【经典原创】2017-2018学年北师大版初中数学九年级下册利用三角函数测高专题练习及答案解析
- 格式:docx
- 大小:425.25 KB
- 文档页数:21
1.6 利用三角函数测高本节课为活动课,活动一:测量倾斜角;活动二:测量底部可以到达的物体的高度;活动三:测量底部不可以到达的物体的高度.因此本节课采用活动的形式,先在课堂上讨论、设计方案,然后进行室外的实际测量,活动结束时,要求学生写出活动报告.重点是让学生经历设计活动方案、自制仪器或运用仪器进行实地测量以及撰写活动报告的过程.能够对所得到的数据进行分析,能够对仪器进行调整和对测量的结果进行矫正,从而得出符合实际的结果.综合运用直角三角形的边角关系的知识.解决实际问题,培养学生不怕困难的品质,发展学生的合作意识和科学精神.学习中,关注的是学生是否积极地投入到数学活动中去.在活动中是否能积极想办法,克服困难,团结合作等.教学目标知识与技能目标能够设计方案、步骤,能够说明测量的理由,能够综合运用直角三角形边角关系的知识解决实际问题.过程与方法目标经历活动设计方案,自制仪器过程;通过综合运用直角三角形边角关系的知识,利用数形结合的思想解决实际问题,提高解决问题的能力。
情感与价值观要求通过积极参与数学活动过程,培养不怕困难的品质,发展合作意识和科学精神.教学重点、难点设计活动方案、自制仪器的过程及学生学习品质的培养。
教具准备自制测倾器(或经纬仪、测角仪等)、皮尺等测量工具.教学过程提出问题,引入新课现实生活中测量物体的高度,特别像旗杆、高楼大厦、塔等较高的不可到达的物体的高度,需要我们自己去测量,自己去制作仪器,获得数据,然后利用所学的数学知识解决问题.请同学们思考小明在测塔的高仪?它的工作原理是怎样的?活动一:设计活动方案,自制仪器首先我们来自制一个测倾器(或测角仪、经纬仪等).一般的测倾器由底盘、铅锤和支杆组成.下面请同学们以组为单位,分组制作如图所示的测倾器.制作测角仪时应注意什么?支杆的中心线、铅垂线、0刻度线要重合,否则测出的角度就不准确.度盘的顶线PQ与支杆的中心线、铅垂线、0刻度线要互相垂直,并且度盘有一个旋转中心是铅垂线与PQ的交点.当度盘转动时,铅垂线始终垂直向下.一个组制作测角仪,小组内总结,讨论测角仪的使用步骤)活动二:测量倾斜角(1).把测角仪的支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ 在水平位置.(2).转动度盘,使度盘的直经对准较高目标M ,记下此时铅垂线指的度数.那么这个度数就是较高目标M 的仰角.问题1、它的工作原理是怎样的?如图,要测点M 的仰角,我们将支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ 在水平位置.我们转动度盘,使度盘的直径对准目标M ,此时铅垂线指向一个度数.即∠BCA 的度数.根据图形我们不难发现∠BCA+∠ECB =90°,而∠MCE+∠ECB=90°,即∠BCA 、∠MCE 都是∠ECB 的余角,根据同角的余角相等,得∠BCA =∠MCE.因此读出∠BCA 的度数,也就读出了仰角∠MCE 的度数. 问题2、如何用测角仪测量一个低处物体的俯角呢?和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角. 活动三:测量底部可以到达的物体的高度.“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离.要测旗杆MN 的高度,可按下列步骤进行:(如下图)1.在测点A 处安置测倾器(即测角仪),测得M 的仰角∠MCE=α.2.量出测点A 到物体底部N 的水平距离AN =l.3.量出测倾器(即测角仪)的高度AC =a(即顶线PQ 成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN 的高度.在Rt △MEC 中,∠MCE=α,AN=EC=l ,所以tan α=ECME ,即ME=tana ·EC =l ·tan α.又因为NE =AC =a ,所以MN =ME+EN =l ·tan α+a.活动四:测量底部不可以到达的物体的高度.所为“底部不可以到达”,就是在地面上不能直接测得测点与被测物体的底部之间的距离.例如测量一个山峰的高度.可按下面的步骤进行(如图所示):1.在测点A 处安置测角仪,测得此时物体MN 的顶端M 的仰角∠MCE =α.2.在测点A 与物体之间的B 处安置测角仪(A 、B 与N 都在同一条直线上),此时测得M 的仰角∠MDE=β.3.量出测角仪的高度AC =BD =a ,以及测点A ,B 之间的距离AB=b根据测量的AB 的长度,AC 、BD 的高度以及∠MCE 、∠MDE 的大小,根据直角三角形的边角关系.即可求出MN 的高度。
北师大版数学九年级下册第一章第六节利用三角函数测高课时练习一、单选题(共15题)1.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里答案:C解析:解答:如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=55°.在Rt△ABP中,∵∠ABP=90°,∠A=55°,AP=2海里,∴AB=AP•cos∠A=2cos55°海里.故选C.分析: 首先由方向角的定义及已知条件得出∠NPA=55°,AP=2海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=55°.然后解Rt△ABP,得出AB=AP•cos ∠A=2cos55°海里2.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔60海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()A.302海里B.303海里C.60海里D.306海里答案:A解析:解答: 过点P作PC⊥AB于点C.在Rt△PAC中,∵PA=60海里,∠PAC=30°,∴CP=12AP=30海里.在Rt△PBC中,∵PC=30海里,∠PBC=∠BPC=45°,∴PB=2PC=302海里.即海轮所在的B处与灯塔P的距离为302海里.故选:A.分析: 此题主要考查了解直角三角形的应用-方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线3.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km、从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.4km B.(2+2)km C.22km D.(4-2)km答案:B解析:解答: 在CD上取一点E,使BD=DE,可得:∠EBD=45°,AD=DC,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC,∵AB=2,∴EC=BE=2,∴BD=ED=2∴DC=2+2故选:B.分析: 根据题意在CD上取一点E,使BD=DE,进而得出EC=BE=2,再利用勾股定理得出DE的长,即可得出答案4.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()A.402海里B.403海里C.80海里D.406海里答案:A解析:解答: 过点P作PC⊥AB于点C,由题意可得出:∠A=30°,∠B=45°,AP=80海里,故CP=12AP=40(海里),则PB=4045sin=402(海里).故选:A.分析: 过点P作垂直于AB的辅助线PC,利三角函数解三角形,即可得出答案5.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.23km C.22km D.(3+1)km答案:C解析:解答: 如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=12OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,∴BD=AD=2,∴AB=2AD=22即该船航行的距离(即AB的长)为22km.故选:C.分析: 本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键6.如图,杭州市郊外一景区内有一条笔直的公路a经过两个景点A,B,景区管委会又开发了风景优美的景点C,经测量景点C位于景点A的北偏东60°方向,又位于景点B的北偏东30°方向,且景点A、B相距200m,则景点B、C相距的路程为()A.1003B.200 C.100 D.2003答案:B解析:解答: 如图,由题意得∠CAB=30°,∠ABC=90°+30°=120°,∴∠C=180°-∠CAB-∠ABC=30°,∴∠CAB=∠C=30°,∴BC=AB=200m,即景点B、C相距的路程为200m.故选B.分析: 先根据方向角的定义得出∠CAB=30°,∠ABC=120°,由三角形内角和定理求出∠C=180°-∠CAB-∠ABC=30°,则∠CAB=∠C=30°,根据等角对等边求出BC=AB=200m 7.如图,C、D分别是一个湖的南、北两端A和B正东方向的两个村庄,CD=6km,且D 位于C的北偏东30°方向上,则AB的长为()A.23km B.33km C.6km D.3km答案:B解析:解答:过C作CE⊥BD于E,则CE=AB.直角△CED中,∠ECD=30°,CD=6,则CE=CD•cos30°=33=AB.所以AB=33(km).故选B.分析: 过C作CE⊥BD于E,根据题意及三角函数可求得CE的长,从而得到AB的长8. 如图,一艘海轮位于灯塔P的东北方向,距离灯塔402海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为()海里.A.40+403B.803C.40+203D.80答案:A解析:解答: 根据题意得:PA=402海里,∠A=45°,∠B=30°,∵在Rt△PAC中,AC=PC=PA•cos45°=402×22=40(海里),在Rt△PBC中,BC =40403tan33PCB==∠(海里),∴AB=C+BC =40+403(海里).故选A.分析: 首先由题意可得:PA =402海里,∠A=45°,∠B=30°,然后分别在Rt△PAC中与Rt△PBC中,利用三角函数的知识分别求得AC与BC的长,继而求得答案9.小军从A地沿北偏西60°方向走10m到B地,再从B地向正南方向走20m到C地,此时小军离A地()A.53m B.10m C.15m D.103m答案:D解析:解答: 如图所示:在Rt△ABD和Rt△CDA中,∵AD=AB•sin60°=53(m);BD=AB•cos60°=5,∴CD=15.∴AC =22(53)15-=103(m).故选:D.分析: 根据三角函数分别求AD,BD的长,从而得到CD的长.再利用勾股定理求AC的长即可10.某时刻海上点P处有一客轮,测得灯塔A位于P的北偏东30°方向,且相距50海里.客轮以60海里/小时的速度沿北偏西60°方向航行23小时到达B处,那么tan∠BAP=()A.45B.65C.1213D.1252答案:A解析:解答: ∵灯塔A位于客轮P的北偏东30°方向,且相距50海里.∴AP=50,∵客轮以60海里/小时的速度沿北偏西60°方向航行23小时到达B处,∴∠APB=90°,BP=60×23=40,∴tan∠BAP=404505 BPAP==故选A.分析:根据题意作出图形后知道北偏东30°与北偏西60°成直角,利用正切的定义求值即可11.在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点10千米的C地去,先沿北偏东70°方向走了8千米到达B地,然后再从B地走了6千米到达目的地C,此时小霞在B地的()A.北偏东20°方向上B.北偏西20°方向上C.北偏西30°方向上D.北偏西40°方向上答案:B解析:解答: 如图,∵AC=10千米,AB=8千米,BC=6千米,∴AC2=AB2+BC2,∴△ABC为直角三角形,即∠ABC=90°,又∵B点在A的北偏东70°方向,∴∠1=90°-70°=20°,∴∠2=∠1=20°,即C点在B的北偏西20°的方向上.故选B.分析: 本题考查了解直角三角形有关方向角的问题:在每点处画上东南西北,然后利用平行线的性质和解直角三角形求角.也考查了勾股定理的逆定理12.海中有一个小岛A,它的周围a海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东75°方向上,航行12海里到达D点,这是测得小岛A在北偏东60°方向上.若渔船不改变航线继续向东航行而没有触礁危险,则a的最大值为()A.5 B.6 C.63D.8答案:B解析:解答: 作AC⊥BD于点C.∠ABD=90°-75°=15°,∵∠ADC=90°-60°=30°,∴∠BAD=∠ADC-∠ABD=30°-15°=15°,∴∠ABD=∠BAD,∴BD=AD=12(海里),在直角△ADC中,AC=12AD=12×12=6(海里).故a的最大值是6海里.分析: 渔船不改变航线继续向东航行而没有触礁危险,则C到航线的距离就是a的最大值,作AC⊥BD,根据方向角的定义即可求得AD的长度,然后在直角△ACD中,求得AC的长13.如图,小明同学在东西方向的环海路A处,测得海中灯塔P在北偏东60°方向上,在A 处东500米的B处,测得海中灯塔P在北偏东30°方向上,则灯塔P到环海路的距离PC=()米.A.250 B.500 C.2503D.5003答案:C解析:解答:∵∠PAB=90°-60°=30°,∠PBC=90°-30°=60°.又∵∠PBC=∠PAB+∠APB,∴∠PAB=∠APB=30°.∴PB=AB.在直角△PBC中,PC=PB•sin60°=500×32=2503故选C.分析:容易判断△ABP是等腰三角形,AB=BP;在直角△BCP中,利用三角函数即可求得PC的长14.温州市处于东南沿海,夏季经常遭受台风袭击.一次,温州气象局测得台风中心在温州市A的正西方向300千米的B处(如图),以每小时107千米的速度向东偏南30°的BC方向移动,并检测到台风中心在移动过程中,温州市A将受到影响,且距台风中心200千米的范围是受台风严重影响的区域.则影响温州市A的时间会持续多长?()A .5B .6C .8D .10答案: D解析:解答:过点A 作AD ⊥BC 于D ,由题意得AB =300,∠ABD =30°,则AD =12AB =150(km ), 设台风中心距A 点200km 处,刚好处在BC 上的E ,F 两点则,在Rt △ADE 中,AE =200,AD =150,则DE =22AE AD =507从而可得:EF =2DE =1007,故A 镇受台风严重影响的时间为1007107=10(h ). 故选D .分析: 首先过A 作作AD ⊥BC 于D ,求得AD 的长;设台风中心距A 点200km 处,刚好处在BC 上的E ,F 两点则,在直角三角形中,求得ED ,DF 的长,已知速度,则可以求得受影响的时间 15.如图,甲、乙两船同时从港口O 出发,其中甲船沿北偏西30°方向航行,乙船沿南偏西70°方向航行,已知两船的航行速度相同,如果1小时后甲、乙两船分别到达点A 、B 处,那么点B 位于点A 的( )A.南偏西40°B.南偏西30°C.南偏西20°D.南偏西10°答案:C解析:解答:∵甲船沿北偏西30°方向航行,乙船沿南偏西70°方向航行,两船的航行速度相同,∴AO=BO,∠BOA=80°,∠OAD=30°∴∠BAO=∠ABO=50°,∴∠BAD=∠BAO-∠OAD=50°-30°=20°,∴点B位于点A的南偏西20°的方向上,故选C.分析: 由甲船沿北偏西30°方向航行,乙船沿南偏西70°方向航行,得出∠BOA的度数,由两船的航行速度相同,得出AO=BO,得出∠BAO=50°,以及求出∠BAD的度数,得出点B位于点A的方向二、填空题(共5题)16.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为__________km答案: 22解析:解答: 如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4km,∴AD=12OA=2km.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,∴BD=AD=2km,∴AB=2AD=22km.即该船航行的距离(即AB的长)为22km.故答案为22km.分析:本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键17.如图,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,且AM=100海里.那么该船继续航行__________海里可使渔船到达离灯塔距离最近的位置答案:503解析:解答: 如图,过M作东西方向的垂线,设垂足为N.易知:∠MAN=90°=30°.在Rt△AMN中,∵∠ANM=90°,∠MAN=30°,AM=100海里,∴AN=AM•cos∠MAN=100×32=503海里.故该船继续航行503海里可使渔船到达离灯塔距离最近的位置.故答案为503分析:过M作东西方向的垂线,设垂足为N.由题易可得∠MAN=30°,在Rt△MAN中,根据锐角三角函数的定义求出AN的长即可18.在我们生活中通常用两种方法来确定物体的位置.如小岛A在码头O的南偏东60°方向的14千米处,若以码头O为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1千米为单位长度建立平面直角坐标系,则小岛A也可表示成____________答案:(73,-7).解析:解答: 过点A作AC⊥x轴于C.在直角△OAC中,∠AOC=90°-60°=30°,OA=14千米,则AC=12OA=7千米,OC=73千米.因而小岛A所在位置的坐标是(73,-7).故答案为:(73,-7).分析: 过点A作AC⊥x轴于C,根据已知可求得小岛A的坐标19.如图,有A 、B 两艘船在大海中航行,B 船在A 船的正东方向,且两船保持20海里的距离,某一时刻这两艘船同时测得在A 的东北方向,B 的北偏东15°方向有另一艘船C ,那么此时船C 与船B 的距离是_______海里.(结果保留根号)答案:202解析:解答:过点B 作BD ⊥AC 于D .由题意可知,∠BAC =45°,∠ABC =90°+15°=105°,∴∠ACB =180°-∠BAC -∠ABC =30°.在Rt △ABD 中,AD =BD =AB •sin ∠BAD =20×22=102(海里), 在Rt △BCD 中,BC =BD sin ∠BCD=1022021sin 2BD BCD==∠ (海里), 故答案为202海里.分析: 首先过点B 作BD ⊥AC 于D ,由题意可知,∠BAC =45°,∠ABC =90°+15°=105°,则可求得∠ACB 的度数,然后利用三角函数的知识求解即可求得答案20.一艘观光游船从港口A 以北偏东60°的方向出港观光,航行60海里至C 处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东30°方向,马上以40海里每小时的速度前往救援,海警船到达事故船C 处所需的时间大约为_________小时(用根号表示).答案:3 2解析:解答:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=60海里,∴CD=12AC=30海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°-30°=60°,∴BC =30203 sin32CDCBD==∠∴海警船到大事故船C处所需的时间大约为:203÷40=32(小时).故答案为3 2分析: 本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键三、解答题(共5题)21.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值)答案:5005002解析:解答: 如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB 的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.在Rt△BCE中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=12BC=12×1000=500米;在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=AB=1000米,∴CF=22CD=5002米,∴DA=BE+CF=(500+5002)米,故拦截点D处到公路的距离是(500+5002)米.分析: 本题考查了解直角三角形的应用-方向角问题,锐角三角函数的定义,正确理解方向角的定义,进而作出辅助线构造直角三角形是解题的关键22.如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);答案:解答:(1)如图,作PC⊥AB于C,在Rt△PAC中,∵PA=100,∠PAC=53°,∴PC=PA•sin∠PAC=100×0.80=80,在Rt△PBC中,∵PC=80,∠PBC=∠BPC=45°,∴PB=2PC=1.41×80≈113,即B处与灯塔P的距离约为113海里;(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin53°=0.80,cos53°=0.60,tan53°=0.33,2=1.41)答案:113海里解析:(2)∵∠CBP=45°,PB≈113海里,∴灯塔P位于B处北偏西45°方向,且距离B处约113海里分析:本题考查了解直角三角形的应用-方向角问题,直角三角形,锐角三角函数的有关知识.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线求出即可.23.如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:3≈1.732)答案:17解析:解答:如图,过点C作CD⊥AB于点D,AB=20×1=20(海里),∵∠CAF=60°,∠CBE=30°,∴∠CBA=∠CBE+∠EBA=120°,∠CAB=90°-∠CAF=30°,∴∠C=180°-∠CBA-∠CAB=30°,∴∠C=∠CAB,∴BC=BA=20(海里),∠CBD=90°-∠CBE=60°,∴CD=BC•sin∠CBD=20×32≈17(海里).分析: 过点C作CD⊥AB于点D,则若该船继续向西航行至离灯塔距离最近的位置为CD 的长度,利用锐角三角函数关系进行求解即可24.如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).答案:见解答解析: 解答:如图:过P 作PM ⊥AB 于M ,则∠PMB =∠PMA =90°,∵∠PBM =90°-45°=45°,∠PAM =90°-60°=30°,AP =20海里,∴PM =12AP =10海里,AM =cos 30°AP =103海里, ∴∠BPM =∠PBM =45°,∴PM =BM =10海里,∴AB =AM +BM =(10+103)海里,∴BP =PM sin 45PM =102海里, 即小船到B 码头的距离是102海里,A 、B 两个码头间的距离是(10+103)海里. 分析: 过P 作PM ⊥AB 于M ,求出∠PBM =45°,∠PAM =30°,求出PM ,即可求出BM 、BP25.如图,要测量A 点到河岸BC 的距离,在B 点测得A 点在B 点的北偏东30°方向上,在C 点测得A 点在C 点的北偏西45°方向上,又测得BC =150m .求A 点到河岸BC 的距离.(结果保留整数)(参考数据:2≈1.41,3≈1.73)答案:95解析:解答:过点A 作AD ⊥BC 于点D ,设AD =xm .在Rt△ABD中,∵∠ADB=90°,∠BAD=30°,∴BD=AD•tan30°=3 3x在Rt△ACD中,∵∠ADC=90°,∠CAD=45°,∴CD=AD=x.∵BD+CD=BC,∴33x+x=150,∴x=75(3-3)≈95.即A点到河岸BC的距离约为95m.分析: 本题考查了解直角三角形的应用-方向角问题,通过作辅助线构造直角三角形,再把条件和问题转化到直角三角形中,有公共直角边的可利用这条边进行求解。