11-2九年级数学24.1.2垂径定理
- 格式:doc
- 大小:154.00 KB
- 文档页数:7
24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标【知识与技能】1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及其推论.理解其证明,并会用它解决有关的证明与计算问题.【过程与方法】通过探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.【情感态度与价值观】1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】垂径定理及其推论,会运用垂径定理等结论解决一些有关证明,计算和作图问题.【教学难点】垂径定理及其推论.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?(出示课件2)(二)探索新知探究一圆的轴对称性教师问:把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(出示课件4)学生通过自己动手操作,归纳出结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.出示课件5:教师问:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?学生答:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.思考:如何来证明圆是轴对称图形呢?出示课件6:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.教师问:此图是轴对称图形吗?学生答:是轴对称图形.教师问:满足什么条件才能证明圆是轴对称图形呢?师生共同解答如下:(出示课件7)证明:连结OA、OB.则OA=OB.又∵CD⊥AB,∴直径CD所在的直线是AB的垂直平分线.∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.师生进一步认知:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.探究二垂径定理及其推论出示课件8:如图,AB是⊙O的一条弦, 直径CD⊥AB, 垂足为E.你能发现图中有哪些相等的线段和劣弧?为什么?学生独立思考后口答:线段:AE=BE弧:AC⌒=BC⌒,AD⌒=BD⌒学生简述理由:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A 与点B重合,AE与BE重合,重合.教师总结归纳:(出示课件9)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵CD是直径,CD⊥AB,∴AE=BE, AC⌒=BC⌒,AD⌒=BD⌒教师强调:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?(出示课件10)学生独立思考后口答:1图是;2图不是,因为没有垂直;3图是;4图不是,因为CD没有过圆心.教师强调:垂径定理的几个基本图形:(出示课件11)出示课件12:如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?学生思考后教师总结:深化认知:(出示课件13)如图,①CD是直径;②CD⊥AB,垂足为E;③AE=BE;④AC⌒=BC⌒;⑤AD⌒=BD⌒.举例证明其中一种组合方法.学生思考后独立解决,并加以交流,教师加以指导,并举例.(出示课件14)如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗?为什么?⑵AC⌒与BC⌒相等吗?AD⌒与BD⌒相等吗?为什么?证明:⑴连接AO,BO,则AO=BO,又AE=BE,OE=OE∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.(2)由垂径定理可得AC⌒=BC⌒,AD⌒=BD⌒教师归纳总结:(出示课件15)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.思考:“不是直径”这个条件能去掉吗?如不能,请举出反例.教师强调:圆的两条直径是互相平分的.出示课件16:例1 如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm.学生思考后师生共同解答:连接OA,∵OE⊥AB,巩固练习:(出示课件17)如图,⊙O的弦AB=8cm,直径CE⊥AB于D,DC=2cm,求半径OC的长.学生自主思考后,独立解答如下:解:连接OA,∵CE⊥AB于D,,∴设OC=xcm,则OD=x-2,根据勾股定理,得x2=42+(x-2)2,∴22221068AE OA OE=-=-=cm.1184(cm)22AD AB==⨯=解得x=5,即半径OC的长为5cm.出示课件18:例2 已知:⊙O中弦AB∥CD,求证:学生思考后师生共同解答.证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则(垂直于弦的直径平分弦所对的弧)教师强调:平行弦夹的弧相等.师生共同归纳总结:(出示课件19)解决有关弦的问题,经常是过圆心作弦的弦心距(垂线段),或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.巩固练习:(出示课件20)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证: 四边形ADOE是正方形.学生独立解答,一生板演.证明:∵OE⊥AC,OD⊥AB,AB⊥AC,∴∠OEA=∠EAD=∠ODA=90°.∴四边形ADOE为矩形,AE=12AC,AD=12AB.又∵AC=AB,∴AE=AD.∴四边形ADOE为正方形.出示课件21:例3 根据刚刚所学,你能利用垂径定理求出导入中赵州桥主桥拱半径的问题吗?教师引导学生分析题意,先把实际问题转化为数学问题,然后画出图形进行解答.解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C 是弧AB的中点,CD就是拱高.∴AB=37m,CD=7.23m.AB=18.5m,OD=OC-CD=R-7.23.∴AD=12OA2=AD2+OD2,R2=18.52+(R-7.23)2,解得R≈27.3.即主桥拱半径约为27.3m.巩固练习:(出示课件23)如图a、b,一弓形弦长为,弓形所在的圆的半径为7cm,则弓形的高为_______.学生独立思考后解答:如图,分两种情况,弓形的高为5cm或12cm.教师归纳:1.涉及垂径定理时辅助线的添加方法(出示课件24)在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.2.弓形中重要数量关系弦a,弦心距d,弓形高h,半径r之间有以下关系:⑴d+h=r;⑵2 222ar d⎛⎫=+ ⎪⎝⎭.(三)课堂练习(出示课件25-29)1.2.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.3.⊙O的直径AB=20cm, ∠BAC=30°则弦AC= .4.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.你认为AC和BD有什么关系?为什么?6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.参考答案:1.C2.5cm3.4.14cm或2cm5.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.6.解:连接OC.设这段弯路的半径为Rm,则OF=(R-90)m.,OE CD ⊥11600300(m)22CF CD ∴==⨯=,根据勾股定理,得222,OC CF OF =+ ()22230090.R R =+- 解得R=545.∴这段弯路的半径约为545m.(四)课堂小结通过这节课的学习,你有哪些收获和体会?(五)课前预习预习下节课(24.1.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.这节课的教学从利用垂径定理来解决赵州桥桥拱半径问题开始,引入课题从实验入手,得到圆的轴对称性,进而推出垂径定理及推论.教学设计中,从具体、简单、特殊到抽象、复杂、一般,层层递进,以利于提高学生的数学思维能力,同时,注意加强对学生的启发和引导,培养学生们大胆猜想,小心求证的科学研究素质.2.本课的教学方法是将垂径定理和勾股定理有机结合,将圆的问题转化为直角三角形,常作的辅助线是半径或垂直于弦的直径.。
人教版数学九年级上册24.1.2《垂径定理》教学设计2一. 教材分析《垂径定理》是人教版数学九年级上册第24章第1节的内容,本节课主要介绍圆中的垂径定理。
垂径定理是指:圆中,如果一条直线垂直于直径,那么这条直线平分这条直径,并且平分直径所对的圆周角。
教材通过生活中的实例引入垂径定理的概念,然后通过证明和应用来巩固这个定理。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念和性质,如圆的周长、直径、半径等。
同时,学生也掌握了平行线和相交线的性质。
但是,学生对于圆中的垂径定理可能比较难以理解和证明,因此需要通过生活中的实例和图形的直观展示,帮助学生理解和掌握这个定理。
三. 教学目标1.知识与技能:让学生理解和掌握圆中的垂径定理,能够运用垂径定理解决相关问题。
2.过程与方法:通过观察、操作、证明等过程,培养学生的几何思维和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.教学重点:理解和掌握垂径定理,能够运用垂径定理解决相关问题。
2.教学难点:垂径定理的证明和运用。
五. 教学方法1.情境教学法:通过生活中的实例引入垂径定理,激发学生的学习兴趣。
2.演示法:通过图形的直观展示,帮助学生理解和证明垂径定理。
3.问题驱动法:通过提出问题和解决问题,引导学生主动探索和学习。
4.小组合作学习:鼓励学生分组讨论和合作,培养学生的团队合作意识。
六. 教学准备1.教具准备:多媒体教学设备、圆规、直尺、黑板等。
2.教学素材:教材、课件、练习题等。
七. 教学过程1.导入(5分钟)通过展示生活中的实例,如自行车轮子、时钟等,引导学生观察和思考圆中的垂径定理。
让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(10分钟)展示垂径定理的定义和性质,通过图形的直观展示,让学生理解和掌握垂径定理。
同时,引导学生思考如何证明这个定理。
3.操练(10分钟)让学生分组讨论和合作,尝试证明垂径定理。
24.1.2 垂直于弦的直径教学目标1.理解圆的对称性.2.通过圆的轴对称性质的学习,理解垂直于弦的直径的性质.3.能运用垂径定理计算和证明实际问题.预习反馈阅读教材P81~83内容,并完成下列问题.1.圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴,圆也是中心对称图形,对称中心为圆心.2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧,即如图,∵CD 是⊙O 的直径,且AB ⊥CD ,∴AE =BE ;AC ︵=BC ︵;AD ︵=BD ︵.3.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,即如图,∵CD 是⊙O 的直径,且AE =BE(AB 不是直径),∴CD ⊥AB ;AC ︵=BC ︵;AD ︵=BD ︵.例题讲解例1 (教材补充例题)已知⊙O 的半径为5 cm.(1)若圆心O 到弦AB 的距离为3 cm ,则弦AB 的长为8__cm ;(2)若弦AB 的长为8 cm ,则圆心O 到AB 的距离为3__cm .【点拨】 (1)圆中已知半径、弦长、弦心距三者中的任何两个,即可求出另一个.(2)“已知弦的中点,连接圆心和中点构造垂直”或“连接半径,由半径、半弦、弦心距构造直角三角形”是常用的辅助线.【跟踪训练1】 若⊙O 的半径OA =5 cm ,弦AB =8 cm ,点C 是AB 的中点,则OC 的长为3__cm .【跟踪训练2】 已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足.若AE =9,BE =1,求CD 的长.解:连接OC.∵AE =9,BE =1,∴半径OC =5,OE =4.∵弦CD ⊥AB ,∴在Rt △OCE 中,CE =OC 2-OE 2=3.又∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CD =2CE =6.【跟踪训练3】 ⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点,则线段OM 的长的最小值为3,最大值为5.【点拨】 当OM 与AB 垂直时,OM 最小(为什么);当M 在A(或B)处时,OM 最大.例2 (教材P82例2)赵州桥(如图)是我国隋代建造的石拱桥,距今约有1 400年的历史,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37 m ,拱高(弧的中点到弦的距离)为7.23 m ,求赵州桥主桥拱的半径(结果保留小数点后一位).【解答】 如图,用AB ︵表示主桥拱,设AB ︵所在圆的圆心为O ,半径为R.经过圆心O 作弦AB 的垂线OC ,D 为垂足,OC 与AB ︵相交于点C ,连接OA.根据垂径定理,D 是AB 的中点,C 是AB ︵的中点,CD 就是拱高.由题设可知AB =37 cm ,CD =7.23 cm ,所以AD =12AB =12×37=18.5(cm), OD =OC -CD =R -7.23.在Rt △OAD 中,由勾股定理,得OA 2=AD 2+OD 2,即R 2=18.52+(R -7.23)2.解得R ≈27.3.因此,赵州桥的主桥拱直径约为27.3 m.【点拨】 圆中已知半径、弦长、弦心距或弓形高四者中的任何两个,即可求出另一个.【跟踪训练4】 (教材P82例2的变式题)某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为8米.巩固训练1.在直径是20 cm 的⊙O 中,∠AOB 的度数是60°,那么弦AB 的弦心距是3__cm .【点拨】 这里利用60°角构造等边三角形,从而得出弦长.2.弓形的弦长为6 cm ,弓形的高为2 cm ,则这个弓形所在的圆的半径为134__cm .3.如图,AB 为⊙O 的直径,E 是BC ︵中点,OE 交BC 于点D ,BD =3,AB =10,则AC =8.4.⊙O 的半径是5,P 是圆内一点,且OP =3,过点P 最短弦的长为8,最长弦的长为10.【点拨】过点P最短弦即为与OP垂直的弦,最长弦即为直径.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.求证:AC=BD.【点拨】过圆心作垂径.证明:过点O作OE⊥AB于点E.则AE=BE,CE=DE.∴AE-CE=BE-DE,即AC=BD.6.已知⊙O的直径是50 cm,⊙O的两条平行弦AB=40 cm,CD=48 cm,则弦AB与CD 之间的距离为22__cm或8__cm.【点拨】分情况讨论:①AB,CD在点O两侧;②AB,CD在点O同侧.课堂小结1.垂径定理及其推论.2.常用的辅助线(作垂径)和解题思路(构造由半径、半弦、弦心距组成的直角三角形).。
人教版数学九年级上册24.1.2《垂径定理》说课稿1一. 教材分析《垂径定理》是人教版数学九年级上册第24章圆的一部分,它是圆的性质中的重要定理之一。
本节课的主要内容是引导学生探究并证明圆中垂径定理,即圆中垂直于弦的直径平分弦,并且平分弦所对的弧。
这个定理在解决圆的相关问题时具有重要作用,为学生进一步学习圆的性质和圆的方程打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和证明有一定的理解。
他们对圆的概念和性质有一定的了解,但可能对垂径定理的理解还不够深入。
在学习本节课时,学生需要通过观察、思考、探究、证明等过程,理解和掌握垂径定理。
三. 说教学目标1.知识与技能目标:学生能够理解垂径定理的内容,并能够运用垂径定理解决相关问题。
2.过程与方法目标:学生通过观察、思考、探究、证明等过程,培养逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:学生通过对垂径定理的学习,增强对数学的兴趣和自信心,培养坚持不懈、严谨治学的态度。
四. 说教学重难点1.教学重点:学生能够理解并掌握垂径定理的内容。
2.教学难点:学生能够通过证明过程,理解并掌握垂径定理的证明方法。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,引导学生观察、思考、探究、证明。
2.教学手段:利用多媒体演示和实物模型,帮助学生直观地理解垂径定理。
六. 说教学过程1.导入:通过展示一些与圆相关的实际问题,引发学生对圆的性质的思考,激发学生的学习兴趣。
2.新课引入:介绍垂径定理的概念,引导学生观察和思考垂径定理的性质。
3.探究与证明:学生分组进行探究,通过观察、实验、推理等方法,引导学生自己发现并证明垂径定理。
4.讲解与解释:教师对学生的探究结果进行讲解和解释,帮助学生理解和掌握垂径定理。
5.练习与巩固:学生进行一些相关的练习题,巩固对垂径定理的理解和运用。
6.总结与拓展:学生总结垂径定理的内容和证明方法,并进行一些拓展问题的讨论。
人教版数学九年级上册24.1.2《垂径定理》教案2一. 教材分析《垂径定理》是人教版数学九年级上册第24章第一节的一部分,主要介绍了圆中垂径定理的内容。
垂径定理是指:圆中,如果一条直径的两端点分别连接圆上两点,那么这条直径垂直于连接这两点的弦。
这一定理是九年级学生学习圆的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念和性质,如圆的周长、直径等。
但是,对于垂径定理的理解和运用还需要进一步引导。
此外,学生对于几何图形的观察和分析能力有待提高,因此需要通过实例讲解和动手操作来帮助学生理解和掌握垂径定理。
三. 教学目标1.让学生理解垂径定理的内容,并能够运用垂径定理解决实际问题。
2.培养学生的空间想象能力和逻辑思维能力。
3.提高学生的观察和分析能力,培养学生的合作意识和解决问题的能力。
四. 教学重难点1.重点:理解并掌握垂径定理的内容。
2.难点:如何运用垂径定理解决实际问题。
五. 教学方法1.实例讲解:通过具体的图形和实例,讲解垂径定理的内容和运用。
2.动手操作:让学生亲自动手画图和验证垂径定理,提高学生的实践能力。
3.小组讨论:学生进行小组讨论,分享学习心得和解决问题的方法。
4.问题解决:引导学生运用垂径定理解决实际问题,培养学生的解决问题的能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示垂径定理的图形和实例。
2.教学素材:准备一些相关的几何图形和题目,用于讲解和练习。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾圆的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示垂径定理的图形和实例,引导学生观察和分析,然后讲解垂径定理的内容和证明过程。
3.操练(10分钟)教师给出一些相关的题目,让学生亲自动手画图和验证垂径定理,提高学生的实践能力。
人教版九年级数学上册24.1.2《垂直于弦的直径》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的1.2节《垂直于弦的直径》是本章的重要内容。
这部分主要介绍了垂径定理及其推论,为后续学习圆的性质和圆的方程打下基础。
本节内容通过探究垂直于弦的直径的性质,引导学生利用几何推理证明结论,培养学生的逻辑思维能力。
二. 学情分析九年级的学生已经掌握了初中阶段的基本几何知识,对圆的基本概念和性质有所了解。
但学生在解决几何问题时,往往缺乏推理证明的能力。
因此,在教学过程中,教师需要关注学生的思维过程,引导学生掌握几何推理的方法。
三. 说教学目标1.知识与技能:掌握垂径定理及其推论,能运用垂径定理解决简单几何问题。
2.过程与方法:通过观察、探究、推理,培养学生的逻辑思维能力和几何直观能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养合作探究的精神。
四. 说教学重难点1.教学重点:垂径定理及其推论的证明和应用。
2.教学难点:垂径定理的证明,以及如何引导学生运用几何推理方法。
五. 说教学方法与手段1.教学方法:采用问题驱动、合作探究的教学方法,引导学生主动参与课堂讨论。
2.教学手段:利用多媒体课件辅助教学,直观展示几何图形的性质和推理过程。
六. 说教学过程1.导入新课:通过回顾圆的基本性质,引出垂直于弦的直径的性质。
2.探究垂直于弦的直径的性质:让学生分组讨论,观察几何图形,引导学生发现垂直于弦的直径的性质。
3.推理证明:引导学生运用几何推理方法,证明垂径定理及其推论。
4.应用拓展:举例说明垂径定理在解决实际问题中的应用。
5.总结归纳:对本节课的主要内容进行总结,强调垂径定理及其推论的重要性。
七. 说板书设计板书设计如下:垂直于弦的直径性质:垂直于弦的直径平分弦,且平分弦所对的弧。
八. 说教学评价本节课通过课堂提问、学生作业、小组讨论等方式进行教学评价。
主要评价学生在掌握垂径定理、运用几何推理方法以及解决实际问题方面的表现。