智能电动往返小车完整版(论文+电路+程序)
- 格式:doc
- 大小:580.08 KB
- 文档页数:45
智能循迹避障小车完整程序(亲测好使)/*******************************************//利用51定时器产生PWM波来调节电机速度//速度变化范围从0-100可调//使用三路做寻迹使用,哪一路检测在黑线哪一路为//高电平//没检测到黑线表示有反射对应输出低电平信号*********************************************/#include<>#define uint unsigned int#define uchar unsigned char/*电机四个接口定义*/sbit in1=P0^0;sbit in2=P0^1;sbit in3=P0^2;sbit in4=P0^3;/*计时器*/uchar j,k,i,a,A1,A2,second,minge,minshi;sbit dula=P2^6;sbit wela=P2^7;uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};uchar code table2[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef,0xf7,0xfc,0xb9,0xde,0xf9,0xf1};void delay(uchar i){for(j=i;j>0;j--)for(k=110;k>0;k--);}void display(uchar sh_c,uchar g_c,uchar min_ge,uchar min_shi) {dula=1;P0=table[sh_c];dula=0;P0=0xff;wela=1;P0=0xfb;wela=0;delay(5);dula=1;P0=table[g_c];dula=0;P0=0xff;wela=1;P0=0xf7;wela=0;delay(5);dula=1;P0=table[min_shi];dula=0;P0=0xff;wela=1;P0=0xfe;wela=0;delay(5);dula=1;P0=table2[min_ge];dula=0;P0=0xff;wela=1;P0=0xfd;wela=0;delay(5);}/*左、中、右三路循迹传感器接口定义*/ sbit zuo=P1^0; sbit zhong=P1^1;sbit you=P1^2;/*避障接口定义*/sbit bz_zuo=P1^3;sbit bz_zhong=P1^4;sbit bz_you=P1^5;uchar count = 0;/*利用定时器0定时中断,产生PWM波*/ void Init_timer() {TH0 = (65535-10)/256;TL0 = (65535-10)%256;TMOD = 0x01;TR0 = 1;ET0 = 1;EA = 1;}/*左轮速度调节程序*/void zuolun(uchar speed){if(count <= speed) //count计数变量{in1 = 1;in2 = 0;}else{in1 = 0;in2 = 1;}}void youlun(uchar speed) //同上{if(count<= speed){in3 = 1;in4 = 0;}else{in3 = 0;in4 = 1;}}void Inline() //检测黑线信号{uchar temp;temp =P1;switch(temp){case 0x01:zuolun(0); youlun(90);break; //左侧循迹传感器压线,小车向左前修正case 0x02:zuolun(100);youlun(100);break; //中间循迹传感器压线,保持直走此处两值使电机速度保持相同case 0x04:zuolun(90); youlun(0);break; //右侧循迹传感器压线,小车向右前修正case 0x08:zuolun(90); youlun(0);break; //左侧避障传感器有信号小车右转case 0x10:zuolun(90); youlun(0);break; //中间避障传感器有信号小车左转case 0x20:zuolun(90); youlun(0);break; //右侧避障传感器有信号小车左转}/*if(zuo==1){zuolun(10);youlun(50);}else if(zhong==1){zuolun(99);youlun(99);}else if(you==1){zuolun(50);youlun(10);} */}void main() //主函数{Init_timer(); //调用函数while(1){Inline();minge=0;minshi=0;second++;if(second==60)second=0,minge++;A1=second/10;A2=second%10;if(minge==10)minge=0,minshi++;for(a=200;a>0;a--){display(A1,A2,minge,minshi);};}}void Timer0_int()interrupt 1 //定时器中断计数{TH0 = (65535-10)/256;TL0 = (65535-10)%256;count ++;if(count >= 100){count = 0;}}。
自动往返电动小汽车的设计学生:指导老师:摘要: 本文采用了基于单片机的小车控制系统的硬件设计和软件设计。
自动控制系统是电子系统和机械系统必不可少的纽带,它的存在具有着非常重要的作用。
本文研究的重点是小车运行控制系统,而该系统硬件部分的重心在于单片机,黑线检测采用了光敏传感器和电压比较器来实现。
单片机采用STC89C51来实现,硬件部分是以单片机为核心,还包括电机驱动器模块,数码显示模块等部分。
该小车通过检测地面黑线来实现对应的流程控制,按照预先设定好的程序,实现全速前进,减速前进,倒退等功能。
并用数码显示器来显示当前运行到的位置的结果。
关键词:89C51单片机;光敏电阻;自动小车The Designing of Automatically Back and Forth Electric CarUndergraduate:Supervisor:Abstract: In this paper, the hardware design and software design of control system based on MCU. Automatic control system is the necessary connection of electronic system and mechanical system, it has an very important role. This paper is focused on the trolley control system, the hardware of the system focuses on MCU, line detection using a photosensitive sensor and a voltage comparator to achiev e.Single chip microcomputer u sing STC89C51 to achieve, the hardware part is a single-chip microcomputer as the core, also includes a motor driver module, digital display module etc. The car through the detection of ground line to achieve process control corresponding, according to the preset program, to achieve full speed ahead, slow forward, rewind. With digital display to display the current operation to the location of the results.Key words: 89C51 MCU; photosensitive resistance; automatic car目录第一章绪论 (1)1.1 研究背景及其目的意义 (1)1.2 该课题研究的设计思路 (1)第二章本课题方案论证 (2)2.1 主控制器部分 (2)2.2 小车运行状态显示部分 (2)2.3 小车驱动方案选择 (3)2.4 电机驱动方案选择 (3)2.5 电机调速方案选择 (3)2.6 电源模块的选择 (4)2.7 检测黑线设计方案比较与选择 (4)2.8 本章总结 (4)第三章硬件设计 (6)3.1电源部分 (6)3.2数据显示部分 (7)3.2.1 七段数码管(LED)显示电路选择 (7)3.2.2 七段数码管(LED)静态显示方式 (7)3.2.3 LED动态显示方式 (7)3.3黑线检测部分 (8)3.4 电机调速部分芯片简介 (9)第四章软件设计 (10)4.1 简介KeilUvision2 (10)4.2 程序设计 (14)第五章 PROTUES仿真设计 (16)结论 (19)致谢 (21)附录1 系统硬件图 (22)附录2 程序源代码 (23)第一章绪论1.1 研究背景及其目的意义随着历史的发展,那些采集系统原本由小规模的数字逻辑电路及硬件程序控制器组成,而现在微处理器控制的采集系统取代了原本的这些采集系统。
一方案论证与选择1 电机调速模块电机调速主要是控制小车的速度与行驶方向。
通过对前轮电机转速的控制可控制小车的行驶方向,对小车的行驶速度的控制通过对其后轮转速的控制实现。
此模块为本设计的核心部分。
(1)电机调速方案方案一:电枢回路串电阻调速。
如II-1-1所示,通过单片机控制继电器,这样可以控制接入电枢回路电阻的大小,从而实现串电阻调速。
此方案只能分级调速,而且,串入电阻造成能量损耗,而本设计采用电池供电,显然,需要节能的调速系统,故此方案不能达到要求。
图III-1-1 电机电枢回路串电阻调速电路图方案二:电枢回路串电感调速。
原理图与方案一相同,将电阻换为电感,这样可以减小能耗,但由于电感消耗无功功率,造成电源污染,故不能采用此方案。
方案三:采用弱磁调速,即改变电机气隙磁通。
此方案可以连续调速,而且,能耗小,可由额定转速向高速方向调节,也可由额定转速向低速方向调节。
但由于小车电机不为他励直流电机,故很难改变磁通大小,方案难以实现。
方案四:采用改变端电压调速。
根据直流电机机械特性方程n=Ua/keФ+(Ra+Rj)T/kekTФ2=n0-βTTn——电机转速;n0——电机空载转速;ke、kT——电机结构参数所确定的电机电势常数、转矩常数;Ф——气隙磁通;Ua——电动机电枢电压;Ra、Rj——电机电枢电阻及串入电阻;T——负载转矩;βT——机械特性曲线斜率;由上述直流电动机机械特性知,改变电枢端电压,可以连续改变电动机转速。
此方案简单易行,易于实现,故采用此方案。
(2)改变电压方式选择方案一:G-M调速系统。
即电机带动电动机转动调速。
通过改变直流发电机的励磁电流,从而改变输出端电压,这样就改变了电动机电枢端电压。
此方案可在四象限运行,但设备多、体积大、费用高、效率低、维护不方便。
而且,本设计采用电源供电,此方案很难实现。
方案二:V-M调速系统。
可以为半波、全波、半控、全控等形式,通过调节触发装置GT的控制电压来移动触发脉冲的相位,即可改变输出直流电压,从而实现平滑调速。
摘要89s52单片机是一款八位单片机,他的易用性和多功能性受到了广大使用者的好评。
这里介绍的是如何用89s52单片机来实现课程设计,该设计是结合科研项目而确定的设计类课题。
本系统以设计题目的要求为目的,采用89s52单片机为控制核心,利用超声波传感器检测道路上的障碍,控制电动小汽车的自动避障,慢速行驶,以及自动停车.整个系统的电路结构简单,可靠性能高。
实验测试结果满足要求,本文着重介绍了该系统的硬件设计方法及测试结果分析。
采用的技术主要有:(1)通过编程来控制小车的速度;(2)传感器的有效应用;(3)新型显示芯片的采用.关键词89s52单片机超声波传感器电动小车目录第一章前言 (1)第二章方案设计与论证 (2)一直流调速系统 .................................... 错误!未定义书签。
二检测系统 (2)三显示电路 ........................................ 错误!未定义书签。
四系统原理图 (2)第三章硬件设计 (3)一 80C51单片机硬件结构............................ 错误!未定义书签。
二最小应用系统设计 (3)三 111前向通道设计................................ 错误!未定义书签。
四 111后向通道设计................................ 错误!未定义书签。
五 111显示电路设计................................ 错误!未定义书签。
第四章软件设计 .. (7)一主程序设计 (7)二333 显示子程序设计.............................. 错误!未定义书签。
三避障子程序设计 (11)四软件抗干扰技术 (11)五 333“看门狗”技术 .............................. 错误!未定义书签。
智能小车毕业论文智能小车毕业论文目录引言............................................................................................................................ 1第一章小车总体系统方案的设计.......................................................................... 31.1械部分方案的拟定与比较.............................................................................. 31.1.1实现方法............................................................................................... 31.1.2行走机构............................................................................................... 31.2控制单元方案的拟定与比较.......................................................................... 41.3传感检测部分方案的拟定与比较.................................................................. 51.3.1 遥控模块.............................................................................................. 51.3.2路径检测模块....................................................................................... 61.3.3 避障模块.............................................................................................. 61.4电机方案的拟定与比较.................................................................................. 71.4.1电机驱动............................................................................................... 71.4.2电机驱动芯片....................................................................................... 71.5 电源模块方案的拟定与比较......................................................................... 71.6 系统方案的总体确定..................................................................................... 8第二章硬件电路的设计.......................................................................................... 92.1 电源模块电路设计......................................................................................... 92.2 控制单元电路设计......................................................................................... 92.2.1 时钟电路............................................................................................ 102.2.2 复位电路............................................................................................ 11I 2.2.3 并口下载线电路................................................................................ 122.3 电机驱动电路............................................................................................... 132.4 红外遥控电路............................................................................................... 162.4.1 发射部分............................................................................................ 162.4.2 接收部分............................................................................................ 172.5 路经检测电路............................................................................................... 182.6 避障电路....................................................................................................... 19系统软件设计 ............................................................................................ 20第三章系统软件设计3.1 模糊控制算法............................................................................................... 203.1.1 模糊理论的发展................................................................................ 203.1.2 模糊控制算法原理............................................................................ 203.2 智能小车的模糊控制算法........................................................................... 213.2.1 模糊化................................................................................................ 213.2.2 模糊规则库的建立............................................................................ 223.3 编程软件Keil C51简介简介 .............................................................................. 233.4软件设计........................................................................................................ 243.4.1 软件设计思路.................................................................................... 243.4.2 各模块流程图和程序设计................................................................ 25软硬件系统调试 ........................................................................................ 34第四章软硬件系统调试4.1 路径检测调试场景....................................................................................... 344.2 调试结果....................................................................................................... 344.3 结果分析....................................................................................................... 35参考文献...................................................................................................................... 36辞谢.......................................................................................................................... 37附录.......................................................................................................................... 38引 言随着控制技术、计算机技术、信息处理技术和传感器检测技术以及汽车工业的飞速发展,智能小车在工业生产和日常生活中已经扮演了非常重要的角色,近年来,智能车在野外、道路、现代物流及柔性制造系统中都有广泛应用,已成为人工智能领域研究和发展的热点之一。
自动往返小车电路图及汇编程序-论文自动往返小车电路图及汇编程序目录前言自动往返行驶小汽车的设计 (摘要) (4)第一章系统方案选择和论证............................................................5 第二章系统的硬件设计与实现.........................................................10 第三章系统的软件设计..................................................................14 第四章系统的汇编程序..................................................................19 第五章系统调试...........................................................................30 第六章技术参数...........................................................................31 结束语................................................................................. 33 参考文献 (34)前言伴随着电子信息技术的飞速发展,单片机的应用越来越广泛,电子这个原本没有生命的东西越来越具有智慧了,而单片机在这当中充当着“大脑”的作用,指挥着系统完成其工作。
单片机通过用汇编语言或者C语言编程,可以实现不同情况下的,不同电路的自动控制,用它可以开发很多智能的玩具,如机器人、遥控飞机、智能车,实际生活中的很多电器,例如电冰箱、全自动洗衣机、空调等,还有就是很多测量仪器以及高科技的空间探测,孙宙探索等都用到单片机,可以说现在生活中大多数的智能物品都用到单片机,围绕单片机以及嵌入式系统形成的电子产业将会是一个持续发展,愈来愈具有竞争力,愈来愈具有生命力的产业,电子世界将会更具有魅力。
第1篇一、实验目的1. 了解往返小车的基本原理和设计方法。
2. 掌握电路设计、机械结构和编程技巧。
3. 通过实验,提高动手能力和创新意识。
二、实验原理往返小车是一种简单的自动化小车,它能够在特定轨道上自动往返运动。
实验中,小车通过传感器检测轨道上的黑线,根据黑线的位置控制电机的转动,实现往返运动。
三、实验器材1. 小车底盘1个2. 电机2个3. 电池盒1个4. 电池1套5. 传感器2个6. 线路板1块7. 绝缘胶带1卷8. 黑色线条纸1卷9. 编程器1个10. 编程软件1套四、实验步骤1. 准备工作(1)将电池盒与电池连接,确保电池充满电。
(2)将电机与电池盒连接,确保电机转动正常。
(3)将传感器固定在小车底盘上,确保传感器能够准确检测黑线。
2. 电路设计(1)将线路板放置在小车底盘上,确保线路板与传感器、电机连接良好。
(2)将传感器输出端连接到线路板,将电机输出端连接到线路板。
(3)将线路板与电池盒连接,确保电路连接无误。
3. 编程(1)打开编程软件,创建一个新的项目。
(2)在项目中添加电机控制模块,设置电机转动速度和方向。
(3)添加传感器检测模块,设置传感器检测黑线的阈值。
(4)编写程序,使小车在检测到黑线时停止,等待一段时间后反向行驶。
4. 调试与优化(1)将编写好的程序下载到小车中。
(2)观察小车运行情况,调整传感器位置和编程参数,确保小车能够准确往返运动。
(3)优化程序,提高小车运行稳定性和速度。
五、实验结果与分析1. 实验结果通过实验,成功设计了一台往返小车,小车能够在黑线上准确往返运动。
2. 实验分析(1)传感器检测黑线的准确性对小车往返运动至关重要。
在实验过程中,通过调整传感器位置和编程参数,提高了小车检测黑线的准确性。
(2)电机转动速度和方向对小车往返运动也有较大影响。
通过调整电机参数,使小车在往返过程中保持稳定运行。
(3)编程技巧对小车往返运动有重要意义。
通过优化程序,提高了小车运行稳定性和速度。
摘要智能小车,也称轮式机器人,是一种以汽车电子为背景,涵盖智能控制、模式识别、传感技术、电子电气、计算机、机械等多学科的科技创意性设计。
一般主要由路径识别、速度采集,车速控制等模块组成。
本系统设计的自动往返电动小汽车,是在玩具电动车的基础上改装而成。
它采用AT89C51单片机作为核心器件对小汽车行驶的自动控制。
控制过程是采用发光二极管和发光三极管组成的对射式红外光电传感器识别路面黑线信息,以实现控制电动小汽车的自动停车。
同时辅以显示电路,显示小车往返的时间。
简而言之,就是运用单片机的运算和处理能力来实现小车的开启、前进、停车、定时、返回等智能控制系统。
整个系统的电路结构简单,可靠性能高。
最后在基本完成设计任务要求和自己能力下,以自己的理解再对设计中部分模块提出一些改进的方案。
关键词:AT89C51单片机;自动控制;传感器AbstractSmart cars, also called wheeled robots, is a kind of automobile electronic background, intelligent control, pattern recognition and sensing technology, electronic, computer, machinery and multidisciplinary science creative design. Generally consists mainly of path recognition, speed acquisition, angle control and speed control module.The automatic electric car in the design is modified from toy electriccar. It uses AT89C51 microcontroller as a core device for automatic control of car driving.The Control process is that using the infrared photoelectric sensors which is composed by light-emitting diodes and light-emitting transistor radio detections the Information of the black line on the load,in order to achieve control of electric cars automatically.Then c omplemented by a display circuit,showing the car’s round-trip time. In short,the design is to realise an intelligent control system by using the microcontroller’s computing and processing power t o achieve the car opening, forward, stoping, timing and returning. The circuit structure of the system is simple and it’s reliability can be high. Finally,after finishing the basic tasks required in the design, making some improvements of some modules of the design.Key words: At89C51;Automatic control;Sensor目录引言 (1)1 绪论 (1)1.1 设计背景 (1)1.2 设计概述 (1)1.3 设计任务和主要内容 (2)2 系统方案论证与分析 (3)2.1 主控单片机模块 (3)2.1.1采用凌阳16位单片机 (3)2.1.2采用89C51单片机 (3)2.2 电动机模块 (4)2.2.1采用步进电机 (4)2.2.2采用直流电机 (4)2.3 电机驱动模块 (4)2.4 电源管理 (4)2.4.1采用单电源供电 (4)2.4.2采用双电源供电 (5)2.5 路面黑线探测模块 (5)2.5.1采用对射式红外光电传感器 (5)2.5.2采用反射式红外光电传感器 (5)2.6 计时模块 (6)2.7 显示模块 (6)2.7.1采用LED数码管 (6)2.7.2采用LCD液晶显示 (6)3 自动往返小汽车系统设计 (7)3.1 主控单片机功能设计 (7)3.1.2单片机硬件结构 (7)3.1.2单片机引脚锁定 (10)3.2 电机驱动控制设计 (11)3.2.1 L298驱动原理 (12)3.2.2电机驱动电路设计 (14)3.3 黑线检测电路设计 (16)3.4 LCD液晶显示功能设计 (17)3.4.1 1602资料介绍 (18)3.4.2 显示电路设计 (21)3.5 系统设计中改进和拓展的部分 (22)3.5.1增加语音模块 (22)3.5.2小车刹停车模块 (25)4 自动往返电动小汽车系统软件设计 (26)5 硬件制作及调试 (26)5.1 系统PCB板的设计 (29)5.2 硬件调试 (30)结束语 (34)谢辞 (35)参考文献 (36)附录 (37)引言伴随着现代汽车行业的飞速发展,作为汽车的电子控制系统也势必得到更大的发展机会,以满足人们对汽车的安全性、智能化的要求,本文对智能往返小车自动控制系统的研究是对一些问题的初步思考。
实验五自动往返小车控制程序的设计
一、实验目的
1、学会熟练使用PLC解决生产实际问题。
二、实验设备
1、FX2N PLC实验平台 1 台
2、微型计算机 1 台
3、编程电缆1根
4、连接导线若干
三、实验内容
如图所示,要求小车的运行如下:
假设小车初始状态为:底门关闭(Y003断开)且位于最后端位置(后限位开关X002接通);
启动按钮X000接通,小车向前运动(Y000接通)并且停止在最前端位置(Y000断开,前限位开关X001接通);
同时,漏斗翻门打开(Y001接通),货物通过漏斗卸下。
7s后自动关闭漏斗翻门(Y001断开);
同时,小车向后运动(Y002接通)至后限位开关位置停止(Y002断开,后限位开关X002接通);
同时,小车底门打开(Y003接通),将小车中货物取下;5s后自动关闭小车底门(Y003断开)。
小车运动顺序控制状态转移图如下:。
第四届智能控制设计大赛自动往返电动小汽车(高级组)设计报告组员:李泽伟谭海军黄维龙摘要本自动往返电动小车可以实现在一段特定赛道上往返行驶,在特定路段限速通过,并且测量行驶时间和路程的功能。
设计以改装的玩具小车为基本车架,以单片机AT89S52为控制中心,利用RPR220光电对管扫描赛道上区分路段的黑线,还通过该种光电对管计算小车车轮转过圈数,由此算出小车驶过路程。
另外,系统运用L298N驱动小车的直流电机,并且可以在LCD1602上显示小车往返时间和路程。
关键词:自动往返小车限速AT89S52 RPR220 L298NAbstractThis automatic go-return toy car hold a series of functions, those are go-and-returning on a skeptical track, running in a limit speed on a certain length, and recording the distance as well as time. The design is structurally based on a re-equipped toy car. AT89S52 is used as the control center. PRP220 is used to scan the black lines and to count how many rounds the wheel runs, by which way we get the distance the toy car passes.. What’s more, L298N is used to motivate the DC electric machinery. The system puts the time and the distance on LCD1602.Keyword: automatic go-return toy car, limit speed, AT89S52, RPR220,L298N目录1、设计任务 (3)1.1基本要求 (3)1.2发挥部分 (3)2、方案论证与选择 (3)2.1、系统总体框图 (3)2.2、各模块硬件选择 (4)2.2.1、控制模块 (4)2.2.2、外部传感器模块 (4)2.2.3、电机及其驱动模块 (5)2.2.4、电源模块 (5)2.2.5、按键模块 (5)2.2.6、显示模块 (5)3、系统硬件原理与实现 (5)3.1、系统总体电路图 (5)3.2、系统各模块设计介绍 (6)3.2.1、单片机控制模块 (6)3.2.2、外部传感器模块 (7)3.2.3、电机驱动模块 (7)3.2.4、电源模块 (8)3.2.5、按键模块 (8)3.2.6、LCD液晶显示模块 (9)4、系统软件框图 (9)5、设计数据测量 (11)参考文献 (12)1、设计任务设计并制作一个能自动往返于起跑线与终点线间的小汽车。
允许用玩具汽车改装,但不能用人工遥控(包括有线和无线遥控)。
跑道宽度0.5m,表面贴有白纸,两侧有挡板,挡板与地面垂直,其高度不低于20cm。
在跑道的B、C、D、E、F、G各点处画有2cm宽的黑线,各段的长度如图1所示。
1.1基本要求1)车辆从起跑线出发(出发前,车体不得超出起跑线),到达终点线后停留10秒,然后自动返回起跑线(允许倒车返回)。
往返一次的时间应力求最短(从合上汽车电源开关开始计时)。
2)到达终点线和返回起跑线时,停车位置离起跑线和终点线偏差应最小(以车辆中心点与终点线或起跑线中心线之间距离作为偏差的测量值)。
3)D~E间为限速区,车辆往返均要求以低速通过,通过时间不得少于4秒,但不允许在限速区内停车。
1.2发挥部分1)自动记录、显示一次往返时间(记录显示装置要求安装在车上)。
2)自动记录、显示行驶距离(记录显示装置要求安装在车上)。
3)其它特色与创新。
2、方案论证与选择2.1、系统总体框图选定自动往返小车的题目后,我们决定购买一台符合尺寸要求的玩具遥控小车,通过去掉其遥控部分,并直接利用上面的直流电机的方法实现要求,由此节省自行安装和调试小车动力部分的时间。
根据设计任务要求,经过论证选择,最终确定的系统设计框图如下:系统分为单片机控制模块、外部传感器模块、电机驱动模块、电源模块、按键模块和LCD液晶显示模块。
2.2、各模块硬件选择2.2.1、控制模块控制模块负责接收传感器和按键的输入,控制液晶显示模块和PWM控制输出。
主流方案是采用FPGA芯片或者单片机。
方案1:采用可编程逻辑器件FPGA作为控制器。
FPGA可以实现各种复杂的逻辑功能、规模大、密度高、体积小、稳定性高、IO资源丰富、易于进行功能扩展。
方案2:采用Atmel公司的AT89S52单片机作为主控制器AT89S52是一个低功耗,高性能的51内核的CMOS 8位单片机,片内含8k空间的可反复擦些1000次的Flash只读存储器,具有256 bytes的随机存取数据存储器(RAM),32个IO口,2个16位可编程定时计数器。
考虑到本系统不需要复杂的逻辑功能,对数据的处理速度的要求也不是非常高。
且从使用及经济的角度考虑我们选择较为成熟的方案2。
2.2.2、外部传感器模块外部传感器模块主要作用是检测赛道上的黑线以及测量车轮转过圈数。
主要方案有以下两种。
方案1:该方案用光敏电阻组成光敏探测器检测黑线,用霍耳传感器进行测速。
首先,光敏电阻的阻值可以跟随周围环境光线的变化而变化。
当光线照射到白线上面时,光线发射强烈,光线照射到黑线上面时,光线发射较弱。
因此光敏电阻在白线和黑线上方时,阻值会发生明显的变化,只要将阻值的变化值经过比较器就可以输出高低电平。
其次,使用利用霍耳效应的传感器。
当载流导体或半导体出于与电流相垂直的磁场中时,在其两端将产生电位差的这一现象称为霍尔效应。
如果在车轮的内侧装上一条细磁铁,把霍耳传感器同样装在车轮的内侧,测量霍尔传感器的输出就可以知道车轮转过的圈数。
方案2:该方案使用RPR220型光电对管进行检测黑线和测速。
RPR220是一种一体化反射型光电探测器,其发射器是一个砷化镓红外发光二极管,而接收器是一个高灵敏度,硅平面光电三极管。
当经过黑线时接收器输出高电平。
测速时,在车轮的内侧贴上一个光电码盘,用光电对管对码盘进行检测。
光电对管照射到黑色和白色的边界时输出信号会有跳变,将跳变的输出信号送给单片机进行检测就可以得到轮子的转速。
经过论证比较,由于RPR220型光电对管内置可见光过滤器能减小离散光的影响,同时光电对管调理电路简单,工作性能稳定。
因此,外部传感器模块选用2.2.3、电机及其驱动模块方案1:采用专用芯片L298N作为电机驱动芯片。
L298N是一个具有高电压大电流的全桥驱动芯片,它相应频率高,一片L298N可以分别控制两个直流电机,而且还带有控制使能端。
用该芯片作为电机驱动,操作方便,稳定性好,性能优良。
方案2:对于直流电机用分立元件构成驱动电路。
由分立元件构成电机驱动电路,结构简单,价格低廉,在实际应用中应用广泛。
但是这种电路工作性能不够稳定。
因此我们选用了方案1。
2.2.4、电源模块电源模块作用时把外部电压降为5V,供给单片机和传感器使用。
本设计使用常用的7805作为降压芯片。
2.2.5、按键模块按键模块包括2个按键,分别负责起跑后读取行驶时间和小车行驶距离。
鉴于传感器模块的输出信号为高电平有效,因此按键没按下时,按键输出为低电平。
2.2.6、显示模块方案1:用LCD1602液晶屏。
该液晶屏可以两行显示数字、汉字,显示清晰。
方案2:用8位数码管进行显示,数码管显示亮度较高。
考虑到我们需要指示当前数值是小车行驶时间还是距离,因此决定采用能显示更多内容的LCD作为显示模块的主要硬件。
3、系统硬件设计与实现3.1、系统总体电路图3.2、系统各模块设计介绍3.2.1、单片机控制模块模块电路图如下:单片机P1口的1脚接LCD显示的数据端,P0口的5、6、7脚接LCD的控制端,P0口的1脚接蜂鸣器,P0口的3、4脚接电机控制端,P3口的4脚(计数器T0)接PWM控制端,P3口的2、3脚(中断口)接或非门,对应光电对管和按键输入。
单片机在系统中起控制中心的作用,其内部代码见软件设计部分。
3.2.2、外部传感器模块模块电路图如上图。
电源电压为5伏,信号输出后接入或非门再连接单片机的中段输入口。
当小车经过黑线时,RPR220型光电对管接收端输出约为4—5伏,经过白线时输出为0—1伏,经过LM324比较器将光电对管输出转换为逻辑信号的高低电平(比较器的基准电压为4伏)。
3.2.3、电机驱动模块模块电路图如下:电机驱动模块利用电池组供电。
单片机的两个端口输出“10”和“01”分别驱动小车向前和向后动,另外一个端口输出PWM波形,通过波形的占空比来控制直流电机的转速。
L298N是SGS公司的产品,内部同样包含4通道逻辑驱动电路。
可以方便的驱动两个直流电机,或一个两相步进电机。
L298N可接受标准TTL逻辑电平信号VSS,VSS可接4.5~7 V电压。
4脚VS接电源电压,VS电压范围VIH为+2.5~46 V。
输出电流可达2.5 A,可驱动电感性负载。
1脚和15脚下管的发射极分别单独引出以便接入电流采样电阻,形成电流传感信号。
L298可驱动2个电动机,OUT1,OUT2和OUT3,OUT4之间可分别接电动机,本实验装置我们选用驱动一台电动机。
5,7,10,12脚接输入控制电平,控制电机的正反转。
EnA,EnB接控制使能端,控制电机的停转。
L298N的管脚图如下:3.2.4、电源模块模块电路图如下:该电源模块的功能是把9伏锌锰干电池通过7805转换为5伏电压,向单片机、逻辑芯片和LCD1602供电。
考虑到如果用电池组同时向电机和芯片供电时,由于驱动电机所需电流较大,容易影响对芯片的供电,因此我们决定电池组单独对驱动电机,另外利用6F22型叠层式锌-锰干电池向电路其他部分提供电源。
3.2.5、按键模块模块电路图如下:由于单片机的中断口是低电平(或者下降沿)触发,而RPR200型光电对管在检测黑线时输出高电平,处于减少芯片书的考虑,我们决定采用或非门,同时把没有按下的按键输出设为低电平,即如上图所示。
3.2.6、LCD液晶显示模块模块电路图如下:LCD1602为工业字符型液晶,能够同时显示16*02即32个字符。
1602液晶模块内部的字符发生存储器(CGROM)已经存储了160个不同的点阵字符图形,这些字符有:阿拉伯数字、英文字母的大小写、常用的符号、和日文假名等,每一个字符都有一个固定的代码,只要在数据端输入相应的ASCII码,即可在LCD 上显示相应字符。