un sous-groupe d’indicefini de G cci,alors G est aussi cci.Preuve.Supposons que G ne soit pas cci,bien qu’il contienne un sous-groupe d’indice fini cci.Ainsi,il existe u=1dans G,tel que Z G(u)soit d’indicefini dans G,et donc Z G(u)∩K=K0est d’indicefini dans K.N´e cessairement u∈K,car cela contredirait le fait que K est cci.Mais il est facile de voir qu’il existe n>1tel que u n∈K.L’ensemble K0est inclus dans Z K(u n),qui est donc n´e cessairement d’indicefini dans K.Puisque K est cci,on a u n=1,et donc G a de la torsion. Proposition3.4(Epi-r´e siduellement cci).Soit G un groupe;si pour tout g∈G−{1} il existe un morphisme surjectifφsur un groupe cci,tel queφ(g)=1(on dira que G est ´e pi-r´e siduellement H),alors G est cci.Preuve.Soitφ:G−→K un´e pimorphisme sur un groupe K cci.Remarquons que puisqueφest surjectif,un conjugu´e deφ(g)dans K est l’image parφd’un conjugu´e de g dans G.Ainsi,puisque K est cci,siφ(g)=1sa classe de conjugaison dans K est infinie, et donc la classe de conjugaison de g dans G est elle-mˆe me infinie.On en d´e duit directement:Proposition3.5(Produit direct).Soient A et B deux groupes non triviaux.Le produit direct A×B est cci si et seulement si A et B sont cci.Preuve.Si A ou B est non cci,trivialement A×B n’est pas cci;aussi supposons dans la suite que A et B sont tous deux cci et montrons que A×B est cci.Soit u=ab,avec a∈A et b∈B.Si u=1,alors sans perte de g´e n´e ralit´e on peut supposer a=1.En consid´e rant la projection canonique A×B−→A,la proposition3.4permet de conclure.On peut v´e rifie aussi la stabilit´e de la propri´e t´e d’ˆe tre cci par extension.Proposition3.6(Extension).Soit G l’extension de deux groupes cci K et Q:1−→K−→G p−→Q−→1Alors G est aussi cci.Preuve.Soitω=1un´e l´e ment de G.Siω∈K,sa classe de conjugaison dans K est infinie,et il en est donc de mˆe me de sa classe de conjugaison dans G.Siω∈K,alors p(ω)a une classe de conjugaison infinie dans Q,et donc puisque p est surjectif,la classe de conjugaison deωdans G est aussi infinie. Proposition3.7(Amalgame).Si A et B sont deux groupes cci,et si C=A∩B n’est pas d’indice1ou2dans chaque facteur,alors le produit amalgam´e A∗C B est cci. Preuve.On peut supposer que A,B={1},car autrement le groupe obtenu n’est autre que A ou B.De la mˆe me fa¸c on on peut supposer que C est d’indice>1dans A et dans B.Soit u∈A∗C B;si u est dans un des facteurs,par exemple A,sa classe de conjugaison dans A∗C B contient sa classe de conjugaison dans A,et est donc infinie.Supposons sans perte de g´e n´e ralit´e que C est d’indice>2dans A.Consid´e rons un ´e l´e ment u=1quelconque dans A∗C B,que l’on peut supposer cycliquemet r´e duit.Le cas o`u u est dans un des facteurs ayant d´e j`a´e t´e trait´e,on peut supposer que u s’´e crit sous forme cycliquement r´e duite u=a1b1.···.a n b n,avec n≥1.L’ensemble des right-cosets A/C contient au moins trois´e l´e ments distincts1.C,α.C etα2.C.On choisit a∈A hors de la classe1.C et dans une classe diff´e rente de celle de a−11.On choisit b∈B−C.Avec ce choix,tous les´e l´e ments(ba)n.u.(ba)−n de la classe de conjugaison de u sont distincts. Ainsi tout´e l´e ment non trivial de A∗C B a une classe de conjugaison infinie,ce qui conclut la preuve.Le mˆe me mod`e le de preuve s’applique pour montrer:Proposition3.8(Extension HNN).Si A est cci,et si C est un sous-groupe d’indice >2dans A,l’extension HNN A∗C est cci.Preuve.Soit A∗φ,avecφ:C−→φ(C).On note t une lettre stable,telle que tct−1=φ(t) pour tout c∈me pr´e c´e demment on peut se ramener facilement au cas d’un´e l´e ment cycliquement r´e duit de longueur>1,u=a1t n1.....αp t n p,avec n p=0.On a au moins3 right-cosets dans A/C:1.C,α.C,etα2.C.On choisit a∈A hors de1.C et de la classe de a−11.Alors tous les´e l´e ments(ta)n u(ta)−n pour n>0sont distincts dans la classe de conjugaison de u,ce qui permet de conclure.Et on obtient en corollaire imm´e diat:Proposition3.9(Graphes de groupes).SiΓ=π1(G,X)est le groupe d’un graphe de groupe dont tous les groupes de sommet sont cci,et tel que pour toute arˆe te e d’origine s0 et d’extr´e mit´e s1,G(e)est d’indice>2dans G(s0)ou bien dans G(s1),alorsΓest cci.4.Groupes de3-vari´e t´e sNous consid´e rons d’abord le cas des groupes fondamentaux defibr´e s de Seifert(cf.[Sei]). En utilisant le fait que dans un groupe de Seifert,la classe d’unefibre r´e guli`e re a un centralisateur d’indicefini(cf.[JS]),on´e tablit imm´e diatement:Proposition4.1(Fibr´e s de Seifert).Les groupes defibr´e s de Seifert ne sont pas cci.Consid´e rons maintenant le cas des vari´e t´e s hyperboliques de volumefini.Il montre une autre application directe de la proposition3.4.Proposition4.2(Hyperboliques etχ=0).Les groupes de3-vari´e t´e s hyperboliques de volumefini non´e l´e mentaires sont cci.Preuve.Consid´e rons une vari´e t´e M v´e rifiant les hypoth`e ses:M est une3-vari´e t´e hy-perbolique`a bord torique ou vide,qui n’est ni un tore solide,ni un tore´e paissi.En outre,la classification des isom´e tries hyperboliques montre queπ1(M)est sans torsion(cf. [BP]),et donc avec la proposition3.3,en consid´e rant le revˆe tement d’orientation de M on supposera M orientable.Le th´e or`e me de chirurgie hyperbolique de Thurston affirme qu’il existe une suite de vari´e t´e s hyperboliques ferm´e es(M n)n,obtenues par obturation de Dehn sur M,con-vergeant vers M pour la topologie g´e om´e trique(cf.[BP]).Ainsi on a une suite d’´e pimorphismes (φn:π1M−→π1M n)n.Par d´efinition de la topologie g´e om´e trique,si u=1∈π1M,pourn≫0,φn(u)=1;et tous les groupesπ1M n sont hyperboliques au sens de Gromov.De plus pour n≫0ils sont non´e l´e mentaires(ceci car leurs pointsfixes dans∂H3convergent vers les pointsfixes deπ1M et sont donc pour n≫0en nombre>2).Ainsi avec la propo-sition2.1(2),π1M est´e pi-r´e siduellement cci,et la proposition3.4permet de conclure. Nous traitons maintenant le cas des groupes de3-vari´e t´e s orientables suffisament large. Rappelons qu’un3-vari´e t´e orientable est dite suffisament large si elle contient une surface incompressible`a deux faces;une3-vari´e t´e orientable est Haken si elle est irr´e ductible etsuffisament large.Proposition4.3(Le cas Haken orientable).Soit M un3-vari´e t´e Haken orientable; alors soitπ1(M)est cci soit M est unfibr´e de Seifert.Preuve.Nous avons vu qu’unfibr´e de Seifert a un groupe non cci;aussi supposons queπ1(M)est non cci et montrons que M est unfibr´e de Seifert.Rappelons que le groupe d’une3-vari´e t´e Haken est non trivial(car il contient un groupe de surface infini);ainsi, soit u=1dansπ1(M)ayant un centralisateur Z(u)d’indicefini,et soit p:N−→M lerevˆe tementfini associ´e`a Z(u).Clairementπ1(N)=Z(u)a un centre non trivial.De plusn´e cessairement N est Haken:le corollaire13.5de[He]montre que N est irr´e ductible,et de plus si S est une surface incompressible`a deux faces dans M,p−1(S)est une surface incompressible`a deux faces dans N.Le corollaire II.5.4de[JS]montre que Nest n´e cessairement unfibr´e de Seifert et le th´e or`e me II.5.3([JS])montre qu’il en est alorsde mˆe me pour M. Proposition4.4(Le cas orientable suffisament large).Soit M une3-vari´e t´e ori-entable et suffisament large ayant un groupe fondamental non di´e dral infini;alors soitπ1(M)est cci,soit la compl´e t´e e de Poincar´e P(M)est unfibr´e de Seifert.Preuve.Consid´e rons la d´e composition de Kneser-Milnor(cf.[He])de M:M=M1#···#M n#B1#···#B p#C1#···C qavec n,p,q∈N,et o`u les M i sont non simplement connexes et premiers,les B i sont des boules et les C i des fausses3-sph`e res.Puisque M est suffisament large,π1(M)est non trivial(car il contient un groupe de surface infini)et donc n> compl´e t´e e de Poincar´eP(M)est alors d´efinie comme´e tant:P(M)=M1#···#M net de plusπ1(M)=π1(P(M))=π1(M1)∗···∗π1(M n).Ainsi avec la proposition4.1siP(M)est unfibr´e de Seifert,alorsπ1(M)n’est pas cci.Supposons dans la suite queπ1(M) n’est pas cci.Alors avec la proposition3.1soitπ1(M)est di´e dral infini,soit n=1.Ainsi sous nos hypoth`e ses P(M)=M1et soit M1≡S2×S1soit M1est irr´e ductible.Dans le premier cas P(M)est unfibr´e de Seifert,et dans le second cas,puisque M contient une sur-face incompressible`a deux faces,M1est Haken,et la proposition4.3donne la conclusion.Dans[HP]ces r´e sultats ont´e t´e g´e n´e ralis´e s au cas de groupes fondamentaux de3-vari´e t´e s quelconques.References[BP]R.Benedetti,and C.Petronio,Lectures on hyperbolic geometry,Universitext,Springer,1992. [Co]Y.de Cornulier,Infinite conjugacy classes in groups acting on trees,Pr´e publication2005. [CDP]M.Coornaert,T.Delzant,and A.Papadopoulos,G´e om´e trie et th´e orie des groupes,les groupes hyperboliques de Gromov,Lecture Notes in Mathematics1441,Springer-Verlag,1991.[HP]P.de la Harpe et J.-P.Pr´e aux,Groupes fondamentaux des vari´e t´e s de dimension3et alg`e bres d’op´e rateurs,Pr´e publication arXiv:math.GR/0509449v1(2005).[He]J.Hempel,3-manifolds,Annals of mathematics studies,Priceton university press,1976.[JS]W.Jaco and P.Shalen,Seifertfibre space in3-manifolds,Memoirs of the Amer.Math.Society 220(1979).[ROIV]F.J.Murray et J.von Neumann,On rings of operators,IV,Annals of Math.44(1943),716–808. [Pr]J.-P.Pr´e aux,Group extensions with infinite conjugacy classes,Pr´e publication2005.[Sei]H.Seifert,Topology of three dimensionalfibered spaces,Acta Mathematica60(1933),147–288.。