浙教版2016~2017学年度七年级上册第一次联考数学试卷含答案
- 格式:doc
- 大小:248.00 KB
- 文档页数:12
一、选择题1.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ 2.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- 3.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a 4.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .m B .n C .m n + D .m ,n 中较大者 5.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元 6.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a +7.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( )A .B 处比A 处高B .A 处比B 处高C .A ,B 两处一样高D .无法确定8.计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .﹣3B .3C .﹣12D .12 9.下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .410.下列关系一定成立的是( )A .若|a|=|b|,则a =bB .若|a|=b ,则a =bC .若|a|=﹣b ,则a =bD .若a =﹣b ,则|a|=|b|11.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0 12.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( )A .18B .1-C .18-D .2 二、填空题13.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.14.一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.15.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n 元,那么该电脑的原售价为______.16.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.17.在有理数3.14,3,﹣12 ,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x ,正整数的个数为y ,则x+y 的值等于__.18.已知四个互不相等的整数a ,b ,c ,d 满足abcd=77,则a+b+c+d=___________. 19.绝对值不大于2.1的所有整数是____,其和是____.20.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.三、解答题21.(1)()()()()413597--++---+;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 22.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ (2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭23.计算:(1)9-(-14)+(-7)-15;(2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]24.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条?25.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,通过观察,用你所发现的规律确定22017的个位数字.26.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 2.C解析:C【分析】本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.3.A解析:A【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:b <a <0,且|a |<|b |,∴a -b >0,a +b <0,∴原式=a -b -a -b =-2b .故选:A .【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.4.D解析:D【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项.【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,m n x x 中指数大的,即m ,n中较大的,故答案选D.【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.5.C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.6.A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.7.B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------= ∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.8.C解析:C【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案.【详解】原式﹣3×(﹣2)×(﹣2)=﹣3×2×2=﹣12,故选:C .【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.9.C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a 表示正有理数,则-a 一定是负数,符合题意;(4)a 是大于-1的负数,则a 2大于a 3,不符合题意,故选:C .【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.10.D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A 、B 、C 中,a 与b 的关系还有可能互为相反数,故选项A 、B 、C 不一定成立,D.若a =﹣b ,则|a|=|b|,正确,故选D .【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.11.C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .12.C解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.二、填空题13.08a【解析】试题分析:根据题意得:a•(1+20)×90=108a;故答案为108a考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a;故答案为1.08a.考点:列代数式.14.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a2,a3,a4,a5,a6,观察发现3次一个循环,所以a2019=a3.【详解】a1=12,a2=111-2=2,a3=11-2=﹣1,a4=11=1--12(),a5=111-2=2,a6=11-2=﹣1…观察发现,3次一个循环,∴2019÷3=673,∴a2019=a3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.15.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m+【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3nm n m+=+-,故填:43n m+.【点睛】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.16.【分析】起步价10元加上超过3千米部分的费用即可【详解】解:乘出租x千米的付费是:10+18(x-3)即18x+46故答案是:18x+46【点睛】本题考查了列代数式正确理解收费标准是关键解析:1.8 4.6x+【分析】起步价10元加上,超过3千米部分的费用即可.【详解】解:乘出租x千米的付费是:10+1.8(x-3)即1.8x+4.6.故答案是:1.8x+4.6.【点睛】本题考查了列代数式,正确理解收费标准是关键.17.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.18.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd 的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.19.﹣2﹣10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有﹣2﹣1012之和为﹣2﹣1+0+1+2=0故答案为:﹣2﹣1012;0【点评】此题考查了绝对值解析:﹣2,﹣1,0,1,2 0【分析】找出绝对值不大于2.1的所有整数,求出之和即可.【详解】绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0, 故答案为:﹣2,﹣1,0,1,2;0【点评】此题考查了绝对值的意义和有理数的加法,熟练掌握运算法则是解本题的关键. 20.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.三、解答题21.(1)-6;(2)715. 【分析】(1)原式根据有理数的加减法法则进行计算即可得到答案;(2)原式把除法转换为乘法,再进行乘法运算即可得到答案.【详解】解:(1)()()()()413597--++---+=-4-13-5+9+7=-22+9+7=-13+7=-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭=174435⨯⨯ =715. 【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.22.(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.23.(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+-- =6157-+ =1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.24.(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案; (3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条,第2次对折后的折痕条数为2321=-条,第3次对折后的折痕条数为3721=-条,第4次对折后的折痕条数为41521=-条,归纳类推得:第n 次对折后的折痕条数为21n -条,因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.25.22017的个位数字是2.【分析】根据已知的等式观察得到规律:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,由此得到答案.【详解】观察可知:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,∵22017=450412⨯+,∴22017的个位数字是2.【点睛】此题考查数字的规律,有理数乘方计算的实际应用,观察已知中等式的特点总结规律,并运用规律解答问题是解题的关键.26.(1)22111222a ab b ++;(2)492 【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a ab b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时, 原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】 此题考察列式计算,根据图形边长正确列式表示图形的面积即可.。
2016学年第一学期七年级数学质量检测卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出正确的选项.1.计算:=-π3 ( ▲ )A.3B.π-3C.0.14D.3-π 2. 下列各组数中互为倒数的是( ▲ ). A .2-与2B .2-与12- C .2-与38-D .2-2(2)-3.下列计算结果等于1的是( ▲ )A .(-2)+(-3)B .(-3)-(-2)C .3)2(22+--- D .(-3)-(-2)24.对于()53-,下列说法错误的是( ▲ )A. ()53->()35- B.其结果一定是负数 C.其结果与-35相同 D. 表示5个-3相乘5.下列说法正确..的是( ▲ ) A .y x y x 3222--是六次多项式 B .33yx +是单项式 C .ab π21-的系数是π21-,次数是2次 D .1a+1是多项式 6.已知代数式y x 2-的值是5,则代数式y x 421+-的值是( ▲ )A.6B.-6C.11D.-97.有下列说法:①无限小数都是无理数;②数轴上的点和有理数一一对应;③在1和3之间的无理数有且只有2,3,5,6,7,8这6个;④是分数,它是有理数22;⑤近似数7.30所表示的准确数a 的范围是:7.295≤a <7.305;其中正确的是( ▲ )A. ⑤B. ④⑤C. ③④⑤D. ①④⑤ 8.有理数a ,b 在数轴上对应的位置如图所示,那么代数式bbba ab a a -----+++1111的值是( ▲ ) A.-1 B.0 C.1 D.29.洪峰到来前,120名战士奉命加固堤坝,已知5人运沙袋3人堆垒沙袋,正好运来的沙袋能及时用上且不窝工,为了合理安排,如果设x 人运送沙袋,其余人堆垒沙袋,那么以下所列方程正确的是( ▲ )A.x x =-2120 B.x x 35120=- C. )120(35x x -= D.12023=+x x 10.完成下列填空:6.025.12.13=--xx ,解:化简,得:2.5x -( )=0.6. 括号内填入的应该是( ▲ )A.201015x - B.x 5.075.0- C.215x- D. x 5.075.0+ 二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.在数轴上,与表示2-的点距离为5的数是 ▲ .12.用科学记数法表示-5259000= ▲ ;用科学记数法表示5259000≈ ▲ (精确到万位)13.“x 的平方与y ()0y ≥的算术平方根的和”用代数式可以表示为 ▲ 。
2016-2017学年度第一学期期中考试初一数学一、选择题:(本大题共有10小题,每小题2分,共20分,把答案直接填涂在答题卷相对应的位置)1.-3的相反数为 ( )A .-13B .13C .3D .-3 2.下列各式中,与xy 2是同类项的是 ( ) A .-2xy 2B .2x 2yC .xyD .x 2y 2 3.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为 ( )A .11×106吨B .1.1×107吨C .11×107吨D .1.1×108吨4.下列判断错误的是 ( )A .多项式5x 2-2x +4是二次三项式B .单项式-a 2b 3c 4的系数是-1,次数是9C .式子m +5,ab ,-2,s v都是代数式 D .多项式与多项式的和一定是多项式 5.下列各数:|-3|,-0.5 ,-(-3.14), 0 ,24.5 ,-π,-227,-|-2|,-103其中负数有 ( ) A .3个 B .4个 C .5 个 D .6个6.下列各式中去括号正确的是 ( )A . a 2-4(-a +1)= a 2-4a ﹣4B . -(mn -1)+(m -n )=-mn -1+m -nC . 5x -(2x -1)-x 2= 5x -2x +1-x 2D . x 2-2(2x -y +2)= x 2-4x +y -27.某商店举办促销活动,促销的方法是将原价x 元的衣服以(45x -15)元出售,则下列说法中,能正确表达该商店促销方法的是 ( )A .原价降价15元后再打8折B .原价打8折后再降价15元C .原价降价15元后再打2折D .原价打2折后再降价15元8.x 表示一个两位数,y 也表示一个两位数,君君想用x ,y 组成一个四位数,且把x 放在y 的右边,则这个四位数用代数式表示为 ( )A .yxB .x +yC .100x +yD .100y +x 9.已知a +b =5,c -d =-2,则(b -c )-(-d -a )的值为 ( ) A .7 B .-7 C .3D .-3 10.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是 ( )A .84B .336C .510D .1326二、填空题:(本大题共10空,每空2分,共20分,把答案直接填在答题卷相对应的位置上)11.绝对值是5的数是 ; -23 的倒数是 .12. 已知x =3是方程2x +m -4=0的一个解,则m ﹣2 = .13.下列式子① x =5,② -52a 7,③ x +y 2,④ 7,⑤ m ,⑥ ab π,⑦ 3a +b ,⑧ 2c 中,是单项式的有 ;是整式的有 .(只填序号)14.若2a x b 2与-5a 3b y 的和为单项式,则y x =______.15.对于有理数a ,b ,定义a ⊙b =3a +2b ,则(x +y )⊙(x -y )化简后得_____ ___.16.已知a -b =4,则14(a -b )2-2(a -b )+2(a -b )2+12(a -b )= 17.甲、乙两人同时同地同向而行,甲每小时走a 千米,乙每小时走b 千米(a >b ).如果从出发到终点的距离为m 千米,那么甲比乙提前 小时到达终点.18.王老师在教学过程中善于把数学知识与实际生活联系在一起.在课堂上,他把全班同学分成五组,编号分别是A 、B 、C 、D 、E ,每组的人数分别是12、9、11、10、8.游戏规则:当他数完1后,人数最少的那一组学生不动,其他各组各出一个人去人数最少的那组;当他数完2后,此时人数最少的那一组学生不动,其他各组再各出一个人去人数最少的那组…如此进行下去,那么当王老师数完2 016后,A 、B 、C 、D 、E 五个组中的人数依次是 .三、解答题:(本大题共9小题,共60分,把解答过程写在答题卷相对应的区域)19.(本题满分12分,每小题3分)计算:①5111 -3417 +4417 -111 ②(112 -34 -16)×(-24)③-34 ―(1―0.5)÷13 ×[2+(-4)2] ④(13 -15 )×52÷|-13|+(0.25)2015×4201620.(本题满分6分,每小题3分)化简:①3x 2+2x -5x 2+3x ②(a 2+2ab +b 2)+2(a 2-ab -3b 2)21. (本题满分8分,每小题4分)解方程:① x +3=3x -1 ② x 3 - x -14=1.22.(本题满分6分)先化简,再求值:3x 2y -[2x 2y -(2xy -3x 2y )]+6xy 2,其中(x -3)2+|y +13|=0.23.(本题满分5分)已知A=2a2+3ab-2a-1,B=-a2+2ab-2.(1)求3A+6B;; (2)若3A+6B的值与a的取值无关,求b的值.24.(本题满分5分)有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c-b0,a+b0,a-c0.(2)化简:|c-b|+|a+b|-2|a-c|.25.(本题满分4分)如图所示:(1) 用含a,b的代数式表示阴影部分的面积;(2) 当a=8,b=3时,求阴影部分的面积(π取3.14).26.(本题满分8分)已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:__________;用含t的代数式表示点P和点C的距离:PC=_____________.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,①点P、Q同时运动运动的过程中有__________处相遇,相遇时t=_______________秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)27.(本题满分6分)民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为120元/千克,批发价各不相同.A家规定:当批发数量不超过100千克时,所购蟹均按零售价的92%优惠;当批发数量超过100千克但不超过200千克时,所购蟹均按零售价的90%优惠;当批发量超过200千克时,所购蟹均按零售价的88%优惠.B家的规定如下表:(1家批发需要__ __元,家批发需要元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要__ __元,在B家批发需要_ ___元(用含x的代数式表示);(3)现在他要批发180千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.初一数学期中试卷参考答案一、选择题:(每题2分,共20分)1. C2. A3. B4. D5.C6. C7. B8. D9. A 10. C二、填空题:(每空2分,共20分)11. ±5,-32 ;12.-4;13. ②④⑤⑥,②③④⑤⑥⑦; 14. 8 ;15. 5x +y ;16. 30 ;17. m b -m a;18. 11,8,10,9,12.三、解答题:(共60分)19. (每小题3分)① 6 ; ② 20 ; ③ -2734; ④ 14. 20. (每小题3分)① -2x 2+5x ; ② 3a 2-5b 221. (每小题4分)① x =2 ; ②x =922.化简得:-2x 2y +2xy +6xy 2 ------2分x =3,y =-13--------------------------4分 (代入计算得)=6 -----------------------6分23.(1)3A +6B =3(2a 2+3ab -2a -1)+6(-a 2+2ab -2)-------1分=6a 2+9ab -6a -3-6a 2+12ab -12=21 ab -6a -15 ----------------------------------3分(2)b =27----------------------------------5分 24.(1)>,<,< (每空1分)(2)a -2b -c (2分)25.(1)S =ab -12πb 2 (2分) (2)9.87 (2分)26.(1)-26+t ;36-t ; (每空1分)(2)①2处,24秒和30秒 (每空1分)②当16≤t ≤24时 PQ =﹣2t +48当24<t ≤28时 PQ =2t -48当28<t ≤30时 PQ = 120﹣4t当30<t ≤36时 PQ = 4t ﹣120 (每个1分)27.(1)8832; 8760 (每空1分)(2)108x ,90x +2400 (每空1分)(3)选择在B 家批发更优惠理由:A :108×180=19440B :90×180+2400=1860019440>18600∴选择在B 家批发更优惠. (2分)。
2016-2017学年七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.43.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=08.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3=D.﹣3=二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为.11.某校图书室共藏书34500册,数34500用科学记数法表示为.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是.13.56°24′=°.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].16.解方程:﹣=﹣1.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.4【考点】有理数.【分析】先判断每个数是什么数,最后得到整数的个数.【解答】解:因为﹣2、15、0是整数,π是无理数,﹣、0.555…是分数.所以整数共3个.故选C.3.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位【考点】近似数和有效数字.【分析】近似数2.6万精确到0.1万位.【解答】解:近似数2.6万精确到千位.故选A.5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据对顶角的定义,邻补角的定义以及互为余角的两个角的和等于90°对各选项分析判断即可得解.【解答】解:A、∠1+∠2>90°,∠1和∠2不是互为余角,故本选项错误;B、∠1和∠2互为邻补角,故本选项错误;C、∠1和∠2是对顶角,不是互为余角,故本选项错误;D、∠1+∠2=180°﹣90°=90°,∠1和∠2互为余角,故本选项正确.故选D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式【考点】同类项;整式;多项式.【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是二次三项式,故本选项错误.故选C.7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=0【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、是一元一次方程,故此选项正确;D、不是一元一次方程,故此选项错误;故选:C.8.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3= D.﹣3=【考点】由实际问题抽象出一元一次方程.【分析】首先理解题意找出题中存在的等量关系,再列出方程即可.【解答】解:设A、B两码头间距离为x,可得:,故选B二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣5<﹣1<0<,∴实数﹣5,﹣1,0,四个数中,最大的数是.故答案为:.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为1.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+5|+(b﹣4)2=0,∴a+5=0,b﹣4=0,解得:a=﹣5,b=4,则原式=1,故答案为:111.某校图书室共藏书34500册,数34500用科学记数法表示为 3.45×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:34500用科学记数法表示为3.45×104,故答案为:3.45×104.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是3.【考点】同类项;绝对值.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣3x m+2y2017与2x2016y n是同类项,∴m+2=2016,n=2017,解得:m=2014,∴|m﹣n|=3.故答案为:3.13.56°24′=56.4°.【考点】度分秒的换算.【分析】把24′化成度,即可得出答案.【解答】解:24÷60=0.4,即56°24′=56.4°,故答案为:56.4.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是两点之间,线段最短.【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质进行解答即可.【解答】解:某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:﹣12﹣(﹣)÷×[﹣2+(﹣3)2]=﹣1﹣(﹣)÷×[﹣2+9]=﹣1+×7=216.解方程:﹣=﹣1.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣2﹣x﹣2=9x﹣3﹣6,移项合并得:﹣8x=﹣5,解得:x=.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.【考点】比较线段的长短.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.【考点】代数式求值;有理数的混合运算.【分析】先根据新运算展开,化简后代入求出即可.【解答】解:(a2b)*(3ab+5a2b﹣4ab)=(a2b)﹣(3ab+5a2b﹣4ab)=a2b﹣3ab﹣5a2b+4ab=﹣4a2b+ab当a=5,b=3时,原式=﹣4×52×3+5×3=﹣285.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.【考点】角平分线的定义.【分析】利用角平分线的定义得出∠AOD=∠BOD,∠BOE=∠COE,进而求出∠DOE的度数.【解答】解:∵OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,∴∠AOD=∠BOD,∠BOE=∠COE,∴∠DOE=∠AOC=65°.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?【考点】一元一次方程的应用.【分析】设用xm3木料制作桌面,则用(5﹣x)m3木料制作桌腿恰好配套,根据条件的数量关系建立方程求出其解即可.【解答】解:设用xm3木料制作桌面,由题意得4×50x=200(5﹣x),解得x=2.5,5﹣x=2.5m3,答:用2.5m3木料制作桌面,2.5m3木料制作桌腿,能使制作得的桌面和桌腿刚好配套.21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴先判断a+c、a﹣b、b+c、b与0的大小关系,然后即可进行化简【解答】解:由图可知:a+c<0,a﹣b>0,b+c<0,b<0,∴原式=﹣(a+c)﹣(a﹣b)﹣(b+c)+b=﹣a﹣c﹣a+b﹣b﹣c+b=﹣2a+b﹣2c22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.【考点】代数式求值.【分析】根据相反数、绝对值、倒数得出a+b=0,cd=1,e=±5,再代入求出即可.【解答】解:∵a、b互为相反数,c、d互为倒数,|e|=5,∴a+b=0,cd=1,e=±5,当e=5时,原式=52﹣+1102﹣5=21;当e=﹣5时,原式=(﹣5)2﹣+1102﹣(﹣5)=31.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?【考点】一元一次方程的应用.【分析】(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据第二次进货单价比第一次进货单价贵30元即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=销售第一批烤火器的利润+销售第二批烤火器的利润即可求出家电销售部共获利多少元.【解答】解:(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据题意得:150x=180(x﹣10),解得x=60,x﹣10=50.答:家电销售部第一次购进烤火器60台,第二次购进50台.(2)×60+×50=9500(元).答:以250元/台的售价卖完这两批烤火器,家电销售部共获利9500元.24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)【考点】规律型:数字的变化类.【分析】(1)通过观察可知:右边幂的底数等于左边各个幂的底数的和;(2)利用规律即可解决问题.【解答】解:(1)右边幂的底数等于左边各个幂的底数的和;(2)13+23+33+43+…+1003=(1+2+3+…+100)2=[×100]2=50502.。
(浙教版)七年级上册数学第一单元《有理数》教学质量检测
学校:___________姓名:___________班级:___________考号:___________一、单选题
A .
B .a c >-a
A.数轴是以小明所在的位置为原点
B.数轴采用向北为正方向
二、填空题
17.如图1,点A,B,C是数轴上从左到右排列的三个点,对应的数分别为某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点
18.如图,在一张纸条上画有一条数轴.
(1)将数轴沿过原点且与数轴垂直的直线折叠,则表示的点与表示 的点
三、解答题
21.如图,在一条不完整的数轴上有A ,B 两点,它们表示的数分别为
(1)求线段的长度.
3-AB
(1)若点A所表示的数是,则点C所表示的数是
1-
参考答案:
答案第1页,共1页。
2016——2017学年第一学期教学质量检测七年级数学试卷说明:本试卷考试时间90分钟,满分100分,答题必须在答题卷上作答,在试题卷上作答无效。
第一部分选择题一、选择题:(本题共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.2-的相反数是()A .2B .12-C .2-D .122.2015年10月29日,中共十八届五中全会公报决定,实施普遍二孩政策,中国从1980年开始,推行了35年的城镇人口独生子女政策真正宣告终结。
“未来中国人口会不会突破15亿?”是政策调整决策中的重要考量,“经过高、中、低方案反复测算,未来中国人口不会突破。
”15亿用科学计数法表示为()A .81510⨯B .8510⨯C .91.510⨯D .91.53.下列调查方式合适的是()A .为了了解冰箱的使用寿命,采用普查的方式B .为了了解全国中学生的视力状况,采用普查的方式C .为了了解人们保护水资源的意识,采用抽样调查的方式D .对“神舟十一号载人飞船”零部件的检查,采用抽样调查的方式4.下列各组代数式中,不是同类项的是()A .22x y 和2yx -B .33-和3C .2ax 和2a xD .3xy 和2xy -5.若从n 边形的一个顶点出发,最多可以引()条对角线A .n B .1n -C .2n -D .3n -6.有理数a 、b 在数轴上的位置如图,则下列各式不成立的是()A .0a b +>B .0a b ->C .b a>D .0ab <7.下面说法,错误的是()A .一个平面截一个球,得到的截面一定是圆B .一个平面截一个正方体,得到的截面可以是五边形C .棱柱的截面不可能是圆D .下边甲、乙两图中,只有乙才能折成正方体8.某件产品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该件产品的进货价为()A .80元B .85元C .90元D .95元9.方程()1230a a x --+=是关于x 的一元一次方程,则a =()A .2B .2-C .1±D .2±10.下列说法正确的是()A .长方形的长是a 米,宽比长短25米,则它的周长可表示为()225a -米B .6h 表示底为6,高为h 的三角形面积C .10a b +表示一个两位数,它的个位数字是a ,十位数字是bD .甲、乙两人分别从相距40千米的两地同时相向出发,其行走的速度分别为3千米/小时和5千米/小时,经过x 小时相遇,则可列方程式为3540x x +=11.关于x 、y 的代数式()()33981kxy y xy x -++-+中不含有二次项,则k =()A .3B .13C .4D .1412.已知3a =,216b =;且a b a b +≠+,则代数式a b -的值为()A .1或7B .1或7-C .1-或7-D .±1或±7第二部分非选择题二、填空题:(本题共4小题,每小题3分,共12分)13.比较大小:8-________9-(填“<”、“=”、“>”).14.若1a b -=,则代数式()2a b --的值是________.15.在时钟的钟面上,九点半的时针与分针的夹角是________.16.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112--=,1-的差倒数是()11112--=,已知113a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,则2015a =________.三、解答题:(本题共7小题,其中第17题11分,第18题8分,第19题6分,第20题6分,第21题6分,第22题7分,第23题8分,共52分)17.计算:(1)(本题3分)()137********⎛⎫--+⨯- ⎪⎝⎭(2)(本题3分)()()()324224⎡⎤-⨯-÷---⎣⎦(3)(本题5分)先化简,再求值:22221223333x x xy y x ⎛⎫--+-- ⎪⎝⎭,其中2x =,1y -=.18.(每小题4分,共8分)解方程:(1)()52323x x ---=(2)34153x x ---=19.(本题6分)校学生会体育部为更好的的开展同学们课外体育活动,现对学生最喜欢的一项球类运动进行了随机抽样调查,根据调查的结果绘制成如图2-①和图2-②所示的两幅不完整统计图,其中A .喜欢篮球B .喜欢足球C .喜欢乒乓球D .喜欢排球。
2016学年第一学期七年级阶段性检测卷数 学 试 题 卷一、单项选择题(每小题3分,共30分,每小题只有一个选项符合题意) 1. 如果收入100元记作+100元,那么支出70元应记作()A . +70元B . -170元 C. -70元 D. +170元 2.下列说法错误的是( )A . 正整数和正分数统称正有理数 B. 两个无理数相乘的结果可能等于零 C .正整数,0,负整数统称为整数 D .3.1415926是小数,也是分数3.在133.14,,,π-(13每两个之间依次多一个)中,无理数的个数是( )A.1个B.2个C. 3个D.4个4.23-()的平方根是() A. -3 B. 3 C. 3或-3 D. 9 5. 计算111(1)(12)234-++⨯-,运用哪种运算律可以避免通分( ) A .乘法分配律 B. 乘法结合律C. 乘法交换律 D. 乘法结合律和交换律6.代数式:2222215,4,,,,,0,,33ab a ab x x a b bc abc y ππ----+-中,单项式和多项式分别有( ) A. 5个,1个 B. 5个,2个 C. 4个,1个 D.4个,2个 7.下列结论中,不能由a b 0+=得到的是( )A.2a ab =-B.a 0,b 0==C.||||a b =D. 22a b =8.+)A. 6与7之间B.7与8之间C.8与9之间D.9与10之间9.有一块长为a ,宽为b 的长方形铝片,四角各截去一个相同的边长为x 的正方形,折起来做成一个没有盖的盒子,则此盒子的容积V 的表达式是()A. 2()()V x a x b x =-- B. ()()V x a x b x =-- C.1(2)(2)3V x a x b x =-- D.(2)(2)V x a x b x =--10. 如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF ,从射线OA 开始按逆时针依次在射线上写出数字1,2,3,4,5,6,7,……则数字2016在()A . 射线OA 上B . 射线OB 上C . 射线OD 上D.射线OF 上二、填空题(每小题4分,共24分) 11.圆周率π=3.1415926……,取近似值 3.142,是精确到位;近似数52.42810⨯精确到 位. 12. 用代数式表示:①甲数比乙数的2倍多4,设甲数为x ,则乙数为 ;②甲数与乙数的和是10,设甲数为y ,则乙数为 。
2016-2017学年浙江省温州市平阳县山门中学七年级(上)第一次段测数学试卷一、选择题(共10小题,每小题3分,满分30分)1.﹣3的相反数是()A.3 B.﹣3 C. D.﹣2.在数轴上表示﹣3的点离原点的距离等于()A.3 B.﹣3 C.±3 D.63.计算(﹣3)2的结果是()A.﹣6 B.6 C.﹣9 D.94.下列各数中,在﹣2和0之间的数是()A.﹣1 B.1 C.﹣3 D.35.下列计算结果是负数的是()A.(﹣1)×(﹣2)×(﹣3)×0 B.5×(﹣0.5)÷(﹣1.84)2C.(﹣5)2+(﹣6)2+(﹣7)2D.(﹣1.2)×|﹣3.75|×(﹣0.125)6.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()A. B. C. D.7.在+3.5,,0,﹣2,﹣0.56,﹣0.101001中,负分数有()A.4个B.3个C.2个D.1个8.小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是()A.90分B.75分C.91分D.81分9.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1 B.0 C.1 D.210.实数a在数轴上对应的点如图所示,则a,﹣a,1的大小关系正确的是()A.a<﹣a<1 B.﹣a<a<1 C.1<﹣a<a D.a<1<﹣a二、填空题11.的倒数是,绝对值是,相反数是.12.计算:(﹣1)2015+(﹣1)2016= .13.2013年7月1日,宁杭甬高铁今天正式开通,温州进入“高铁时代”.中国高铁时速可达每小时350000米,用科学记数法可以表示为每小时米.14.在数﹣3,﹣2,4,5中任取二个数相乘,所得的积中最大的是,最小的积是.15.近似数1.75精确到位.16.绝对值不大于3的所有负整数的和是.17.某种细菌在培养过程中,每过30分钟便由一个分裂为两个.经过3小时,这种细菌由一个可以分裂为个.18.数轴上点A所表示数的数是﹣4,点B到点A的距离是3,则点B所表示的数是.三、解答题(46分,12分+6分+6分+6分+6分+10分)19.计算下列各题:(1)(+18)+(﹣12);(2)(1)﹣47×(﹣)+53×;(3)8×(﹣)+(﹣2)3;(4)52×(﹣)﹣24÷(﹣).20.把下列各数分别填在表示它所属的括号里:0,﹣,,﹣3.1,﹣2,,(1)正有理数:{ …}(2)整数:{ …}(3)负分数:{ …}.21.在数轴上表示下列各数,并用“<”把它们连接起来.0,2,1.5,﹣3∴<<<.22.有一种算“24”点的游戏,其游戏规则如下:取四个数,将这四个数(每个数只能用一次)进行加减乘除运算,使其结果等于24.现有四个有理数:3,4,﹣6,10,请你用两种不同的运算方法,使其结果为24.23. 在一次测量中,小王与小张利用温差来测量山峰的高度,小王在山顶测得温度是﹣5℃,小张此时在山脚测得的温度是1℃,已知该地区高度每增100米,气温大约降低0.6℃,则这个山峰的高度大约是多少米?24.下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有★个,第六个图形共有★个;(2)第n个图形中有★个;(3)根据(2)中的结论,第几个图形中有2017个★?2016-2017学年浙江省温州市平阳县山门中学七年级(上)第一次段测数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.﹣3的相反数是()A.3 B.﹣3 C. D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.在数轴上表示﹣3的点离原点的距离等于()A.3 B.﹣3 C.±3 D.6【考点】数轴.【分析】直接由距离的定义即可求【解答】解:|0﹣(﹣3)|=3故选A.【点评】此题综合考查了数轴、用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.3.计算(﹣3)2的结果是()A.﹣6 B.6 C.﹣9 D.9【考点】有理数的乘方.【分析】根据有理数的乘方运算,乘方的运算可以利用乘法的运算来进行.【解答】解:(﹣3)2=(﹣3)×(﹣3)=9.故选:D.【点评】本题考查有理数的乘方运算,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数.4.下列各数中,在﹣2和0之间的数是()A.﹣1 B.1 C.﹣3 D.3【考点】有理数大小比较.【分析】根据有理数的大小比较法则比较即可.【解答】解:A、﹣2<﹣1<0,故本选项正确;B、1>0,1不在﹣2和0之间,故本选项错误;C、﹣3<﹣2,﹣3不在﹣2和0之间,故本选项错误;D、3>0,3不在﹣2和0之间,故本选项错误;故选A.【点评】本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.5.下列计算结果是负数的是()A.(﹣1)×(﹣2)×(﹣3)×0 B.5×(﹣0.5)÷(﹣1.84)2C.(﹣5)2+(﹣6)2+(﹣7)2D.(﹣1.2)×|﹣3.75|×(﹣0.125)【考点】有理数的混合运算.【分析】根据运算法则,分别判断各题的符号.【解答】解:A、原式=0;B、原式中(﹣1.84)2结果为正,而又有(﹣0.5),且为乘除运算,结果必为负;C、原式为三个数的平方和,结果为正;D、原式中含有一个绝对值和两个负数,且为乘法运算,结果为正.故选B.【点评】本题考查了混合运算中的符号的判断.要认真仔细.牢固掌握运算法则是解题的关键.6.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()A. B. C. D.【考点】正数和负数.【专题】计算题;实数.【分析】求出各足球质量的绝对值,取绝对值最小的即可.【解答】解:根据题意得:|﹣0.8|<|+0.9|<|+2.5|<|﹣3.6|,则最接近标准的是﹣0.8g,故选C【点评】此题考查了正数与负数,熟练掌握绝对值的代数意义是解本题的关键.7.在+3.5,,0,﹣2,﹣0.56,﹣0.101001中,负分数有()A.4个B.3个C.2个D.1个【考点】有理数.【分析】负分数首先是负数,并且有小数部分.【解答】解:,﹣0.56,﹣0.101001都是负分数.故选B.【点评】注意分数和负数的概念.8.小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是()A.90分B.75分C.91分D.81分【考点】有理数的加减混合运算.【分析】小明第四次测验的成绩是85+8﹣12+10,计算即可求解.【解答】解:第四次的成绩是:85+8﹣12+10=91分.故选C.【点评】本题考查了有理数的计算,正确列出代数式是关键.9.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1 B.0 C.1 D.2【考点】有理数的加法.【分析】先根据有理数的相关知识确定a、b、c的值,然后将它们代入a+b+|c|中求解.【解答】解:由题意知:a=1,b=﹣1,c=0;所以a+b+|c|=1﹣1+0=0.故选B.【点评】本题主要考查的是有理数的相关知识.最小的正整数是1,最大的负整数是﹣1,绝对值最小的有理数是0.10.实数a在数轴上对应的点如图所示,则a,﹣a,1的大小关系正确的是()A.a<﹣a<1 B.﹣a<a<1 C.1<﹣a<a D.a<1<﹣a【考点】实数大小比较;实数与数轴.【分析】本题首先运用数形结合的思想确定a的正负情况,然后根据相反数意义即可解题.【解答】解:由数轴上a的位置可知a<0,|a|>1;设a=﹣2,则﹣a=2,∵﹣2<1<2∴a<1<﹣a,故选项A,B,C错误,选项D正确.故选D【点评】此题主要考查了比较实数的大小,解答此题的关键是根据数轴上a的位置估算出a的值,设出符合条件的数值,再比较大小即可.二、填空题11.的倒数是,绝对值是,相反数是﹣.【考点】倒数;相反数;绝对值.【分析】根据乘积为一的两个数互为倒数,正数的绝对值是它本身,只有符号不同的两个数互为相反数,可得答案.【解答】解:的倒数是,绝对值是,相反数是﹣,故答案为:,,﹣.【点评】本题考查了倒数,先把带分数化成假分数再求倒数,分子分母交换位置是求倒数的关键.12.计算:(﹣1)2015+(﹣1)2016= 0 .【考点】有理数的乘方.【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.13.2013年7月1日,宁杭甬高铁今天正式开通,温州进入“高铁时代”.中国高铁时速可达每小时350000米,用科学记数法可以表示为每小时 3.5×105米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将350000用科学记数法表示为3.5×105.故答案为:3.5×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.在数﹣3,﹣2,4,5中任取二个数相乘,所得的积中最大的是20 ,最小的积是﹣15 .【考点】有理数的乘法;有理数大小比较.【专题】常规题型.【分析】先计算两个数的积,再比较最大的积和最小的积.【解答】解:(﹣3)(﹣2)=6,(﹣3)×4=﹣12,(﹣3)×5=﹣15,(﹣2)×4=﹣8,(﹣2)×5=﹣10,4×5=20.所以积中最大的是20,最小的是﹣15.故答案为:20,﹣15.【点评】本题考查了有理数的乘法和有理数大小的比较.乘法的符号法则:同号相乘得正,异号相乘得负.15.近似数1.75精确到百分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数1.75精确到百分位.故答案为百分.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.16.绝对值不大于3的所有负整数的和是﹣6 .【考点】绝对值.【专题】计算题.【分析】根据绝对值的意义得到绝对值不大于3的负整数有﹣1,﹣2,﹣3,然后把三个负数相加即可.【解答】解:绝对值不大于3的负整数有﹣1,﹣2,﹣3,则它们的和为﹣1+(﹣2)+(﹣3)=﹣6.故答案为﹣6.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.17.某种细菌在培养过程中,每过30分钟便由一个分裂为两个.经过3小时,这种细菌由一个可以分裂为64 个.【考点】有理数的乘方.【分析】某种细菌在培养过程中,每过30分钟便由一个分裂为两个,3小时=6×30分钟,即这种细菌可以分裂为26个.【解答】解:3小时÷30分钟=6,这种细菌3小时可以分裂26=64个.【点评】根据题意,运用有理数的乘方计算即可.18.数轴上点A所表示数的数是﹣4,点B到点A的距离是3,则点B所表示的数是﹣1或﹣7 .【考点】数轴.【分析】首先画出数轴,然后根据数轴可直接得到答案.【解答】解:数轴上有一点A表示的数是﹣4,则在数轴上到点A距离为3的点所表示的数有两个:﹣4+3=﹣1;﹣4﹣3=﹣7.故答案为:﹣1或﹣7.【点评】此题综合考查了数轴、绝对值的有关内容.用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.注意此类题要考虑两种情况.三、解答题(46分,12分+6分+6分+6分+6分+10分)19.计算下列各题:(1)(+18)+(﹣12);(2)(1)﹣47×(﹣)+53×;(3)8×(﹣)+(﹣2)3;(4)52×(﹣)﹣24÷(﹣).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用异号两数相加的法则计算即可得到结果;(2)原式逆用乘法分配律计算即可得到结果;(3)原式利用乘法分配律,以及乘方的意义计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=18﹣12=6;(2)原式=×(53﹣47)=×6=;(3)原式=6﹣4﹣8=﹣6;(4)原式=﹣5+72=67.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.把下列各数分别填在表示它所属的括号里:0,﹣,,﹣3.1,﹣2,,(1)正有理数:{ …}(2)整数:{ …}(3)负分数:{ …}.【考点】实数.【分析】根据每个数所属于的集合来写.认真掌握整数、负分数、正有理数的定义与特点.【解答】解:(1)正有理数:{,…};(2)整数:{ 0,,﹣2 …};(3)负分数:{﹣,﹣3.1…}.故答案为:,;0,,﹣2;﹣,﹣3.1.【点评】此题考查了实数的分类,熟练掌握整数、负分数、正有理数的定义是解本题的关键.21.在数轴上表示下列各数,并用“<”把它们连接起来.0,2,1.5,﹣3∴﹣3 <0 < 1.5 < 2 .【考点】有理数大小比较;数轴.【分析】在数轴上表示出各数,然后根据数轴即可判断.【解答】解:如图所示,故答案为:﹣3;0;1.5;2【点评】本题考查数轴比较数的大小,属于基础题型.22.有一种算“24”点的游戏,其游戏规则如下:取四个数,将这四个数(每个数只能用一次)进行加减乘除运算,使其结果等于24.现有四个有理数:3,4,﹣6,10,请你用两种不同的运算方法,使其结果为24.【考点】有理数的混合运算.【专题】计算题.【分析】首先用10减去4,构造出6,再用6乘3,构造出18,再用18减去﹣6,使其结果为24即可;然后用10减去3与﹣6的积,构造出28,再用28减去4,使其结果为24即可.【解答】解:(10﹣4)×3﹣(﹣6)=2410﹣3×(﹣6)﹣4=24【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.23. 在一次测量中,小王与小张利用温差来测量山峰的高度,小王在山顶测得温度是﹣5℃,小张此时在山脚测得的温度是1℃,已知该地区高度每增100米,气温大约降低0.6℃,则这个山峰的高度大约是多少米?【考点】有理数的混合运算.【专题】应用题.【分析】先求出山脚和山顶的温差,然后用温差除以0.6,所得的结果乘以100即为山峰高度.【解答】解:由题意可知100×{[1﹣(﹣5)]÷0.6}=100×(6÷0.6)=1000(米).答:大约1000米.【点评】此题考查有理数的混合运算,注意越是高处气温越低,应该让山脚的温度﹣山顶的温度,温差除以0.6,几个0.6就是几个100米.24.下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有★13 个,第六个图形共有★19 个;(2)第n个图形中有★1+3n 个;(3)根据(2)中的结论,第几个图形中有2017个★?【考点】规律型:图形的变化类.【分析】(1)把五角星分成两部分,顶点处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,据此可得;(2)根据(1)中规律找出第n个图形中五角星的个数的关系式;(3)然后把2017代入(2)进行计算即可求解.【解答】解:(1)观察发现,第1个图形五角星的个数是,1+3=4,第2个图形五角星的个数是,1+3×2=7,第3个图形五角星的个数是,1+3×3=10,…第4个图形五角星的个数是,1+3×4=13,第6个图形五角星的个数是,1+3×6=19,故答案为:13,19;(2)第n个图形五角星的个数是,1+3×n=3n+1,故答案为:1+3n;(3)3n+1=2017,解得n=672.答:第672个图形中有2017个★.【点评】本题考查了图形变化规律的问题,把五角星分成两部分进行考虑,并找出第n个图形五角星的个数的表达式是解题的关键.。
【浙教版】七年级数学上册第一次月考试卷(含答案)(第1-2章 总分:120分)一、选择题(每小题3分,共30分)1.下列运算结果等于1的是( )A .(-1)+(-1)B .(-1)-(-1)C .(-2)×(-2)D .(-3)÷(-3)2.下列各对数中,相等的一对数是( )A .(-2)3与-23B .-22与(-2)2C .-(-3)与-|-3| D.223与⎝ ⎛⎭⎪⎫232 3.有理数a ,b 在数轴上对应点的位置如图所示,下列各式正确的是( ) 第3题图A .a +b <0B .a -b <0C .a b >0 D.a b>0 4.近似数3.0×102精确到( )A .十分位B .个位C .十位D .百位5.计算-1÷(-14)×114结果是( ) A .-1 B .1C.1196D .-196 6.算式⎝⎛⎭⎪⎫-256×4可以化为( ) A .-2×4-56×4 B .-2×4+56×4 C .-2×4+56D .-2+56×4 7.计算44+44+44+44的值为( )A .164B .416C .45D .548.a ,b 为有理数且ab ≠0,则|a |a +b |b |的值不可能是( ) A .2 B .-2C .0D .19.若|m |=5,|n |=3,且m +n <0,则m -n 的值是( )A .-8或-2B .±8或±2C.-8 或2 D.8或210.按下列程序进行计算,第一次输入的数是10,如果结果不大于100,就把结果作为输入的数再进行第二次计算,直到符合要求为止.则输出的数为( )第10题图A.160 B.150C.140 D.120二、填空题(每小题4分,共24分)11.如图,在数轴上与A点的距离等于5的数为____.第11题图12.某地气象统计资料表明,高度每增加1000米,气温就降低大约6℃.我市著名风景区崂山的最高峰“崂顶”海拔约为1100米.(1)若现在地面温度约为3℃,则“崂顶”气温大约是____.(2)若某天小亮在“崂顶”测得温度为-10℃,同时小颖在崂山某位置测得温度为-7.6℃,则小颖所在位置的海拔高度是____.13.四舍五入法,把130 542精确到千位是____.14.若|m-2|+(n+12)2=0,则(m+n)3的值为____.15.已知a、b互为相反数,C、d互为倒数,m是绝对值等于3的负数,则m2+(C d+a+b)m+(C d)2017的值为____.16.n 为正整数,计算(+1)n +1×(-1)n 2=____. 三、解答题(7个小题,共66分)17.(9分)如图所示,已知A ,B ,C ,D 四个点在一条没有标明原点的数轴上.第17题图(1)若点A 和点C 表示的数互为相反数,则原点为____.(2)若点B 和点D 表示的数互为相反数,则原点为____.(3)若点A 和点D 表示的数互为相反数,则在数轴上表示出原点O 的位置.18.(10分)计算下列各式:(1)-18-(-12.5)-(-31)-12.5.(2)⎪⎪⎪⎪⎪⎪-212-(-2.5)+1-⎪⎪⎪⎪⎪⎪1-212. (3)(-24)÷2×(-3)÷(-6).(4)(-24)×⎝ ⎛⎭⎪⎫-18+13-16. (5)-32+(-2-5)2-⎪⎪⎪⎪⎪⎪-14×(-2)4. 19.(10分)气象资料表明,高度每增加1千米,气温大约下降6 ℃.(1)我国著名风景区黄山的天都峰高1700米,当地面温度约为18 ℃时,求山顶气温.(2)小明和小颖想出一个测量山峰高度的方法,小颖在山脚,小明在峰顶,他们同时在上午10点测得山脚和山峰顶的气温分别为22 ℃和-8 ℃,你知道山峰高多少千米吗?20.(9分)设[x]表示不大于x的所有整数中最大的整数,例如:[1.7]=1,[-1.7]=-2,根据此规定,完成下列运算:(1)[2.3]-[6.3].(2)[4]-[-2.5].(3)[-3.8]×[6.1].(4)[0]×[-4.5].21.(10分)根据下面给出的数轴,解答下面的问题:第21题图(注明:点B处在-3与-2所在点的正中间位置)(1)请根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)观察数轴,与点A的距离为4的点表示的数是多少?(3)若将数轴折叠,使得A点与-2表示的点重合,则B点与哪个数表示的点重合?(4)若数轴上M,N两点之间的距离为2 014(M在N的左侧),且M,N两点经过同(3)中相同的折叠后互相重合,则M,N两点表示的数分别为多少?22.(9分)小明要计算本组内6名同学的平均身高,于是他分别测量了6名同学的身高后,绘制了下表(单位: cm):(1)将表格补充完整.(2)他们中最高的同学与最矮的同学身高相差多少?(3)他们的平均身高是多少?23.(9分)【概念学习】规定:求若干个相同的有理数(均不为0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”.一般地,把a ÷a ÷a ÷…÷a,\s \do 4(n 个)) (a ≠0)记作a ○,n )读作“a 的圈n 次方”.【初步探究】(1)直接写出计算结果:2③=__12__,⎝ ⎛⎭⎪⎫-12④=___. (2)关于除方,下列说法错误的是___.A .任何非零数的圈3次方都等于它的倒数B .对于任何正整数n ,1 ○,n )=1C .3③=4③D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘法运算呢?第23题图(3)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(-3)④=__⎝ ⎛⎭⎪⎫132__;5⑥=__⎝ ⎛⎭⎪⎫154__;⎝ ⎛⎭⎪⎫-12⑩=___. (4)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于____.(5)算一算:122÷⎝ ⎛⎭⎪⎫-13④×⎝ ⎛⎭⎪⎫-12③-⎝ ⎛⎭⎪⎫-13④÷33.答案一、选择题(每小题3分,共30分)1-5 D A B C C 6-10 A C D A A二、填空题(每小题4分,共24分)11.如图,在数轴上与A点的距离等于5的数为__-6或4__.第11题图12.某地气象统计资料表明,高度每增加1000米,气温就降低大约6℃.我市著名风景区崂山的最高峰“崂顶”海拔约为1100米.(1)若现在地面温度约为3℃,则“崂顶”气温大约是__-3.6℃__.(2)若某天小亮在“崂顶”测得温度为-10℃,同时小颖在崂山某位置测得温度为-7.6℃,则小颖所在位置的海拔高度是__700__.【解析】(1)根据题意得:3-1100÷1000×6=3-6.6=-3.6(℃),则“崂顶”气温大约是-3.6℃;(2)根据题意得:1100-[(-7.6)-(-10)]÷6×1000=1100-400=700(米),则小颖所在位置的海拔高度是700千米.13.四舍五入法,把130 542精确到千位是__1.31×105__.14.若|m-2|+(n+12)2=0,则(m+n)3的值为__-1_000__.15.已知a、b互为相反数,C、d互为倒数,m是绝对值等于3的负数,则m2+(C d+a+b)m+(C d)2017的值为__7__.16.n 为正整数,计算(+1)n +1×(-1)n 2=__0或1__. 【解析】n 是奇数时,(+1)n +1×(-1)n 2=1-11=0, n 是偶数时,(+1)n +1×(-1)n 2=1+12=1. 三、解答题(7个小题,共66分)17.(9分)如图所示,已知A ,B ,C ,D 四个点在一条没有标明原点的数轴上.第17题图(1)若点A 和点C 表示的数互为相反数,则原点为__B__.(2)若点B 和点D 表示的数互为相反数,则原点为__C__.(3)若点A 和点D 表示的数互为相反数,则在数轴上表示出原点O 的位置.解:(3)如图所示:第17题答图18.(10分)计算下列各式:解:(1)原式=-18+12.5+31-12.5=(-18+31)+(12.5-12.5)=13.(2)原式=212+2.5+1-112=4.5. (3)原式=-24÷2×3÷6=-6.(4)原式=3-8+4=-1.(5)原式=-9+(-7)2-14×16 =-9+49-4=36.19.解:(1)18-6×1 700÷1 000=7.8(℃).答:山顶气温为7.8 ℃.(2)山峰高为[22-(-8)]÷6=5(千米).答:山峰高大约5千米.20.(9分)解:(1)[2.3]-[6.3]=2-6=-4.(2)[4]-[-2.5]=4-(-3)=7.(3)[-3.8]×[6.1]=-4×6=-24.(4)[0]×[-4.5]=0×(-5)=0.21.解:(1)由数轴上A ,B 两点的位置,得A 表示1,B 表示-2.5.(2)观察数轴,与点A 的距离为4的点表示的数是-3或5.(3)由数轴折叠,使得A 点与-2表示的点重合,得是以-0.5表示的点对折,则B 点与数1.5表示的点重合.(4)数轴上M ,N 两点之间的距离为2 014(M 在N 的左侧),且M ,N 两点经过同(3)中相同的折叠后互相重合.∴M ,N 两点表示的数分别为M :-1 007.5,N: 1 006.5.22.解:(2)+5-(-6)=11(cm).答:他们中最高的同学与最矮的同学身高相差11 cm.(3)(-1+2+0-6+3+5)÷6+160=3÷6+160=0.5+160=160.5(cm).答:他们的平均身高是160.5 cm.23.(9分)解:【初步探究】(1)2③=2÷2÷2=12, ⎝ ⎛⎭⎪⎫-12④=⎝ ⎛⎭⎪⎫-12÷⎝ ⎛⎭⎪⎫-12÷⎝ ⎛⎭⎪⎫-12÷⎝ ⎛⎭⎪⎫-12=1÷⎝ ⎛⎭⎪⎫-12÷⎝ ⎛⎭⎪⎫-12=(-2)÷⎝ ⎛⎭⎪⎫-12=4; (2)任何非零数的圈3次方都等于它的倒数,所以选项A 正确;因为多少个1相除都是1,所以对于任何正整数n ,1都等于1,所以选项B 正确;3④=3÷3÷3÷3=19,4③=4÷4÷4=14,则3④≠4③,所以选项C 错误;负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确.本题选择说法错误的,故选C.【深入思考】(3)⎝ ⎛⎭⎪⎫132 ⎝ ⎛⎭⎪⎫154 (-2)8 (4)将一个非零有理数a 的圈n 次方写成幂的形式等于⎝ ⎛⎭⎪⎫1a n -2; (5)122÷⎝ ⎛⎭⎪⎫-13④×⎝ ⎛⎭⎪⎫-12③-⎝ ⎛⎭⎪⎫-13④÷33 =144÷(-3)2×(-2)-(-3)2÷33=144÷9×(-2)-9÷33=16×(-2)-13=-32-13=-3213.。
2016~2017学年度七年级上学期第一次联考数学试卷一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的.不选、多选、错选,均不给分)1.若,则a,b,c的大小关系是()A.c>b>a B.a>c>b C.a>b>c D.c>a>b2.已知数轴上三点A、B、C分别表示有理数a、1、﹣1,那么|a+1|表示()A.A与B两点的距离 B.A与C两点的距离C.A与B两点到原点的距离之和D.A与C两点到原点的距离之和3.已知a2+bc=14,b2﹣2bc=﹣6,则3a2+4b2﹣5bc的值是()A.8 B.12 C.16 D.184.已知关于x的方程mx+2=2(m﹣x)的解满足|x﹣|﹣1=0,则m的值是()A.10或B.10或﹣ C.﹣10或 D.﹣10或﹣5.两个5次多项式之和是()A.25次多项式B.50次多项式C.5次多项式D.不高于5次多项式6.线段AB=3cm,BC=6cm,则A、C两点之间的距离是()A.9cm B.3cm C.9cm或3cm D.不能确定7.若∠α与∠β的两边分别平行,且∠α=(x+10)°,∠β=(2x﹣25)°,则∠α的度数为()A.45°B.75°C.45°或75°D.45°或55°8.|x﹣2|+|x﹣3|+|x﹣4|的最小值是()A.1 B.2 C.3 D.49.把前2015个数1,2,3,…,2015的每一个数的前面任意填上“+”号或“﹣”号,然后将它们相加,则所得之结果为()A.正数 B.奇数C.偶数 D.有时为奇数;有时为偶数10.计算+(+)+(++)+++++…+(+++…+)=()A.612 B.612.5 C.613 D.613.5二、填空题(本题有8小题,每小题4分,共32分)11.在如图的数轴上,点B与点C到点A的距离相等,A、B两点对应的实数分别是1和﹣,则点C对应的实数是.12.若一个正数的平方根是a﹣5和2a﹣1,则这个正数是.13.如果的小数部分为a,的整数部分为b,求a+b﹣的值.14.=.15.如果有2015名学生排成一列,按1,2,3,4,3,2,1,2,3,4,3,2,…的规律报数,那么第2015名学生所报的数是.16.方程的解是x=.17.如图所示,边长为3厘米与5厘米的两个正方形并排放在一起.在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧.则阴影部分的面积是平方厘米(π取3).18.平面上有10条直线,其中有4条直线是互相平行,那么这10条直线最多将平面分成个部分.三、解答题(共5小题,满分48分)19.计算:﹣14+0.52×[﹣3+(﹣1)2015].20.已知代数式x2+ax﹣(2bx2﹣3x+5y+1)﹣y+6的值与字母x的取值无关,求的值.21.m为正整数,已知二元一次方程组有整数解,求m的值.22.某班参加一次智力竞赛,共a,b,c三题,每题或者得满分或者得0分.其中题a满分20分,题b、题c满分分别为25分.竞赛结果,每个学生至少答对了一题,三题全答对的有1人,答对其中两道题的有15人,答对题a的人数与答对题b的人数之和为29,答对题a的人数与答对题c的人数之和为25,答对题b的人数与答对题c的人数之和为20,问这个班的平均成绩是多少分?23.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF (1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.2016~2017学年度七年级上学期第一次联考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的.不选、多选、错选,均不给分)1.若,则a,b,c的大小关系是()A.c>b>a B.a>c>b C.a>b>c D.c>a>b【考点】有理数大小比较.【分析】因为>>,然后在不等式的两边同时乘以﹣1,然后再同时加1,即可判断.【解答】解:∵>>,∴﹣<﹣<﹣.∴﹣+1<﹣+1<﹣+1,即<<.∴a<b<c.故选:A.【点评】本题主要考查的是比较有理数的大小,利用不等式的性质进行变形是解题的关键.2.已知数轴上三点A、B、C分别表示有理数a、1、﹣1,那么|a+1|表示()A.A与B两点的距离 B.A与C两点的距离C.A与B两点到原点的距离之和D.A与C两点到原点的距离之和【考点】数轴;绝对值.【分析】此题可借助数轴用数形结合的方法求解、分析.【解答】解:|a+1|=|a﹣(﹣1)|即:该绝对值表示A点与C点之间的距离;所以答案选B.【点评】此题综合考查了数轴、绝对值的有关内容.3.已知a2+bc=14,b2﹣2bc=﹣6,则3a2+4b2﹣5bc的值是()A.8 B.12 C.16 D.18【考点】整式的加减.【分析】根据a2+bc=14,b2﹣2bc=﹣6,求得a2,b2的值,再代入3a2+4b2﹣5bc,求值即可.【解答】解:∵a2+bc=14,b2﹣2bc=﹣6,∴a2=14﹣bc,b2=﹣6+2bc,∴3a2+4b2﹣5bc=3(14﹣bc)+4(﹣6+2bc)﹣5bc=42﹣3bc﹣24+8bc﹣5bc=18,故选D.【点评】本题考查了整式的加减,注意整体思想的运用是解题的关键,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地2016届中考的常考点.4.已知关于x的方程mx+2=2(m﹣x)的解满足|x﹣|﹣1=0,则m的值是()A.10或B.10或﹣C.﹣10或D.﹣10或﹣【考点】含绝对值符号的一元一次方程.【专题】计算题.【分析】解此题分两步:(1)求出|x﹣|﹣1=0的解;(2)把求出的解代入方程mx+2=2(m﹣x),把未知数转化成已知数,方程也同时转化为关于未知系数的方程,解方程即可.【解答】解:先由|x﹣|﹣1=0,得出x=或﹣;再将x=和x=﹣分别代入mx+2=2(m﹣x),求出m=10或故选:A.【点评】解答本题时要格外注意,|x﹣|﹣1=0的解有两个.解出x的值后,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程,通过未知系数的方程求出未知数系数,这种解题方法叫做待定系数法,是数学中的一个重要方法,以后在函数的学习中将大量用到这种方法.5.两个5次多项式之和是()A.25次多项式B.50次多项式C.5次多项式D.不高于5次多项式【考点】整式的加减.【分析】根据合并同类项的法则:系数相加作为系数,字母和字母的指数不变即可判断出正确答案.【解答】解:根据合并同类项的法则可得:两个5次多项式相加,结果一定是不超过5次的多项式,故选D.【点评】本题考查了整式的加减,以及合并同类项得法则,注意掌握合并同类项时系数相加作为系数,字母和字母的指数不变.6.线段AB=3cm,BC=6cm,则A、C两点之间的距离是()A.9cm B.3cm C.9cm或3cm D.不能确定【考点】两点间的距离.【分析】当A,B,C三点在一条直线上时,分点C在线段AB的延长线上和在线段BA的延长线上两种情况讨论;当A,B,C三点不在一条直线上时,A,C两点之间的距离有多种可能不能确定.【解答】解:(1)当A,B,C三点在一条直线上时,分点C在线段AB的延长线上和在线段BA的延长线上两种情况讨论;①点C在线段AB的延长线上时,AC=AB+BC=3+6=9m;②点在线段BA的延长线上时,AC=BC﹣AB=6﹣3=3cm;(2)当A,B,C三点不在一条直线上时,A,C两点之间的距离有多种可能,不能确定.故选:D.【点评】本题考查了两点间的距离,解题的关键是分类讨论A,B,C三点是否在一条直线上.7.若∠α与∠β的两边分别平行,且∠α=(x+10)°,∠β=(2x﹣25)°,则∠α的度数为()A.45°B.75°C.45°或75°D.45°或55°【考点】平行线的性质.【专题】分类讨论.【分析】根据两角的两边互相平行得出两角相等或互补,得出方程,求出即可.【解答】解:∵∠α与∠β的两边分别平行,∴∠α+∠β=180°或∠α=∠β,∵∠α=(x+10)°,∠β=(2x﹣25)°,∴x+10+2x﹣25=180或x+10=2x﹣25,解得:x=35或65,∴∠α=45°或75°,故选C.【点评】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.8.|x﹣2|+|x﹣3|+|x﹣4|的最小值是()A.1 B.2 C.3 D.4【考点】绝对值.【分析】|x﹣2|+|x﹣3|+|x﹣4|表示数轴上某点到表示2、3、4三点的距离之和.【解答】解:∵可看作是数轴上表示x的点到2、3、4三点的距离之和,∴当x=3时,|x﹣2|+|x﹣3|+|x﹣4|有最小值.∴|x﹣2|+|x﹣3|+|x﹣4|的最小值=|3﹣2|+|3﹣3|+|3﹣4|=2.故选:B.【点评】本题主要考查的是绝对值的应用,明确|x﹣2|+|x﹣3|+|x﹣4|的几何意义是解题的关键.9.把前2015个数1,2,3,…,2015的每一个数的前面任意填上“+”号或“﹣”号,然后将它们相加,则所得之结果为()A.正数 B.奇数C.偶数 D.有时为奇数;有时为偶数【考点】有理数的加减混合运算.【专题】计算题;实数.【分析】把1+2+…+2014+2015分为(1+2+…+2014)+2015,根据相邻两个数之和或之差为奇数,判断即可得到结果.【解答】解:∵相邻两个数之和或之差为奇数,且从1开始到2014共1012对,∴偶数个奇数相加为偶数,再加上2015得到所得结果为奇数.故选B【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.10.计算+(+)+(++)+++++…+(+++…+)=()A.612 B.612.5 C.613 D.613.5【考点】有理数的加法.【专题】计算题;推理填空题.【分析】首先根据=,+=1,++=1,+++=2,…,判断出、+、++、++ +、…、+++…+构成了为首项,为公差的等差数列;然后根据等差数列的求和方法,求出算式的值是多少即可.【解答】解:+(+)+(++)+++++…+(+++…+)=+1+1+2+…+24=()×49÷2=25×49÷2=612.5故选:B.【点评】此题主要考查了有理数的加法,以及等差数列的求和方法,要熟练掌握,解答此题的关键是判断出、+、++、+++、…、+++…+构成了为首项,为公差的等差数列.二、填空题(本题有8小题,每小题4分,共32分)11.在如图的数轴上,点B与点C到点A的距离相等,A、B两点对应的实数分别是1和﹣,则点C对应的实数是2+.【考点】实数与数轴.【分析】设出点C所表示的数为x,根据点B、C到点A的距离相等列出方程,即可求出x.【解答】解:设点C所表示的数为x,∵点B与点C到点A的距离相等,∴AC=AB,即x﹣1=1+,解得:x=2+.故答案为:2+.【点评】本题考查了实数与数轴的知识,根据条件点B、C到点A的距离相等列出方程是关键.12.若一个正数的平方根是a﹣5和2a﹣1,则这个正数是9.【考点】平方根.【分析】利用一个非负数的平方根互为相反数即可得到关于a的方程,解方程即可解决问题.【解答】解:∵一个正数的平方根是a﹣5和2a﹣1,则a﹣5+2a﹣1=0,解得:a=2,则a﹣5=﹣3所以这个正数是9.故填9.【点评】此题主要考查了平方的定义,要注意:一个正数有正、负两个平方根,他们互相为相反数.13.如果的小数部分为a,的整数部分为b,求a+b﹣的值4.【考点】估算无理数的大小.【分析】依据被开放数越大,对应的算术平方根越大估算出与的大小,从而求得a、b的值,然后再进行计算即可.【解答】解:∵4<5<9,∴2<<3.∴a=﹣2.∵36<37<49,∴6<<7.∴b=6.∴a+b﹣=﹣2+6﹣=4.故答案为:4.【点评】本题主要考查的是估算无理数的大小,求得a、b的值是解题的关键.14.=0.【考点】绝对值.【分析】根据绝对值的性质,先去掉绝对值,然后再进行加减运算.【解答】解:原式=﹣(﹣)﹣(﹣)﹣[﹣(﹣)]=﹣+﹣++﹣=0,故答案为0.【点评】此题主要考查绝对值的性质,当a>0时,|a|=a;当a≤0时,|a|=﹣a,解题的关键是如何根据已知条件,去掉绝对值.15.如果有2015名学生排成一列,按1,2,3,4,3,2,1,2,3,4,3,2,…的规律报数,那么第2015名学生所报的数是3.【考点】规律型:数字的变化类.【分析】首先观察题中数列存在规律:以“1,2,3,4,3,2”6个数循环出现,用2015除以6看余数是多少,进行判断即可.【解答】解:题中数列存在规律:以“1,2,3,4,3,2”6个数循环出现,2015÷6=335…5,所以第2015名学生所报的数与第5个学生报的数相同,是3,故答案为:3.【点评】此题主要考查数列的规律探索与应用,观察已知找出存在的循环出现规律是解题的关键.16.方程的解是x=1008.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程左边整理后,利用拆项法变形,计算即可求出解.【解答】解:方程整理得:x(+++…+)=2015,即2x(1﹣+﹣+…+﹣)=2015,化简得:2x(1﹣)=2015,即2x•=2015,整理得:2x=2016,解得:x=1008.故答案为:1008.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.17.如图所示,边长为3厘米与5厘米的两个正方形并排放在一起.在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧.则阴影部分的面积是18.75平方厘米(π取3).【考点】扇形面积的计算;勾股定理.【专题】计算题.【分析】如图,根据图形有S 阴影部分=S 扇形CEG +S 梯形ABCE ﹣S △ABG ,然后根据扇形、梯形和三角形的面积公式进行计算即可.【解答】解:如图,正方形ABCD 的边长为3cm ,正方形EFGC 的边长为5cm ,根据题意有,S 阴影部分=S 扇形CEG +S 梯形ABCE ﹣S △ABG ,∵S 扇形CEG ==;S 梯形ABCE =(3+5)×3=12;S △ABG =×3×8=12.∴S 阴影部分=+12﹣12==18.75(cm 2).故答案为18.75.【点评】本题考查了扇形的面积公式:S=,其中n 为扇形的圆心角的度数,R 为圆的半径),或S=lR ,l 为扇形的弧长,R 为半径.也考查了梯形和三角形的面积公式以及不规则几何图形面积的求法.18.平面上有10条直线,其中有4条直线是互相平行,那么这10条直线最多将平面分成 50 个部分.【考点】平行线.【分析】先计算出6条不平行的直线所能将平面分成的部分,然后再计算加入第一条平行线所增加的平面数量,从而可得出第二、第三、第四条加上后的总数量.【解答】解:6条不平行的直线最多可将平面分成(2+2+3+4+5+6)22个部分,加入第一条平行线后,它与前面的6条直线共有6个交点,它被分成7段,每一段将原有的部分一分为二,因此增加了7个部分,同理每增加一条平行线就增加7个部分,故这10条直线最多将平面分成22+7×4=50.故答案为50.【点评】本题考查直线相交所产生平面个数的问题,有一定难度,注意先计算6条不平行的直线所分成的平面数量.三、解答题(共5小题,满分48分)19.计算:﹣14+0.52×[﹣3+(﹣1)2015].【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1+×4×(﹣4)=﹣1﹣8=﹣9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.已知代数式x2+ax﹣(2bx2﹣3x+5y+1)﹣y+6的值与字母x的取值无关,求的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】首先对题中前一个代数式合并同类项,由代数式的值与字母x无关求得a、b的值,再把a、b的值代入后一个代数式计算即可.注意第二个代数式先进行合并同类项,可简化运算.【解答】解:x2+ax﹣(2bx2﹣3x+5y+1)﹣y+6=(1﹣2b)x2+(a+3)x﹣6y+5,因为此代数式的值与字母x无关,所以1﹣2b=0,a+3=0;解得a=﹣3,b=,=a3+b2,当a=﹣3,b=时,上式=×(﹣3)3+=.【点评】此题考查的知识点是整式的加减﹣化简求值,关键是掌握用到的知识点为:所给代数式的值与某个字母无关,那么这个字母的相同次数的系数之和为0.21.m为正整数,已知二元一次方程组有整数解,求m的值.【考点】二元一次方程组的解.【专题】计算题.【分析】利用加减消元法易得x、y的解,由x、y均为整数可解得m的值.【解答】解:关于x、y的方程组:,①+②得:(3+m)x=10,即x=③,把③代入②得:y=④,∵方程的解x、y均为整数,∴3+m既能整除10也能整除15,即3+m=5,解得m=2.故m的值为2.【点评】本题考查了二元一次方程组的解法,涉及到因式分解相关知识点,解二元一次方程组有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.22.某班参加一次智力竞赛,共a,b,c三题,每题或者得满分或者得0分.其中题a满分20分,题b、题c满分分别为25分.竞赛结果,每个学生至少答对了一题,三题全答对的有1人,答对其中两道题的有15人,答对题a的人数与答对题b的人数之和为29,答对题a的人数与答对题c的人数之和为25,答对题b的人数与答对题c的人数之和为20,问这个班的平均成绩是多少分?【考点】三元一次方程组的应用;算术平均数.【专题】应用题.【分析】假设x a、x b、x c分别表示答对题a、题b、题c的人数.根据:答对题a的人数与答对题b 的人数之和为29,答对题a的人数与答对题c的人数之和为25,答对题b的人数与答对题c的人数之和为20,列出三元一次方程组,求出方程组的解.再根据:竞赛结果,每个学生至少答对了一题,三题全答对的有1人,答对其中两道题的有15人,求得答对1题的人数,进而求出该班总人数.再根据每题分数,求得平均成绩.【解答】解:设x a、x b、x c分别表示答对题a、题b、题c的人数.则有,由①+②+③得x a+x b+x c=37 ④由④﹣①得x c=8同理可得x a=17,x b=12∴答对一题的人数为37﹣1×3﹣2×15=4,全班人数为1+4+15=20∴平均成绩为=42.答:这个班的平均成绩是42分.【点评】本题解决以求分别表示答对题a、题b、题c的人数做为突破口,进而求出全班人数,求得平均成绩.23.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF (1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【考点】平行线的性质.【分析】(1)根据两直线平行,同旁内角互补求出∠AOC,然后求出∠EOB=∠AOC,计算即可得解;(2)根据两直线平行,内错角相等可得∠AOB=∠OBC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠OFC=2∠OBC,从而得解;(3)根据三角形的内角和定理求出∠COE=∠AOB,从而得到OB、OE、OF是∠AOC的四等分线,再利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣100°=80°,∵OE平分∠COF,∴∠COE=∠EOF,∵∠FOB=∠AOB,∴∠EOB=∠EOF+∠FOB=∠AOC=×80°=40°;(2)∵CB∥OA,∴∠AOB=∠OBC,∵∠FOB=∠AOB,∴∠FOB=∠OBC,∴∠OFC=∠FOB+∠OBC=2∠OBC,∴∠OBC:∠OFC=1:2,是定值;(3)在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OF是∠AOC的四等分线,∴∠COE=∠AOC=×80°=20°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.。